• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 113
  • 6
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 154
  • 154
  • 70
  • 39
  • 38
  • 37
  • 37
  • 36
  • 36
  • 34
  • 31
  • 25
  • 25
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

The Optimal Hardware Architecture for High Precision 3D Localization on the Edge. : A Study of Robot Guidance for Automated Bolt Tightening. / Den Optimala Hårdvaruarkitekturen för 3D-lokalisering med Hög Precision på Nätverksgränsen.

Edström, Jacob, Mjöberg, Pontus January 2019 (has links)
The industry is moving towards a higher degree of automation and connectivity, where previously manual operations are being adapted for interconnected industrial robots. This thesis focuses specifically on the automation of tightening applications with pre-tightened bolts and collaborative robots. The use of 3D computer vision is investigated for direct localization of bolts, to allow for flexible assembly solutions. A localization algorithm based on 3D data is developed with the intention to create a lightweight software to be run on edge devices. A restrictive use of deep learning classification is therefore included, to enable product flexibility while minimizing the computational load. The cloud-to-edge and cluster-to-edge trade-offs for the chosen application are investigated to identify smart offloading possibilities to cloud or cluster resources. To reduce operational delay, image partitioning to sub-image processing is also evaluated, to more quickly start the operation with a first coordinate and to enable processing in parallel with robot movement. Four different hardware architectures are tested, consisting of two different Single Board Computers (SBC), a cluster of SBCs and a high-end computer as an emulated local cloud solution. All systems but the cluster is seen to perform without operational delay for the application. The optimal hardware architecture is therefore found to be a consumer grade SBC, being optimized on energy efficiency, cost and size. If only the variance in communication time can be minimized, the cluster shows potential to reduce the total calculation time without causing an operational delay. Smart offloading to deep learning optimized cloud resources or a cluster of interconnected robot stations is found to enable increasing complexity and robustness of the algorithm. The SBC is also found to be able to switch between an edge and a cluster setup, to either optimize on the time to start the operation or the total calculation time. This offers a high flexibility in industrial settings, where product changes can be handled without the need for a change in visual processing hardware, further enabling its integration in factory devices. / Industrin rör sig mot en högre grad av automatisering och uppkoppling, där tidigare manuella operationer anpassas för sammankopplade industriella robotar. Denna masteruppsats fokuserar specifikt på automatiseringen av åtdragningsapplikationer med förmonterade bultar och kollaborativa robotar. Användningen av 3D-datorseende undersöks för direkt lokalisering av bultar, för att möjliggöra flexibla monteringslösningar. En lokaliseringsalgoritm baserad på 3Ddata utvecklas med intentionen att skapa en lätt mjukvara för att köras på Edge-enheter. En restriktiv användning av djupinlärningsklassificering är därmed inkluderad, för att möjliggöra produktflexibilitet tillsammans med en minimering av den behövda beräkningskraften. Avvägningarna mellan edge- och moln- eller klusterberäkning för den valda applikationen undersöks för att identifiera smarta avlastningsmöjligheter till moln- eller klusterresurser. För att minska operationell fördröjning utvärderas även bildpartitionering, för att snabbare kunna starta operationen med en första koordinat och möjliggöra beräkningar parallellt med robotrörelser. Fyra olika hårdvaruarkitekturer testas, bestående av två olika enkortsdatorer, ett kluster av enkortsdatorer och en marknadsledande dator som en efterliknad lokal molnlösning. Alla system utom klustret visar sig prestera utan operationell fördröjning för applikationen. Den optimala hårdvaruarkitekturen visar sig därmed vara en konsumentklassad enkortsdator, optimerad på energieffektivitet, kostnad och storlek. Om endast variansen i kommunikationstid kan minskas visar klustret potential för att kunna reducera den totala beräkningstiden utan att skapa operationell fördröjning. Smart avlastning till djupinlärningsoptimerade molnresurser eller kluster av sammankopplade robotstationer visar sig möjliggöra ökad komplexitet och tillförlitlighet av algoritmen. Enkortsdatorn visar sig även kunna växla mellan en edge- och en klusterkonfiguration, för att antingen optimera för tiden att starta operationen eller för den totala beräkningstiden. Detta medför en hög flexibilitet i industriella sammanhang, där produktändringar kan hanteras utan behovet av hårdvaruförändringar för visuella beräkningar, vilket ytterligare möjliggör dess integrering i fabriksenheter.
142

Flood Prediction System Using IoT and Artificial Neural Networks with Edge Computing

Samikwa, Eric January 2020 (has links)
Flood disasters affect millions of people across the world by causing severe loss of life and colossal damage to property. Internet of things (IoT) has been applied in areas such as flood prediction, flood monitoring, flood detection, etc. Although IoT technologies cannot stop the occurrence of flood disasters, they are exceptionally valuable apparatus for conveyance of catastrophe readiness and counteractive action data. Advances have been made in flood prediction using artificial neural networks (ANN). Despite the various advancements in flood prediction systems through the use of ANN, there has been less focus on the utilisation of edge computing for improved efficiency and reliability of such systems. In this thesis, a system for short-term flood prediction that uses IoT and ANN, where the prediction computation is carried out on a low power edge device is proposed. The system monitors real-time rainfall and water level sensor data and predicts ahead of time flood water levels using long short-term memory. The system can be deployed on battery power as it uses low power IoT devices and communication technology. The results of evaluating a prototype of the system indicate a good performance in terms of flood prediction accuracy and response time. The application of ANN with edge computing will help improve the efficiency of real-time flood early warning systems by bringing the prediction computation close to where data is collected. / Översvämningar drabbar miljontals människor över hela världen genom att orsaka dödsfall och förstöra egendom. Sakernas Internet (IoT) har använts i områden som översvämnings förutsägelse, översvämnings övervakning, översvämning upptäckt, etc. Även om IoT-teknologier inte kan stoppa förekomsten av översvämningar, så är de mycket användbara när det kommer till transport av katastrofberedskap och motverkande handlingsdata. Utveckling har skett när det kommer till att förutspå översvämningar med hjälp av artificiella neuronnät (ANN). Trots de olika framstegen inom system för att förutspå översvämningar genom ANN, så har det varit mindre fokus på användningen av edge computing vilket skulle kunna förbättra effektivitet och tillförlitlighet. I detta examensarbete föreslås ett system för kortsiktig översvämningsförutsägelse genom IoT och ANN, där gissningsberäkningen utförs över en låg effekt edge enhet. Systemet övervakar sensordata från regn och vattennivå i realtid och förutspår översvämningsvattennivåer i förtid genom att använda långt korttidsminne. Systemet kan köras på batteri eftersom det använder låg effekt IoT-enheter och kommunikationsteknik. Resultaten från en utvärdering av en prototyp av systemet indikerar en bra prestanda när det kommer till noggrannhet att förutspå översvämningar och responstid. Användningen av ANN med edge computing kommer att förbättra effektiviteten av tidiga varningssystem för översvämningar i realtid genom att ta gissningsberäkningen närmare till där datan samlas.
143

Study on reducing the overhead of equipment management in telco cloud infrastructure / Studie om resursutnyttjande hos utrustningshantering i molninfrastruktur för telekom

Sörensen, Alexander January 2022 (has links)
This thesis has been carried out on behalf of the department of Digital Services - SDI at Ericsson. Ericsson Software Defined Infrastructure (SDI) is a telco grade hardware management solution for cloud infrastructure. In datacenter deployments, the extra management equipment needed by the solution becomes insignificant due to the amount of equipment it manages. But the closer to the cloudedge you get, the smaller in size the deployments become, thus making the management equipment an ever-increasing share of the total deployment seize leading to inefficient resource utilization, so called overhead. Especially with Distributed Radio Access Networks (RAN) many small deployments, often only consisting of a single compute-server used to process radio, will be deployed at radio sites and/or in buildings around cities to deliver cell service. In this type of usage, the overhead of equipment management builds up cumulatively due to the numerous amounts of deployments. This overhead leads to excessive maintenance, power usage, space needs for equipment, costs, and electronic waste. The goal of this thesis was to evaluate how to reduce the overhead of equipment management in a scenario involving numerous small-capacity widely-distributed sites which are common in the 5G telco cloud. The idea was to determine if the overhead could be reduced by exploiting Baseboard Management Controllers (BMC), this was tested by designing a low-footprint and lightweight proof of concept equipment management solution and implementing a prototype of it. By testing, verifying, and analyzing the proof-of-concept solution, it was concluded that by exploiting the BMC to run a custom software service that phoned home to a centralized management server it was possible to drastically reduce the overhead in such scenarios. It also became clear that BMCs could have even more usage areas and provide even greater value if support to run third partyapplications existed among them. / Detta examensarbete har utförts på uppdrag av avdelningen Digital Services - SDI på Ericsson. Ericsson Software Defined Infrastructure (SDI) är en hårdvaruhanteringslösning av telekomkvalitetför molnifrastruktur. I datacenterinstallationer blir den extra hanteringsutrustning som behövs av lösningen obetydlig på grund av mängden utrustning den hanterar. Men ju längre ut till molnkanten du kommer, desto mindre blir storleken på installationerna, vilket gör att hanteringsutrustning blir en ständigt ökande andel av den totala installationsstorleken som leder till ineffektivt resursutnyttjande, så kallat overhead. Speciellt med Distribuerade Radio Access Nätverk (RAN) så kommer många små installationer, ofta endast bestående av en enda server som utför radiolänksberäkningar, att vara fysiskt utplacerade vidbasstationer och/eller i byggnader runt städer för att leverera och tillhandage mobiltjänster. Vid denna typ av användning ökar overheadet för utrustningshanteringen kumulativt på grund av antalet installationer. Detta overhead leder till mer underhåll och elektroniskt avfall, större utrymmesbehov för utrustning samt högre strömförbrukning och kostnader. Målet med detta examensarbete var att utvärdera hur man kan minska overheadet hosutrustningshantering när det tillämpas på ett stort antal, små decentraliserade distribuerade installationer, vilket är förekommande i telekommoln. Idén var att undersöka om overheadet kunde minskas genom att utnyttja Baseboard Management Controllers (BMC), detta testades genom att designa en liten och lättviktigt konceptlösning för utrustningshantering samt implementera en prototyp av den. Genom att testa, verifiera och analysera konceptlösningen drogs slutsatsen att det var möjligt att drastiskt minska overheaden i sådana scenarion genom att utnyttja BMC att köra en egen mjukvarutjänst, som automatiskt anslöt till en central hanteringsserver. Genom arbetet blev det också tydligt att BMC:er skulle kunna ha ännu fler användningsområden och ge ännu större värde om stödet för att köra tredjepartsapplikationer på dem var mer utbrett
144

An Adaptable, Fog-Computing Machine-to-Machine Internet of Things Communication Framework

Badokhon, Alaa 01 June 2017 (has links)
No description available.
145

Machine Learning Methods for Data Quality Aspects in Edge Computing Platforms

Mitra, Alakananda 12 1900 (has links)
In this research, three aspects of data quality with regard to artifical intelligence (AI) have been investigated: detection of misleading fake data, especially deepfakes, data scarcity, and data insufficiency, especially how much training data is required for an AI application. Different application domains where the selected aspects pose issues have been chosen. To address the issues of data privacy, security, and regulation, these solutions are targeted for edge devices. In Chapter 3, two solutions have been proposed that aim to preempt such misleading deepfake videos and images on social media. These solutions are deployable at edge devices. In Chapter 4, a deepfake resilient digital ID system has been described. Another data quality aspect, data scarcity, has been addressed in Chapter 5. One of such agricultural problems is estimating crop damage due to natural disasters. Data insufficiency is another aspect of data quality. The amount of data required to achieve acceptable accuracy in a machine learning (ML) model has been studied in Chapter 6. As the data scarcity problem is studied in the agriculture domain, a similar scenario—plant disease detection and damage estimation—has been chosen for this verification. This research aims to provide ML or deep learning (DL)-based methods to solve several data quality-related issues in different application domains and achieve high accuracy. We hope that this work will contribute to research on the application of machine learning techniques in domains where data quality is a barrier to success.
146

Optimering av underhållssystem för luftkvalitet i Hamreskolan / Optimization of the maintenance system for air quality in Hamreskolan

Askar, Maryam, Svärdelid Fichera, Davide January 2022 (has links)
Teknik och fastighetsförvaltningen är en förvaltning inom Västerås stad som ansvarar för byggandet av Västerås stad. Förvaltningen är intresserad av att få en bredare kunskap om optimering av underhållssystem för luftkvalitet och hur det skulle leda till energibesparing. Uppkomsten till deras intresse för om optimering av underhållssystem för luftkvalitet och energibesparing, är av anledning att de söker nya innovativa möjligheter att optimera luftkvalitet inom deras befintliga och nya fastigheter inom Västerås stads kommun. Projektgruppen samt teknik och fastighetsförvaltningen valde att lägga fokus på Hamreskolan där de i dagsläget har ett gediget underhållssystem för luftkvaliteten men har en önskan till förbättring. Skälet är deras upplevelse av luftkvalitet som inte är optimal, upplevelsen är att man känner sig trött, att det är kallt och kvavt ibland även för varmt inne i lokalerna. Bra luftkvalite är väsentligt för det påverkar både personalen och eleverna prestationsförmåga prioriterades detta. Målet med detta examensarbete är att presentera förbättringsförslag för att optimera underhållssystemet i Hamreskolan. Underhållssystemet innefattar ventilationssystemet och styrsystemet där dess syfte är att underhålla luftkvaliteten. De metoder som användes för framtagandet av förbättrings förslagen är djup litteraturstudie, platsbesök i Hamreskolan, brainstorming med förvaltare från Teknik och fastighetsförvaltningen samt pugh matris för validering av förbättrings förslagen. I detta examensarbete presenteras och diskuteras de förbättringsförslag som kommer medföra positiva effekter för Hamreskolan vid implementation. Dessa förbättringsförslag behövs inte nödvändigtvist begränsas till endast implementation vid Hamreskolan, det går även att implementera vid flera fastigheter inom Västerås stad, Teknik och fastighetsförvaltning. Vid utvecklande av förbättringsförslagen har realitet för funktionalitet och dess effekt vid implementation i Hamreskolan varit i åtanken. / Technology and property management is an administration within the city of Västerås that is responsible for the construction of the city of Västerås. The administration is interested in gaining a broader knowledge of optimizing maintenance systems for air quality and how it would lead to energy savings. The emergence of their interest in optimizing maintenance systems for air quality and energy savings, is due to seeking new innovative opportunities to optimize air quality within their existing and new properties within the City of Västerås. The project group as well as technology and property management chose to focus on Hamreskolan, where they currently have a solid maintenance system for air quality but have a desire for improvement. The reason is their experience of air quality which is not optimal, the experience is that you feel tired, that it is cold and sometimes even too hot inside the premises. Good air quality is essential because it affects both the staff and the student's performance priorities. The aim of this thesis is to present improvement proposals to optimize the maintenance system in Hamreskolan. The maintenance system includes the ventilation system and the control system where its purpose is to maintain the air quality. The methods used for the preparation of improvement proposals are in-depth literature study, site visits to Hamreskolan, brainstorming with managers from Technology and Property Management and a pugh matrix for validation of improvement proposals. In this thesis, the improvement proposals that will have positive effects for Hamreskolan upon implementation are presented and discussed. These improvement proposals do not necessarily have to be limited to only implementation at Hamreskolan, it is also possible to implement at several properties within the City of Västerås, Technology and property management. In developing the improvement proposals, the reality for functionality and its effect when implemented in Hamreskolan has been in mind.
147

PLANT LEVEL IIOT BASED ENERGY MANAGEMENT FRAMEWORK

Liya Elizabeth Koshy (14700307) 31 May 2023 (has links)
<p><strong>The Energy Monitoring Framework</strong>, designed and developed by IAC, IUPUI, aims to provide a cloud-based solution that combines business analytics with sensors for real-time energy management at the plant level using wireless sensor network technology.</p> <p>The project provides a platform where users can analyze the functioning of a plant using sensor data. The data would also help users to explore the energy usage trends and identify any energy leaks due to malfunctions or other environmental factors in their plant. Additionally, the users could check the machinery status in their plant and have the capability to control the equipment remotely.</p> <p>The main objectives of the project include the following:</p> <ul> <li>Set up a wireless network using sensors and smart implants with a base station/ controller.</li> <li>Deploy and connect the smart implants and sensors with the equipment in the plant that needs to be analyzed or controlled to improve their energy efficiency.</li> <li>Set up a generalized interface to collect and process the sensor data values and store the data in a database.</li> <li>Design and develop a generic database compatible with various companies irrespective of the type and size.</li> <li> Design and develop a web application with a generalized structure. Hence the database can be deployed at multiple companies with minimum customization. The web app should provide the users with a platform to interact with the data to analyze the sensor data and initiate commands to control the equipment.</li> </ul> <p>The General Structure of the project constitutes the following components:</p> <ul> <li>A wireless sensor network with a base station.</li> <li>An Edge PC, that interfaces with the sensor network to collect the sensor data and sends it out to the cloud server. The system also interfaces with the sensor network to send out command signals to control the switches/ actuators.</li> <li>A cloud that hosts a database and an API to collect and store information.</li> <li>A web application hosted in the cloud to provide an interactive platform for users to analyze the data.</li> </ul> <p>The project was demonstrated in:</p> <ul> <li>Lecture Hall (https://iac-lecture-hall.engr.iupui.edu/LectureHallFlask/).</li> <li>Test Bed (https://iac-testbed.engr.iupui.edu/testbedflask/).</li> <li>A company in Indiana.</li> </ul> <p>The above examples used sensors such as current sensors, temperature sensors, carbon dioxide sensors, and pressure sensors to set up the sensor network. The equipment was controlled using compactable switch nodes with the chosen sensor network protocol. The energy consumption details of each piece of equipment were measured over a few days. The data was validated, and the system worked as expected and helped the user to monitor, analyze and control the connected equipment remotely.</p> <p><br></p>
148

AI on the Edge with CondenseNeXt: An Efficient Deep Neural Network for Devices with Constrained Computational Resources

Priyank Kalgaonkar (10911822) 05 August 2021 (has links)
Research work presented within this thesis propose a neoteric variant of deep convolutional neural network architecture, CondenseNeXt, designed specifically for ARM-based embedded computing platforms with constrained computational resources. CondenseNeXt is an improved version of CondenseNet, the baseline architecture whose roots can be traced back to ResNet. CondeseNeXt replaces group convolutions in CondenseNet with depthwise separable convolutions and introduces group-wise pruning, a model compression technique, to prune (remove) redundant and insignificant elements that either are irrelevant or do not affect performance of the network upon disposition. Cardinality, a new dimension to the existing spatial dimensions, and class-balanced focal loss function, a weighting factor inversely proportional to the number of samples, has been incorporated in order to relieve the harsh effects of pruning, into the design of CondenseNeXt’s algorithm. Furthermore, extensive analyses of this novel CNN architecture was performed on three benchmarking image datasets: CIFAR-10, CIFAR-100 and ImageNet by deploying the trained weight on to an ARM-based embedded computing platform: NXP BlueBox 2.0, for real-time image classification. The outputs are observed in real-time in RTMaps Remote Studio’s console to verify the correctness of classes being predicted. CondenseNeXt achieves state-of-the-art image classification performance on three benchmark datasets including CIFAR-10 (4.79% top-1 error), CIFAR-100 (21.98% top-1 error) and ImageNet (7.91% single model, single crop top-5 error), and up to 59.98% reduction in forward FLOPs compared to CondenseNet. CondenseNeXt can also achieve a final trained model size of 2.9 MB, however at the cost of 2.26% in accuracy loss. Thus, performing image classification on ARM-Based computing platforms without requiring a CUDA enabled GPU support, with outstanding efficiency.<br>
149

Internet of Things in Surface Mount TechnologyElectronics Assembly / Sakernas Internet inom Ytmontering av Elektronik

Sylvan, Andreas January 2017 (has links)
Currently manufacturers in the European Surface Mount Technology (SMT) industry seeproduction changeover, machine downtime and process optimization as their biggestchallenges. They also see a need for collecting data and sharing information betweenmachines, people and systems involved in the manufacturing process. Internet of Things (IoT)technology provides an opportunity to make this happen. This research project gives answers tothe question of what the potentials and challenges of IoT implementation are in European SMTmanufacturing. First, key IoT concepts are introduced. Then, through interviews with expertsworking in SMT manufacturing, the current standpoint of the SMT industry is defined. The studypinpoints obstacles in SMT IoT implementation and proposes a solution. Firstly, local datacollection and sharing needs to be achieved through the use of standardized IoT protocols andAPIs. Secondly, because SMT manufacturers do not trust that sensitive data will remain securein the Cloud, a separation of proprietary data and statistical data is needed in order take a stepfurther and collect Big Data in a Cloud service. This will allow for new services to be offered byequipment manufacturers. / I dagsläget upplever tillverkare inom den europeiska ytmonteringsindustrin för elektronikproduktionsomställningar, nedtid för maskiner och processoptimering som sina störstautmaningar. De ser även ett behov av att samla data och dela information mellan maskiner,människor och system som som är delaktiga i tillverkningsprocessen.Sakernas internet, även kallat Internet of Things (IoT), erbjuder teknik som kan göra dettamöjligt. Det här forskningsprojektet besvarar frågan om vilken potential som finns samt vilkautmaningar en implementation av sakernas internet inom europeisk ytmonteringstillverkning avelektronik innebär. Till att börja med introduceras nyckelkoncept inom sakernas internet. Sedandefinieras utgångsläget i elektroniktillverkningsindustrin genom intervjuer med experter.Studien belyser de hinder som ligger i vägen för implementation och föreslår en lösning. Dettainnebär först och främst att datainsamling och delning av data måste uppnås genomanvändning av standardiserade protokoll för sakernas internet ochapplikationsprogrammeringsgränssnitt (APIer). På grund av att elektroniktillverkare inte litar påatt känslig data förblir säker i molnet måste proprietär data separeras från statistisk data. Dettaför att möjliggöra nästa steg som är insamling av så kallad Big Data i en molntjänst. Dettamöjliggör i sin tur för tillverkaren av produktionsmaskiner att erbjuda nya tjänster.
150

Probabilistic Multi-Modal Data Fusion and Precision Coordination for Autonomous Mobile Systems Navigation : A Predictive and Collaborative Approach to Visual-Inertial Odometry in Distributed Sensor Networks using Edge Nodes / Sannolikhetsbaserad fermodig datafusion och precision samordning för spårning av autonoma mobila system : En prediktiv och kant-samarbetande metod för visuell-inertial navigation i distribuerade sensornätverk

Luppi, Isabella January 2023 (has links)
This research proposes a novel approach for improving autonomous mobile system navigation in dynamic and potentially occluded environments. The research introduces a tracking framework that combines data from stationary sensing units and on-board sensors, addressing challenges of computational efficiency, reliability, and scalability. The work innovates by integrating spatially-distributed LiDAR and RGB-D Camera sensors, with the optional inclusion of on-board IMU-based dead-reckoning, forming a robust and efficient coordination framework for autonomous systems. Two key developments are achieved. Firstly, a point cloud object detection technique, "Generalized L-Shape Fitting”, is advanced, enhancing bounding box fitting over point cloud data. Secondly, a new estimation framework, the Distributed Edge Node Switching Filter (DENS-F), is established. The DENS-F optimizes resource utilization and coordination, while minimizing reliance on on-board computation. Furthermore, it incorporates a short-term predictive feature, thanks to the Adaptive-Constant Acceleration motion model, which utilizes behaviour-based control inputs. The findings indicate that the DENS-F substantially improves accuracy and computational efficiency compared to the Kalman Consensus Filter (KCF), particularly when additional inertial data is provided by the vehicle. The type of sensor deployed and the consistency of the vehicle's path are also found to significantly influence the system's performance. The research opens new viewpoints for enhancing autonomous vehicle tracking, highlighting opportunities for future exploration in prediction models, sensor selection, and precision coordination. / Denna forskning föreslår en ny metod för att förbättra autonom mobil systemsnavigering i dynamiska och potentiellt skymda miljöer. Forskningen introducerar ett spårningsramverk som kombinerar data från stationära sensorenheter och ombordssensorer, vilket hanterar utmaningar med beräkningsefektivitet, tillförlitlighet och skalbarhet. Arbetet innoverar genom att integrera spatialt distribuerade LiDAR- och RGB-D-kamerasensorer, med det valfria tillägget av ombord IMU-baserad dödräkning, vilket skapar ett robust och efektivt samordningsramverk för autonoma system. Två nyckelutvecklingar uppnås. För det första avanceras en punktmolnsobjektdetekteringsteknik, “Generaliserad L-formig anpassning”, vilket förbättrar anpassning av inneslutande rutor över punktmolnsdata. För det andra upprättas ett nytt uppskattningssystem, det distribuerade kantnodväxlingsfltret (DENSF). DENS-F optimerar resursanvändning och samordning, samtidigt som det minimerar beroendet av ombordberäkning. Vidare införlivar det en kortsiktig prediktiv funktion, tack vare den adaptiva konstanta accelerationsrörelsemodellen, som använder beteendebaserade styrentréer. Resultaten visar att DENS-F väsentligt förbättrar noggrannhet och beräknings-efektivitet jämfört med Kalman Consensus Filter (KCF), särskilt när ytterligare tröghetsdata tillhandahålls av fordonet. Den typ av sensor som används och fordonets färdvägs konsekvens påverkar också systemets prestanda avsevärt. Forskningen öppnar nya synvinklar för att förbättra spårning av autonoma fordon, och lyfter fram möjligheter för framtida utforskning inom förutsägelsemodeller, sensorval och precisionskoordinering. / Questa ricerca propone un nuovo approccio per migliorare la navigazione dei sistemi mobili autonomi in ambienti dinamici e potenzialmente ostruiti. La ricerca introduce un sistema di tracciamento che combina dati da unità di rilevazione stazionarie e sensori di bordo, afrontando le sfde dell’effcienza computazionale, dell’affdabilità e della scalabilità. Il lavoro innova integrando sensori LiDAR e telecamere RGB-D distribuiti nello spazio, con l’inclusione opzionale di una navigazione inerziale basata su IMU di bordo, formando un robusto ed effciente quadro di coordinamento per i sistemi autonomi. Vengono raggiunti due sviluppi chiave. In primo luogo, viene perfezionata una tecnica di rilevazione di oggetti a nuvola di punti, “Generalized L-Shape Fitting”, migliorando l’adattamento del riquadro di delimitazione sui dati della nuvola di punti. In secondo luogo, viene istituito un nuovo framework di stima, il Distributed Edge Node Switching Filter (DENS-F). Il DENS-F ottimizza l’utilizzo delle risorse e il coordinamento, riducendo al minimo la dipendenza dal calcolo di bordo. Inoltre, incorpora una caratteristica di previsione a breve termine, grazie al modello di movimento Adaptive-Constant Acceleration, che utilizza input di controllo basati sul comportamento del veicolo. I risultati indicano che il DENS-F migliora notevolmente l’accuratezza e l’effcienza computazionale rispetto al Kalman Consensus Filter (KCF), in particolare quando il veicolo fornisce dati inerziali aggiuntivi. Si scopre anche che il tipo di sensore impiegato e la coerenza del percorso del veicolo infuenzano signifcativamente le prestazioni del sistema. La ricerca apre nuovi punti di vista per migliorare il tracciamento dei veicoli autonomi, evidenziando opportunità per future esplorazioni nei modelli di previsione, nella selezione dei sensori e nel coordinamento di precisione.

Page generated in 0.3313 seconds