• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 185
  • 90
  • 19
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 7
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 367
  • 367
  • 367
  • 86
  • 83
  • 82
  • 82
  • 55
  • 44
  • 41
  • 40
  • 36
  • 24
  • 24
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Electron spins in reduced dimensions: ESR spectroscopy on semiconductor heterostructures and spin chain compounds

Lipps, Ferdinand 08 September 2011 (has links) (PDF)
Spatial confinement of electrons and their interactions as well as confinement of the spin dimensionality often yield drastic changes of the electronic and magnetic properties of solids. Novel quantum transport and optical phenomena, involving electronic spin degrees of freedom in semiconductor heterostructures, as well as a rich variety of exotic quantum ground states and magnetic excitations in complex transition metal oxides that arise upon such confinements, belong therefore to topical problems of contemporary condensed matter physics. In this work electron spin systems in reduced dimensions are studied with Electron Spin Resonance (ESR) spectroscopy, a method which can provide important information on the energy spectrum of the spin states, spin dynamics, and magnetic correlations. The studied systems include quasi onedimensional spin chain materials based on transition metals Cu and Ni. Another class of materials are semiconductor heterostructures made of Si and Ge. Part I deals with the theoretical background of ESR and the description of the experimental ESR setups used which have been optimized for the purposes of the present work. In particular, the development and implementation of axial and transverse cylindrical resonant cavities for high-field highfrequency ESR experiments is discussed. The high quality factors of these cavities allow for sensitive measurements on μm-sized samples. They are used for the investigations on the spin-chain materials. The implementation and characterization of a setup for electrical detected magnetic resonance is presented. In Part II ESR studies and complementary results of other experimental techniques on two spin chain materials are presented. The Cu-based material Linarite is investigated in the paramagnetic regime above T > 2.8 K. This natural crystal constitutes a highly frustrated spin 1/2 Heisenberg chain with ferromagnetic nearest-neighbor and antiferromagnetic next-nearestneighbor interactions. The ESR data reveals that the significant magnetic anisotropy is due to anisotropy of the g-factor. Quantitative analysis of the critical broadening of the linewidth suggest appreciable interchain and interlayer spin correlations well above the ordering temperature. The Ni-based system is an organic-anorganic hybrid material where the Ni2+ ions possessing the integer spin S = 1 are magnetically coupled along one spatial direction. Indeed, the ESR study reveals an isotropic spin-1 Heisenberg chain in this system which unlike the Cu half integer spin-1/2 chain is expected to possess a qualitatively different non-magnetic singlet ground state separated from an excited magnetic state by a so-called Haldane gap. Surprisingly, in contrast to the expected Haldane behavior a competition between a magnetically ordered ground state and a potentially gapped state is revealed. In Part III investigations on SiGe/Si quantum dot structures are presented. The ESR investigations reveal narrowlines close to the free electron g-factor associated with electrons on the quantum dots. Their dephasing and relaxation times are determined. Manipulations with sub-bandgap light allow to change the relative population between the observed states. On the basis of extensive characterizations, strain, electronic structure and confined states on the Si-based structures are modeled with the program nextnano3. A qualitative model, explaining the energy spectrum of the spin states is proposed.
332

Estudo de pontos quânticos semicondutores e semimagnéticos

Freitas Neto, Ernesto Soares de 18 January 2013 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / In this work we have employed the Melting-Nucleation method in order to synthesize semiconductor and semimagnetic quantum dots (QDs), CdSe, CdSxSe1-x, CdS e Cd1-xMnxS, in a glass matrix. We have investigated these QDs by using several experimental techniques and theoretical models, reaching a comprehensive understanding of their fundamental properties. The lattice contraction in CdSe QDs was confirmed by Raman spectroscopy, evidencing that the glass matrix (host material) plays an important role on the vibrational modes of nanocrystals (NCs). Advancement in the synthesis of pseudo-bynary CdSxSe1-x QDs was achieved by obtaining a good control on the alloy composition in two variants of precursor dopings, while the QD size is tuned by annealing. Resonant Raman spectra of these CdSxSe1-x QDs were very well described by the continuum lattice dynamics model, suggesting the propagation of optical phonons within the NC. By studying CdS QDs by temperaturedependent Raman spectroscopy, we have demonstrated that there is a large difference between the thermal expansion coefficients of QD e of bulk material. The same conclusions were obtained for the modal Grüneisen parameters and for the anharmonicity coupling constants, so that they have to be estimated independently of bulk parameters in the study of thermal properties of QDs. We have employed the Electron Paramagnetic Resonance in order to confirm that the migration of Mn2+ ions in Cd1-xMnxS NCs, from the core to the surface, can be controlled by a thermal annealing. We have proved yet that the luminescence emitted by Cd1-xMnxS NCs can be controlled by changing the x concentration and by the thermal annealing, in which the emission of Mn2+ ions (4T1 6A1) is only observed when this magnetic impurity is substitutionally into the core of Cd1-xMnxS NC. From temperature-dependent photoluminescence measurements, we have come up with a model based on rate equations that describes well the energy transfers involving two coupled groups of Cd1-xMnxS NPs. Further emissions from deep defect levels were attributed to two energetically different divacancies, VCd VS, in the wurtzite structure of Cd1-xMnxS NPs, which can be controlled by the magnetic doping. By studying the magneto-optical properties of Cd1-xMnxS NPs, we have demonstrated that the self-purification is the dominant mechanism controlling the doping process in semiconductor QDs grown by the melting-nucleation method. We have demonstrated that the multiphonon Raman scattering in the coupled Cd1-xMnxS NPs, as well as the coupling strength between electrons and optical phonons, can satisfactorily be tuned by the magnetic doping with Mn2+ ions and by an appropriate thermal annealing. Furthermore, we have verified that the magnetic doping have induced variations on the sp-d exchange interaction and in the crystalline quality of NPs. / Neste trabalho nós utilizamos o método de Fusão-Nucleação para sintetizar pontos quânticos (PQs) semicondutores e semimagnéticos, CdSe, CdSxSe1-x, CdS e Cd1-xMnxS, em uma matriz vítrea. Nós investigamos estes PQs utilizando várias técnicas experimentais e modelos teóricos, obtendo um entendimento compreensivo das suas propriedades fundamentais. A contração da rede cristalina nos PQs de CdSe foi confirmada pela espectroscopia Raman, evidenciando que a matriz vítrea (material hospedeiro) desempenha um papel importante sobre os modos vibracionais dos nanocristais (NCs). Um avanço na síntese de PQs pseudo-binários de CdSxSe1-x foi alcançado, obtendo um bom controle sobre a composição da liga em duas variações de dopantes precursores, enquanto o tamanho do PQ é controlado pelo recozimento. Os espectros Raman ressonantes destes PQs de CdSxSe1-x foram muito bem descritos pelo modelo da dinâmica de rede contínua, sugerindo a propagação de fônons ópticos dentro do NC. Ao estudar PQs de CdS por espectroscopia Raman dependente da temperatura, nós demonstramos que existe uma grande diferença entre os coeficientes de expansão térmica do PQ e do material bulk. As mesmas conclusões foram obtidas para os parâmetros de Grüneisen modais e para as constantes de acoplamento da anarmonicidade, de maneira que eles devem ser estimados independentemente dos parâmetros do bulk no estudo das propriedades térmicas dos PQs. Nós utilizamos a Ressonância Paramagnética Eletrônica para confirmar que a migração de íons Mn2+ em NCs de Cd1-xMnxS, do núcleo para a superfície, pode ser controlada por um recozimento térmico. Comprovamos ainda que a luminescência emitida pelos NCs de Cd1-xMnxS pode ser controlada pela modificação da concentração x e pelo recozimento térmico, em que a emissão dos íons Mn2+ (4T1 6A1) é somente observada quando esta impureza magnética está substitucionalmente incorporada no núcleo do NC de Cd1-xMnxS. A partir de medidas de fotoluminescência dependente da temperatura, nós desenvolvemos um modelo baseado em equações de taxa que descreve bem as transferências de energia envolvendo dois grupos acoplados de nanopartículas (NPs) de Cd1-xMnxS. Emissões adicionais a partir de níveis de defeitos profundos que foram atribuídos duas divacâncias energeticamente diferentes, VCd VS, na estrutura wurtzita das NPs de Cd1-xMnxS, que podem ser controladas pela dopagem magnética. Ao estudar as propriedades magneto-ópticas das NPs de Cd1-xMnxS, nós demonstramos que a autopurificação é o mecanismo dominante controlando o processo de dopagem em PQs semicondutores crescidos pelo método de fusão-nucleação. Nós demonstramos que o espalhamento Raman multi-fônon nas NPs de Cd1-xMnxS acopladas, bem como a força do acoplamento entre elétrons e fônons ópticos, podem ser adequadamente sintonizados pela dopagem magnética com íons Mn2+ e por um recozimento térmico apropriado. Além disso, verificamos que a dopagem magnética induziu variações na interação de troca sp-d e na qualidade cristalina das NPs. / Doutor em Física
333

Metal-loaded graphitic carbon nitride for photocatalytic hydrogen production and the development of an innovative photo-thermal reactor

Caux, Marine January 2018 (has links)
The path towards mitigation of anthropogenic greenhouse gas emissions lies in the transition from conventional to sustainable energy resources. The Hydrogen Economy, a cyclic economy based on hydrogen as a fuel, is suggested as a tool in the necessary energy transition. Photocatalysis makes use of sunlight to promote thermodynamically non-favoured reactions such as water splitting, allowing for sustainable hydrogen production. Harvesting thermal energy along with photonic energy is an interesting concept to decrease the activation energy of water splitting (i.e. ΔG = + 237.2 kJ∙mol−1). This work aims to confront this hypothesis in a gas phase photo-thermal reactor designed specifically for this study. The photocatalyst chosen is graphitic carbon nitride (g-C3N4), an organic semiconductor possessing a narrow band gap (i.e. 2.7 eV) as well as a band structure which theoretically permits water splitting. The photocatalytic performance of Pt/g-C3N4 for hydrogen evolution was tuned by altering its synthetic temperature. Electron paramagnetic resonance was used to gain insight on the evolution of the photocatalyst activity with synthesis temperature. Then, gold nanoparticles were deposited on g-C3N4 surface. Localized surface plasmon resonance properties of gold nanoparticles are reported in the literature to be influenced by temperature. Therefore Au/g-C3N4 appeared as a promising candidate for photo-thermal water splitting. X-ray spectroscopy unveiled interesting observations on the gold oxidation state. Moreover, under specific reduction conditions, gold nanoparticles with a wide variety of shapes characterized by sharp edges were formed. Finally, the development of the photo-thermal reactor is presented. The design process and the implementation of this innovative reactor are discussed. The reactor was successfully utilized to probe photoreactions. Then, the highly energy-demanding photocatalytic water splitting was proven not to be activated by temperature in the photo-thermal apparatus.
334

Processamento e caracterização do gel Magic-f com raios-x, espectroscopia por RMN e EPR e espectrofotometria UV/Vis / Processing and characterization of Magic-f gel with x-ray computerized tomography, NMR spectroscopy and EPR and UV/Visible spectrophoyometry

Murakami, Nayara Saty 22 September 2017 (has links)
Este trabalho teve como objetivo realizar o processamento do gel polimérico MAGICf, irradiá-lo e caracterizá-lo com quatro métodos de leitura, uma vez que a dosimetria com gel polimérico é uma área promissora no âmbito de controle de qualidade dos tratamentos radioterápicos, pois permite a avaliação de dose tridimensionalmente. Os métodos para caracterização do gel MAGIC-f foram: Tomografia Computadorizada (TC), espectroscopia de Ressonância Magnética Nuclear (RMN), Ressonância Paramagnética Eletrônica (EPR) e espectrofotometria UV/Vis. Para a caracterização por esse último método, foi feita uma nova formulação do gel MAGIC-f adicionando fluoresceína. Os resultados da caracterização desse gel dosimétrico com tomografia computadorizada e EPR não foram satisfatórios, porém com a espectroscopia de RMN obteve-se bons resultados, assim como com a espectrofotometria UV/Vis. A nova formulação do gel para a caracterização com espectrofotometria mostrou-se ser um método inovador e bastante promissor para essa área. / This work aimed to perform the processing of the MAGIC-f polymeric gel, to irradiate it and to characterize it with four methods of reading, since the dosimetry with polymeric gel is a promising area within the scope of quality control of the radiotherapeutic treatments, because it allows dose evaluation three-dimensional. The methods for characterization of the MAGIC-f gel were: Computed Tomography (CT), Nuclear Resonance Magnetic (NMR) and Electron Paramagnetic Resonance (EPR) spectroscopy, and UV/Vis spectrophotometry. For characterization with this last method, a new MAGIC-f gel formulation was made adding fluorescein. The results of the characterization of this dosimetric gel with computed tomography and EPR were not satisfactory, but with NMR spectroscopy satisfactory results were obtained as well as UV / Vis spectrophotometry. The new gel formulation for characterization with UV / Vis spectrophotometry has proved to be an innovative and very promising method for this area.
335

Processamento e caracterização do gel Magic-f com raios-x, espectroscopia por RMN e EPR e espectrofotometria UV/Vis / Processing and characterization of Magic-f gel with x-ray computerized tomography, NMR spectroscopy and EPR and UV/Visible spectrophoyometry

Murakami, Nayara Saty 22 September 2017 (has links)
Este trabalho teve como objetivo realizar o processamento do gel polimérico MAGICf, irradiá-lo e caracterizá-lo com quatro métodos de leitura, uma vez que a dosimetria com gel polimérico é uma área promissora no âmbito de controle de qualidade dos tratamentos radioterápicos, pois permite a avaliação de dose tridimensionalmente. Os métodos para caracterização do gel MAGIC-f foram: Tomografia Computadorizada (TC), espectroscopia de Ressonância Magnética Nuclear (RMN), Ressonância Paramagnética Eletrônica (EPR) e espectrofotometria UV/Vis. Para a caracterização por esse último método, foi feita uma nova formulação do gel MAGIC-f adicionando fluoresceína. Os resultados da caracterização desse gel dosimétrico com tomografia computadorizada e EPR não foram satisfatórios, porém com a espectroscopia de RMN obteve-se bons resultados, assim como com a espectrofotometria UV/Vis. A nova formulação do gel para a caracterização com espectrofotometria mostrou-se ser um método inovador e bastante promissor para essa área. / This work aimed to perform the processing of the MAGIC-f polymeric gel, to irradiate it and to characterize it with four methods of reading, since the dosimetry with polymeric gel is a promising area within the scope of quality control of the radiotherapeutic treatments, because it allows dose evaluation three-dimensional. The methods for characterization of the MAGIC-f gel were: Computed Tomography (CT), Nuclear Resonance Magnetic (NMR) and Electron Paramagnetic Resonance (EPR) spectroscopy, and UV/Vis spectrophotometry. For characterization with this last method, a new MAGIC-f gel formulation was made adding fluorescein. The results of the characterization of this dosimetric gel with computed tomography and EPR were not satisfactory, but with NMR spectroscopy satisfactory results were obtained as well as UV / Vis spectrophotometry. The new gel formulation for characterization with UV / Vis spectrophotometry has proved to be an innovative and very promising method for this area.
336

Atividade antioxidante de extratos vegetais da flora brasileira: estudo com ressonância paramagnética eletrônica (RPE) e teoria do funcional da densidade (TFD) / Antioxidant Activity of Plant Extracts from Brazilian Flora: Study of Electron Paramagnetic Resonance (EPR) and Density Functional Theory (DFT).

Adevailton Bernardo dos Santos 03 July 2006 (has links)
Há, no Brasil, uma enorme diversidade de espécies vegetais, e um conhecimento popular de várias propriedades medicinais das mesmas. Dentre os estudos realizados com extratos de plantas, há um interesse especial na atividade antioxidante. Este trabalho, focado em atividade antioxidante, é dividido em duas partes: a primeira, utiliza a técnica de RPE para estudar a ação dos antioxidantes neutralizando os radicais livres, enquanto que a segunda utiliza a TFD para, em simulação computacional, ajudar a entender os resultados obtidos na primeira parte. Foram analisados 10 extratos vegetais: Swartzia langsdorffii, Machaerium villosum, Pterogyne nitens, Maytenus ilicifolia (casca de raiz), Pera glabrata, Aegiphyla sellowiana, Copaifera langsdorffii, Chrysophyllum inornatum, Iryanthera juruensis (folhas e sementes), Didymopanax vinosum. O estudo da atividade antioxidante com RPE utiliza dois métodos diferentes: o primeiro método mede a atividade antioxidante por meio do controle da quantidade de radicais livres, TEMPOL e DPPH, em contato com o extrato vegetal, enquanto que o segundo método utiliza o spin trap DMPO em conjunto com a reação de Fenton (Fe2+ + H2O2 => Fe3+ + HO- + HO) para analisar a ação dos extratos vegetais contra o radical hidroxila (OH?). A simulação computacional dos compostos TEMPOL, DPPH e DMPO é realizada em um método de primeiros princípios na Teoria do Funcional da Densidade, com uso de pseudopotenciais. O código utilizado é o SIESTA. As conclusões indicam que o extrato de Iryanthera juruensis, tanto de folhas quanto de sementes, exibe atividades antioxidantes bastante acentuadas, em todos os métodos utilizados. A simulação computacional aponta o TEMPOL menos reativo que o DPPH, devido a menor energia liberada em sua reação de redução. Sabendo que algumas destas espécies já são usadas popularmente por propriedades medicinais, estudos futuros para a correta identificação do agente antioxidante e seu possível uso, tanto na indústria alimentícia quanto na farmacêutica, deverão ser realizados. / There is, in Brazil, a great diversity of vegetable species, and a popular knowledge of several medicinal properties of the some of them. In studies carried out with plants? extracts, there is special interest in antioxidant activities. This work, focused in antioxidant activity, is divided in two parts: the first uses EPR technique to study the antioxidant activities neutralizing free radicals, while the second one uses DFT, in computational simulation, to understand the results obtained from the first part. Ten vegetable extracts were analyzed: Swartzia langsdorffii, Machaerium villosum, Pterogyne nitens, Maytenus ilicifolia (bark root extracts), Pera glabrata, Aegiphyla sellowiana, Copaifera langsdorffii, Chrysophyllum inornatum, Iryanthera juruensis (leaves and seeds), Didymopanax vinosum. The study with EPR uses two different methods: the first method measures the antioxidant activity by monitoring the amount of free radicals, DPPH and TEMPOL, that are in contact with the plant extract, the second method uses spin trap DMPO with Fenton reaction (Fe2+ + H2O2 => Fe3+ + HO- + HO) for the study of the plant extract antioxidant activity against the hydroxyl radical (OH?). The computational simulation of TEMPOL, DPPH and DMPO is carried out using a method of first principles within the Density Functional Theory and pseudopotentials. The code is SIESTA. The conclusions indicate that the Iryanthera juruensis extract, as of leaves as of seeds, exhibits accentuated antioxidants activities, in all of the used methods. The computational simulation indicated that the TEMPOL is less reactive than the DPPH, because the lower energy in its reduction reaction. As some of these species are already used popularly by medicinal properties, future studies for correct identification of the antioxidant compounds and its possible use, as in the food industry as in the pharmaceutical industry, should be realized.
337

Magnetic Ordering in Bulk and Nanoparticles of Certain Bismuth Based Manganites Bi1-xAxMnO3 (A = Ca, Sr) : Electron Paramagnetic Resonance and Magnetization Studies

Geetanjali, * January 2013 (has links) (PDF)
The study of bulk and nanoparticles of perovskite rare earth manganites has been an extensive area of research in the recent past due to their rich and interesting physics and potential applications [1-5]. Manganites have potential applications in the emerging field of spintronics because of their colossal magnetoresistance (CMR) [6] and half-metallic [7] properties. Nano sized materials exhibit enhanced and different electronic and magnetic properties and expected to behave quite differently compared to their bulk counterparts due to quantum confinement effects and high surface/volume ratio. Magnetic nanoparticles in particular have great potential for use in a wide range of applications including magnetic recording media, various sensors, catalysts, magnetic refrigeration, medicine etc. In this thesis we study changes in the magnetic ordering of certain bismuth based manganites Bi1-xAxMnO3 (A = Ca and Sr) using various experimental probes when we reduce their particle size to nano scale. The general formula for doped manganites is R1-xAxMnO3 where R is a trivalent rare-earth ion such as La, Nd, Pr, Sm and A is a divalent alkaline earth ion such as Ca, Sr, Ba, Pb. They became interesting due to their many intriguing properties like CMR (Colossal Magnetoresistance), phase separation, charge ordering (CO), orbital ordering (OO) and many more. These properties depend sensitively on many factors like temperature, magnetic field, pressure and doping concentration x. There is a strong coupling of spin, orbital and lattice to each other in manganites. The complex interplay of all these couplings make them strongly correlated systems. In the parent compound RMnO3 Mn ion is in Mn3+ state while it is present as Mn4+ in the compound AMnO3. The manganites with x = 0 and x = 1 are both antiferromagnetic insulators, magnetism in them being mediated by superexchange through oxygen. On doping with a divalent alkaline earth ion in RMnO3, there is a transition The properties of nanoparticles of manganites show strong surface effects. The magnetic behavior is strongly governed by the free surface spins in nanoparticles. And as the size reduces, there is suppression of charge ordering which can also disappear in very small particles [11]. Antiferromagnetism in bulk gives way to ferromagnetism in nanoparticles [12-14]. In the following we give a chapter wise summary of the results reported in the thesis. Chapter 1: This chapter of the thesis consists of a brief introduction to the physics of manganites. Further we have written a detailed overview of bismuth based manganites, properties of nano manganites and the technique of EPR. There is a section about different line shapes observed in EPR of manganites, their origin and how to fit them to appropriate lineshape function [15]. This chapter also includes a detailed account of experimental methodologies used in thesis which are: EPR spectrometer, SQUID magnetometer, X-ray diffractometer and TEM and the analysis procedure adopted in this work. Chapter 2: This chapter deals with the magnetic and EPR studies of nanoparticles (average diameter ~ 30 nm) of Bi0.25Ca0.75MnO3 (BCMO) and their comparison with the results on bulk BCMO. Bulk Bi0.25Ca0.75MnO3 (BCMOB) shows charge ordering at 230 K followed by a transition to an antiferromagnetic phase at 130 K [16]. The bulk and the nanoparticles (D ~ 30 nm) of Bi0.25Ca0.75MnO3 were prepared by solid-state reaction method and sol-gel method respectively. The two samples were investigated by using XRD, TEM, SQUID and EPR techniques. Our magnetization and EPR results show that the charge ordering disappears in nanoparticles of this composition and there emerges a ferromagnetic phase similarly to the rare earth manganites. The nanoparticles of the rare earth based manganites are found to consist of an antiferromagnetic core and a ferromagnetic shell/surface region [3, 17] and thus are expected to exhibit the ‘exchange bias (EB) effect’ [18-22] resulting in a shift of the magnetic hysteresis loop. Indeed many nanomanganites do show EB effect. However, contrary to this expectation, we find that in BCMON samples the EB effect is absent. Chapter 3: In this chapter, we report the results of temperature dependent magnetization and electron paramagnetic resonance studies on bulk and nanoparticles of electron (x = 0. 6, BCE) and hole (x = 0.4, BCH) doped Bi1-xCaxMnO3 (BCMO) and the effect of the size reduction on the electron-hole asymmetry observed in the bulk sample. Bulk sample of Bi0.4Ca0.6MnO3is a paramagnetic insulator at room temperature with Tco = 330 K and TN ~ 120 K while BiCaMnO3 undergoes a charge ordering transition at TCO = 315 K with TN ~ 150 K [16]. All the four samples were investigated by using XRD, TEM, SQUID and EPR techniques. It is shown that antiferromagnetism and charge order persist in the hole doped nano sample while ferromagnetism has emerged in the electron doped nano sample. Our magnetization and EPR results show that spin glass phase exists in bulk BCE, bulk BCH and nano BCE whereas no sign of either spin glass state or ferromagnetism is seen in nano BCH. We have shown that electron-hole asymmetry in terms of ‘g’ parameter has reduced in the nanoparticles but it has not completely disappeared in contrast with the results on Pr1-xCaxMnO3 [23]. We understand these interesting results in terms of the presence of the highly polarizable 6s2 lone pair electrons on bismuth which is known to cause many interesting departures from the behavior of rare earth manganites. We study the temperature dependence of the linewidth behavior by fitting it to the different models [24¬27] and find that Shengelaya’s model [25, 26] fits well to all the four samples describing the spin dynamics satisfactorily in the present samples. Chapter 4: In this chapter, we present the fabrication, characterization and the results obtained from the magnetization and EPR measurements carried out on bulk and nanoparticles of Bi0.1Ca0.9MnO3. We prepared the nanoparticles of BCMO by standard sol¬gel technique and bulk samples by solid state reaction method. We investigated magnetic ordering by doing temperature dependent magnetic and EPR studies on both the samples and compared the properties with each other. Bulk Bi0.1Ca0.9MnO3 (BCMB) shows mixed phase of antiferromagnetism and ferromagnetism without any charge ordered state. Our results show that the ferromagnetism exists in the bulk BCMO which is present in the nano sample as well but with somewhat weakened strength with the size reduction. The nanoparticles of the rare earth based manganites are found to consist of an antiferromagnetic core and a ferromagnetic shell/surface region and thus are expected to exhibit the more uncompensated spins on the surface which reduce the magnetization in the nanoparticles. We calculated activation energy for the two samples by fitting the intensity behavior to the Arrhenius equation [28]. Activation energy was found to decrease for nano BCMO which indicates the weaker intracluster double-exchange interaction in it. Chapter 5: This chapter deals with the comparative study of the temperature dependent magnetic properties and EPR parameters of nano and bulk samples of Bi0.2Sr0.8MnO3 (BSMO). Nanoparticles and bulk sample of BSMO were prepared by sol-gel technique and solid state reaction method respectively. Bulk BSMO has high antiferromagnetic transition temperature TN ~ 260 K and robust charge ordering (TCO ~ 360 K) [29]. We confirm that the bulk sample shows an antiferromagnetic transition around ~ 260 K and a spin-glass transition ~ 40 K. For nano sample we see a clear ferromagnetic transition at around ~ 120 K. We conclude that mixed magnetic state exists in the bulk sample whereas it is suppressed in the nano sample and strong ferromagnetism is induced instead. Chapter 6: This chapter summarizes the main conclusions of the thesis, also pointing out some future directions for research in the field.
338

Etude de l'effet de l'anisotropie magnétique sur la phase dynamique et sur la phase géométrique des bits quantiques de spins électroniques d'ions de métaux de transition Mn2+, Co2+, Fe3+ isolés et des complexes d'ions Fe3+ dans l'oxyde de zinc monocristallin / Study of the effect of the magnetic anisotropy on the dynamic phase and on the geometric phase qubits of electron spins of transition metals isolated ions Mn2+, Co2+, Fe3+, and Iron Complexes (Fe3+/Cs+ and Fe3+/Na+) in the zinc oxide single crystal

Benzid, Khalif 24 February 2016 (has links)
Nous avons étudié, par RPE impulsionnelle, la cohérence quantique et des spins électroniques des ions de transition Mn2+, Co2+, Fe3+, et des complexes Fe3+/Cs+ et Fe3+/Na+, tous présents dans le ZnO monocristallin. Nous avons trouvé que l’anisotropie magnétique peut altérer la cohérence de la phase dynamique des qubits des spins électroniques. Nous avons mesuré une faible décohérence pour les spins d’ions Mn2+et Fe3+ dans ZnO, qui ont tous deux une faible anisotropie magnétique uniaxiale, tandis que les ions Co2+ isolés avec une très forte anisotropie magnétique uniaxiale, une décohérence rapide a été mis en évidence. Nous avons trouvé que les spins électroniques des complexes de type Fe3+/Cs+, ayant un tenseur d’anisotropie magnétique plus complexe que la simple anisotropie uniaxiale des ions Fe3+ isolés, possèdent presque le même temps de décohérence. Par la méthode des perturbations, nous avons mis en évidence théoriquement un terme supplémentaire à la phase habituelle de Berry, dû à l’anisotropie magnétique et qui existe dans tout système ayant un spin S>1/2. / We studied by pulsed EPR (p-EPR), the quantum coherence of electronic spins qubits of isolated transition metal ions of Mn2+, Co2+, Fe3+ and Fe3+/Cs+ as well as Fe3+/Na+ complexes, all found as traces in mono-crystalline ZnO. Indeed, we experimentally demonstrated that the magnetic anisotropy can alter the coherence of the dynamic phase of electronic spins qubits. We found a small decoherence for Mn2+ and Fe3+, spins having a small uniaxial magnetic anisotropy, and on the contrary, we found a very strong decoherence for Co2+ spins having a very strong uniaxial magnetic anisotropy. We found that the electronic spins of the Fe3+/Cs+ complex, having a more complex tensor magnetic anisotropy compared to the simplest uniaxial one of isolated Fe3+ spins in ZnO, have almost the same coherence time. By the perturbation method, we have found theoretically an additional term to the usual geometric Berry phase, due to the magnetic anisotropy which exists in any system having a spin S>1/2.
339

Mixed Alkali Effect in Oxyfluoro Vanadate Glasses And The Effect of Rare Earth Ions on Oxyfluoro Tellurite Glasses - A Spectroscopic Study

Honnavar, Gajanan V January 2016 (has links) (PDF)
The main motivation of this thesis is to study the long standing problem of mixed alkali effect (MAE) in oxyfluro vanadate glass systems from the point of view of structural arrangement and to investigate the effect of two rare earth ions, namely, erbium and europium on the structure of tellurium dioxide based glass. In glass science, it is well known that when one alkali in a glass matrix is gradually replaced by another alkali, leads to a non-linear variation in some of the physical properties. There are many a theories trying to explain this effect. Recently the renewed interest lies in explaining MAE in-terms of structural consideration. Rare earth (RE) ion doped glasses are of interest in a variety of applications in photonics because of the special optical properties exhibited by these materials. Atomic like f-f transitions of RE ions depend on the local environment of the these ions. A particular glass matrix may be able to bring out the optical properties of a RE ion better than the other matrix. In this regard structural characterization of a glass matrix with different RE ions for optical properties is of importance. Spectroscopic tech-niques are best suited to investigate structural arrangement in glasses and in this thesis we have used techniques like Raman, electron paramagnetic resonance (EPR), impedance, photoluminescence and UV- visible absorption spectroscopies. The thesis comprises of five chapters and an appendix. Chapter 1 consists of brief introduction of general properties of glasses and their behavior under different spectroscopic techniques. Chapter 2 deals with the sample preparation and the experimental techniques used in this work. Chapter 3 elaborates on the Raman and EPR spectroscopic studies on the structural arrangement of the mixed alkali oxyfluro vanadate glass systems. Chapter 4 focuses on the ac and electrical modulus analysis to study the MAE in the above samples. Chapter 5 deals with the optical spectroscopic techniques used to study the compatibility of RE ions (erbium and europium) with the tellurium dioxide based glass matrix. Chapter 1: Disordered materials pose a challenge to understand their structure mainly because of their random arrangement of the constituent units. In this chapter the glassy systems and the different experimental techniques used to study them are discussed in general. The behavior of glassy systems to the external stimuli in various frequency ranges is highlighted. A short review of mixed alkali effect in glasses mainly covering the advances in the last two decades is given. Brief outline of the theory of Raman, EPR and ac impedance spectroscopy are given. Chapter 2: This chapter discusses the major experimental techniques used in the thesis to study the glass systems at block diagram level. The Raman and EPR spectrometers are discussed. Experimental technique used in ac impedance measurement is outlined. Different methods of preparing glass are listed and melt quenching technique is discussed in detail. Chapter 3: This chapter discusses the results and analysis of Raman and EPR study in oxyfluoro vanadate glasses emphasizing MAE. The glass having batch formula 40V2O5 - 30BaF2 - (30 - x) LiF - xRbF (x = 0 – 30) is prepared by melt quenching technique. Raman spectroscopic study in back scattering geometry is performed to see the effect of alkali ions on the V – O bond length of VO6 polyhedra in the glass. The de-convoluted Raman peaks corresponding to V = O and VO2 are considered and the effect of alkali mixture on these bonds are studied. • The peak shift of V = O and VO2 bonds shows that V = O is affected only a little by the replacement of lithium (Li) by rubidium (Rb), while VO2 bond gets affected to a larger extent. • From the peak shift the most probable value of the bond length and the spread in it are estimated. The bond length corresponding to V = O is found to increase and that of VO2 decrease as a consequence of alkali replacement. • From the FWHM of the corresponding Raman peaks, it is concluded that O - Rb coordination sphere around VO6 polyhedra is more homogeneous than either O – Li or O - Li /Rb coordination. These results are published in J. Non-Cryst. Solids 370 (2013) 6. EPR studies on the samples are carried out in X band frequency and spin – Hamilto-nian parameters were extracted by simulating and fitting the EPR spectra to experimental data using EasySpin which is a Matlab toolbox. • it is observed that the ratio 4gjj=4g?, which is a measure of tetragonality of octa-hedral crystal symmetry of V2O5, varies non-monotonically with Rb content. • A model based on this observation is proposed. The essential idea of this model is that Rb atoms that are substituted for Li atoms initially prefer terminal positions over planar positions. Continued substitution then replaces planar Li atoms. It is seen that this model of “preferential substitution” explains the observation very well. • Another observation is that the EPR signal intensity, which is due to concentration of V4+ ions, also shows non-monotonous behavior with Rb content. This is also explained using preferential substitution, taking into consideration the oxidation states of the vanadium ions. • The value of 4gjj=4g?, is a minimum for all rubidium environments around V2O5, which infers that Rb coordination is more symmetric than all Li or Li−Rb. • A good correlation is found between Raman and EPR study of the above system. These results are published in J. Phys. Chem. A 118 (2014) 573. Chapter 4: The chapter brings out the results of ac conductivity and electrical mod-ulus study of MAE in the glass system mentioned above. The Agilent 4294A precision impedance analyzer operating in frequency range 40 Hz to 110 MHz, is used for per-forming impedance and capacitance experiments carried out in this thesis. Impedance measurements in our studies are performed in sandwich geometry. • Room temperature dc conductivity shows a decrease as Li is replaced by Rb and reaches its minimum - five orders less than its all Li value at 0.33 molar fraction of Rb, which is attributed to MAE. This observation is explained using the structural aspect. • Using the linear response theory the number of mobile ions participating in the conduction is estimated. • Imaginary part of the electrical modulus is fitted to Kohlrausch – Williams – Watts (KWW) relation by using a complex nonlinear least squares fitting procedure given by Bergmann. • The stretching parameter b estimated from the above procedure is found to exhibit MAE. The observed variation in b with Rb mole fraction is explained by taking into considerations the contributions from fast and slow processes, and coupling between different relaxing sites. The manuscript is under preparation. Chapter 5: This chapter illustrates the optical study of RE doped TeO2 based glasses to determine the suitability of a particular RE ion with a given glass matrix. TeO2 based glasses having a general formula (in mol %) 65TeO2 – 5BaF2 – 30ZnF2 (TBZ) were prepared by usual melt quenching technique. RE doping was done at the expense of TeO2. 3 mol % of Eu or Er are added to prepare RE doped glass. Raman, PL, UV-visible absorption studies are carried out on the glass samples. • From the peak shift, intensity variation and FWHM of the Raman spectra of the glass samples it is observed that Eu doped TBZ glass has a greater tendency towards depolymerizing the glass matrix by influencing the conversion of TeO4 units into the formation of TeO3 units. • PL spectra of the glass samples shows emission due to different possible transitions. Position of the peak of the de-convoluted spectra shows the position of the particular Stark component and the FWHM is a measure of the inhomogeneous broadening. • The UV-visible absorption spectra are used to calculate the optical density and fitted to the Mott equation to determine the band edge of the glass samples. It is seen that Eu doped TBZ glass has a lesser band gap than that of Er doped glass. The manuscript is submitted to Bul. Mat. Sci. Appendix : This consists of a collection of details of EDS study carried on the VBL series glasses and some MATLAB codes used to simulate the EPR spectrum for VBL series glasses.
340

Development of Overhauser-enhanced magnetic resonance imaging in vivo : application to molecular imaging of proteolysis. / Développement de l'imagerie par résonance magnétique rehaussée par l'effet Overhauser in vivo : application à l'imagerie moléculaire de la protéolyse.

Koonjoo, Neha 08 October 2015 (has links)
Ce travail fait l’objet d’une avancée scientifique dans le développement de la technique d’IRM rehaussée par l’effet Overhauser dans la souris à 0,2 T. Cette dernière repose sur le transfert de polarisation des spins électroniques saturés d’un radical libre vers les spins des protons (généralement de l’eau) voisins pour rehausser le signal RMN du proton. Notre équipe a développé cette technique pour détecter une activité protéolytique au travers de deux stratégies. La première partie de la thèse a été de détecter pour la première fois une activité protéolytique in situ dans des souris saines et in vitro sur cellules vivantes. L’efficacité du rehaussement par effet Overhauser repose sur le temps de corrélation des spins des électrons non-appariés. Un radical nitroxyde greffé à l’élastine a été utilisé comme substrat. La protéolyse de ce dernier par des élastases pancréatiques a conduit l’observation en 3D d’un rehaussement du signal RMN de plus de 10 fois dans le tube digestif de souris vivantes. De plus, des développements méthodologiques, tels que l’implémentation de la séquence TrueFISP, le sous-échantillonnage par la méthode “Keyhole”, et la reconstruction des données en 3D ont été faits. La deuxième stratégie repose sur des molécules de nitroxyde ayant l’unique propriété de pouvoir décaler leurs pics de résonance après hydrolyse. Un nitroxyde phosphorylé en position Béta pouvant être détecté à deux fréquences spécifiques différentes avant et après hydrolyse d’un groupement chimique a été synthétisé par des chimistes à Marseille. L’hydrolyse de cette macromolécule a été observée in vivo dans l’estomac de souris saines avec des rehaussements de plus de 400% et imagée en 3D avec une bonne résolution spatio-temporelle. Ainsi, une prochaine étape serait de poursuivre ce travail sur un modèle pathologique et développer cette technique à un champ magnétique plus bas. / This work relates the continuity and advances in the implementation of the Overhauser-enhanced Magnetic Resonance Imaging technique on a 0.2 T scanner. Briefly, OMRI technique is based on polarization transfer of saturated electronic spins from free nitroxide radicals to proton spins of surrounding water molecules in the aim to drastically enhance proton NMR signal. To this technique, our research team has merged specific strategies for proteolytic activity detection. The first strategy relies on a 3D visualization of proteolytic activity happening in intact living cells or in vivo in healthy mice. With an Overhauser switch based upon changes in molecular tumbling time, high Overhauser enhancements of 10-fold were observed in the intestinal tract of mice after that elastolytic activity of our probe: the nitroxide-labeled elastin macromolecule took place. In addition, MRI developments - TrueFISP sequence implementation, undersampling Keyhole method and data reconstruction were carried out for imaging these rapid biological processes. A second exquisite strategy is also described using nitroxides with shifting resonant peaks. Here, a Beta-phosphorylated nitroxide molecule was specifically detected at two distinct frequencies: one for its substrate and the other for its product once hydrolysis took place. This hydrolysis was imaged in 3D in the stomach of living mice with Overhauser enhancements of more than 400% and with a good spatiotemporal resolution. The perspectives of this work lie on a future detection of a pathological proteolytic activity in vivo and eventually and development of very low magnetic field OMRI.

Page generated in 0.1329 seconds