Spelling suggestions: "subject:"error estimates"" "subject:"arror estimates""
11 |
Pontryagin approximations for optimal designCarlsson, Jesper January 2006 (has links)
This thesis concerns the approximation of optimally controlled partial differential equations for applications in optimal design and reconstruction. Such optimal control problems are often ill-posed and need to be regularized to obtain good approximations. We here use the theory of the corresponding Hamilton-Jacobi-Bellman equations to construct regularizations and derive error estimates for optimal design problems. The constructed Pontryagin method is a simple and general method where the first, analytical, step is to regularize the Hamiltonian. Next its stationary Hamiltonian system, a nonlinear partial differential equation, is computed efficiently with the Newton method using a sparse Jacobian. An error estimate for the difference between exact and approximate objective functions is derived, depending only on the difference of the Hamiltonian and its finite dimensional regularization along the solution path and its L2 projection, i.e. not on the difference of the exact and approximate solutions to the Hamiltonian systems. In the thesis we present solutions to applications such as optimal design and reconstruction of conducting materials and elastic structures. / QC 20101110
|
12 |
Error Estimates for a Meshfree Method with Diffuse Derivatives and Penalty StabilizationOsorio, Mauricio Andres 05 August 2010 (has links)
No description available.
|
13 |
Quelques résultats en analyse théorique et numérique pour les équations de Navier-Stokes compressibles / Some theorical and numerical results for the compressible Navier-Stokes equationsMaltese, David 07 December 2016 (has links)
Dans cette thèse, nous nous intéressons à l’analyse mathématique théorique et numérique des équations deNavier-Stokes compressibles en régime barotrope. La plupart des travaux présentés ici combinent desméthodes d’analyse des équations aux dérivées partielles et des méthodes d’analyse numérique afin de clarifierla notion de solution faible ainsi que les mécanismes de convergence de méthodes numériques approximant cessolutions faibles. En effet les équations de Navier-Stokes compressibles sont fortement non linéaires et leuranalyse mathématique repose nécessairement sur la structure de ces équations. Plus précisément, nousprouvons dans la partie théorique l’existence de solutions faibles pour un modèle d’écoulement compressibled’entropie variable où l’entropie du système est transportée. Nous utilisons les méthodes classiques permettantde prouver l’existence de solutions faibles aux équations de Navier-Stokes compressibles en regime barotrope.Nous étudions aussi dans cette partie la réduction de dimension 3D/2D dans les équations de Navier-Stokescompressibles en utilisant la méthode d’énergie relative. Dans la partie numérique nous nous intéressons auxestimations d’erreur inconditionnelles pour des schémas numériques approximant les solutions faibles deséquations de Navier-Stokes compressibles. Ces estimations d’erreur sont obtenues à l’aide d’une versiondiscrète de l’énergie relative satisfaite par les solutions discrètes de ces schémas. Ces estimations d’erreur sontobtenues pour un schéma numérique académique de type volumes finis/éléments finis ainsi que pour le schémanumérique Marker-and-Cell. Nous prouvons aussi que le schéma Marker-and-Cell est inconditionnellement etuniformément asymptotiquement stable en régime bas Mach. Ces résultats constituent les premiers résultatsd’estimations d’erreur inconditionnelles pour des schémas numériques pour les équations de Navier-Stokescompressibles en régime barorope. / In this thesis, we deal with mathematical and numerical analysis of compressible Navier-Stokes equations inbarotropic regime. Most of these works presented here combine mathematical analysis of partial differentialequations and numerical methods with aim to shred more light on the construction of weak solutions on oneside and on the convergence mechanisms of numerical methods approximating these weak solutions on theother side. Indeed, the compressible Navier-Stokes equations are strongly nonlinear and their mathematicalanalysis necessarily relies on the structure of equations. More precisely, we prove in the theorical part theexistence of weak solutions for a model a flow of compressible viscous fluid with variable entropy where theentropy is transported. We use the classical techniques to prove the existence of weak solutions for thecompressible Navier-Stokes equations in barotropic regime. We also investigate the 3D/2D dimensionreduction in the compressible Navier-Stokes equations using the relative energy method. In the numerical wedeal with unconditionally error estimates for numerical schemes approximating weak solutions of thecompressible Navier-Stokes equations. These error estimates are obtained by using the discrete version of therelative energy method. These error estimates are obtained for a academic finite volume/finite element schemeand for the Marker-and-Cell scheme. We also prove that the Marker-and-cell scheme is unconditionally anduniformly asymptotically stable at the Low Mach number regime. These are the first results onunconditionally error estimates for numerical schemes approximating the compressible Navier-Stokesequations in barotropic regime.
|
14 |
Discontinuous Galerkin Methods For Time-dependent Convection Dominated Optimal Control ProblemsAkman, Tugba 01 July 2011 (has links) (PDF)
Distributed optimal control problems with transient convection dominated diffusion convection reaction equations are considered. The problem is discretized in space by using three types of discontinuous Galerkin (DG) method: symmetric interior penalty Galerkin (SIPG), nonsymmetric interior penalty Galerkin (NIPG), incomplete interior penalty Galerkin (IIPG). For time discretization, Crank-Nicolson and backward Euler methods are used. The discretize-then-optimize approach is used to obtain the finite dimensional problem. For one-dimensional unconstrained problem, Newton-Conjugate Gradient method with Armijo line-search. For two-dimensional control constrained problem, active-set method is applied. A priori error estimates are derived for full discretized optimal control problem. Numerical results for one and two-dimensional distributed optimal control problems for diffusion convection equations with boundary layers confirm the predicted orders derived by a priori error estimates.
|
15 |
Kvadratūrinių formulių liekamųjų narių įverčiai ir jų analizė / Error estimates of quadrature formulas and their analysisLeščiauskienė, Vaiva 06 June 2006 (has links)
In this paper the problems of finding error estimates of quadrature formulas are discussed. A method proposed by K.Plukas was tested. One of the most important tests was the one determining the error estimates that are too optimistic. The results have shown that there are 1/8 of such error estimates and that there is no visible pattern when they occur. The second very important test was the one that shows how many iterations are needed to get the estimate of integral. After comparing the results to the ones produced by method of T.O.Espelid it was obvious that method of K.Plukas produced results even when method of T.O.Espelid was not able to. Comparison of these results have also shown that method of K.Plukas is not always as effective as method of T.O.Coteda, i.e. in many cases method of K.Plukas produced the result after more iterations than method of T.O.Coteda.
|
16 |
Adaptive Algorithms and High Order Stabilization for Finite Element Computation of Turbulent Compressible FlowNazarov, Murtazo January 2011 (has links)
This work develops finite element methods with high order stabilization, and robust and efficient adaptive algorithms for Large Eddy Simulation of turbulent compressible flows. The equations are approximated by continuous piecewise linear functions in space, and the time discretization is done in implicit/explicit fashion: the second order Crank-Nicholson method and third/fourth order explicit Runge-Kutta methods. The full residual of the system and the entropy residual, are used in the construction of the stabilization terms. These methods are consistent for the exact solution, conserves all the quantities, such as mass, momentum and energy, is accurate and very simple to implement. We prove convergence of the method for scalar conservation laws in the case of an implicit scheme. The convergence analysis is based on showing that the approximation is uniformly bounded, weakly consistent with all entropy inequalities, and strongly consistent with the initial data. The convergence of the explicit schemes is tested in numerical examples in 1D, 2D and 3D. To resolve the small scales of the flow, such as turbulence fluctuations, shocks, discontinuities and acoustic waves, the simulation needs very fine meshes. In this thesis, a robust adjoint based adaptive algorithm is developed for the time-dependent compressible Euler/Navier-Stokes equations. The adaptation is driven by the minimization of the error in quantities of interest such as stresses, drag and lift forces, or the mean value of some quantity. The implementation and analysis are validated in computational tests, both with respect to the stabilization and the duality based adaptation. / QC 20110627
|
17 |
Kontrolle semilinearer elliptischer Randwertprobleme mit variationeller DiskretisierungMatthes, Ulrich 11 December 2009 (has links)
Steuerungsprobleme treten in vielen Anwendungen in Naturwissenschaft und Technik auf. In dieser Arbeit werden Optimalsteuerungsprobleme mit semilinearen elliptischen partiellen Differentialgleichungen als Nebenbedingungen untersucht. Die Kontrolle wird durch Kontrollschranken als Ungleichungsnebenbedingungen eingeschränkt.
Dabei ist die Zielfunktion quadratisch in der Kontrolle. Die Lösung des Optimierungsproblems kann dann durch die Projektionsbedingung mit Hilfe des adjungierten Zustandes dargestellt werden.
Ein neuer Zugang ist die variationelle Diskretisierung. Bei dieser wird nur der Zustand und der adjungierte Zustand diskretisiert, nicht aber der Raum der Kontrollen. Dieser Zugang erlaubt höhere Konvergenzraten für die Kontrolle für kontrollrestingierte Probleme als bei einer Diskretisierung des Kontrollraumes. Die Projektionsbedingung für das variationell diskretisierte Problem ist dabei auf die gleiche zulässige Menge wie beim nicht diskretisierten Problem.
In der vorliegenden Arbeit wird die Methode der variationellen Diskretisierung auf semilineare elliptische Optimalkontrollprobleme angewendet und Fehlerabschätzungen für die Kontrollen bewiesen. Dabei wird hauptsächlich auf die verteilte Steuerung Wert gelegt, aber auch die Neumann-Randsteuerung mitbehandelt.
Nach einem Überblick über die Literatur wird die Aufgabenstellung mit den Voraussetzungen aufgeschrieben und die Optimalitätsbedingungen angegeben.
Danach wird die Existenz einer Lösung, sowie die Konvergenz der diskreten Lösungen gegen eine kontinuierliche Lösung gezeigt. Außerdem werden Finite-Elemente-Konvergenzordnungen angegeben.
Dann werden optimale Fehlerabschätzungen in verschiedenen Normen für die variationelle Kontrolle bewiesen.
Insbesondere werden die Fehlerabschätzung in Abhängigkeit vom Finite-Elemente-Fehler des Zustandes und des adjungierten Zustandes angegeben.
Dabei wird die nichtlineare Fixpunktgleichung mittels semismooth Newtonverfahrens linearisiert. Das Newtonverfahren wird auch für die numerische Lösung des Problems eingesetzt. Die Voraussetzung für die Konvergenzordnung ist dabei nicht die SSC, die hinreichende Bedingung zweiter Ordnung, welche eine lokale Konvexität in der Zielfunktion impliziert, sondern die Invertierbarkeit des Newtonoperators. Dies ist eine stationäre Bedingung in der optimalen Kontrolle.
Dabei wird nur benötigt, dass der Rand der aktiven Menge eine Nullmenge ist und die Invertierbarkeit des Newtonoperators in der Optimallösung.
Der Schaudersche Fixpunktsatz wird benutzt, um für die Newtongleichung die Existenz eines Fixpunktes innerhalb der gewünschten Umgebung zu beweisen. Außerdem wird die Eindeutigkeit eines solchen Fixpunktes für eine gegebene Triangulation bei hinreichend feiner Diskretisierung gezeigt.
Das Ergebnis ist, dass die Konvergenzrate nur durch die Finite-Elemente-Konvergenzraten von Zustand und adjungiertem Zustand beschränkt wird. Diese Rate wird nicht nur durch die Ansatzfunktionen, sondern auch durch die Glattheit der rechten Seite beschränkt, so dass der Knick am Rand der aktiven Menge hier ein Grenze setzt.
Außerdem wird die Implementation des semismooth Newtonverfahrens für den unendlichdimensionalen Kontrollraum für die variationelle Diskretisierung erläutert. Dabei wird besonders auf den zweidimensionalen verteilten Fall eingegangen.
Es werden die bewiesenen Konvergenzraten an einigen semilinearen und linearen Beispielen mittels der variationellen Diskretisierung demonstriert.
Es entsprechen sich die bei den analytische Beweisen und der numerischen Lösung eingesetzten Verfahren, die Fixpunktiteration sowie das nach Kontrolle oder adjungiertem Zustand aufgelöste Newtonverfahren. Dabei sind einige Besonderheiten bei der Implementation zu beachten, beispielsweise darf die Kontrolle nicht inkrementell mit dem Newtonverfahren oder der Fixpunktiteration aufdatiert werden, sondern muss in jedem Schritt neu berechnet werden.
|
18 |
Estimations a posteriori pour l'équation de convection-diffusion-réaction instationnaire et applications aux volumes finis / A posteriori error estimates for the time-dependent convection-diffusion-reaction equation and application to the finite volume methodsChalhoub, Nancy 17 December 2012 (has links)
On considère l'équation de convection--diffusion--réaction instationnaire. On s'intéresse à la dérivation d'estimations d'erreur a posteriori pour la discrétisation de cette équation par la méthode des volumes finis centrés par mailles en espace et un schéma d'Euler implicite en temps. Les estimations, qui sont établies dans la norme d'énergie, bornent l'erreur entre la solution exacte et une solution post-traitée à l'aide de reconstructions $Hdiv$-conformes du flux diffusif et du flux convectif, et d'une reconstruction $H^1_0(Omega)$-conforme du potentiel. On propose un algorithme adaptatif qui permet d'atteindre une précision relative fixée par l'utilisateur en raffinant les maillages adaptativement et en équilibrant les contributions en espace et en temps de l'erreur. On présente également des essais numériques. Enfin, on dérive une estimation d'erreur a posteriori dans la norme d'énergie augmentée d'une norme duale de la dérivée en temps et de la partie antisymétrique de l'opérateur différentiel. Cette nouvelle estimation est robuste dans des régimes dominés par la convection et des bornes inférieures locales en temps et globales en espace sont également obtenues / We consider the time-dependent convection--diffusion--reaction equation. We derive a posteriori error estimates for the discretization of this equation by the cell-centered finite volume scheme in space and a backward Euler scheme in time. The estimates are established in the energy norm and they bound the error between the exact solution and a locally post processed approximate solution, based on $Hdiv$-conforming diffusive and convective flux reconstructions, as well as an $H^1_0(Omega)$-conforming potential reconstruction. We propose an adaptive algorithm which ensures the control of the total error with respect to a user-defined relative precision by refining the meshes adaptively while equilibrating the time and space contributions to the error. We also present numerical experiments. Finally, we derive another a posteriori error estimate in the energy norm augmented by a dual norm of the time derivative and the skew symmetric part of the differential operator. The new estimate is robust in convective-dominated regimes and local-in-time and global-in-space lower bounds are also derived
|
19 |
Adaptive finite elements for a contact problem in elastoplasticity with Lagrange techniquesWiedemann, Sebastian 18 March 2013 (has links)
Das Thema dieser Dissertation ist die Herleitung und numerische Analyse von finiten Elementen für ein Problem in der Elastoplastizität mit Kontaktbedingungen. Die hergeleiteten finite Elemente Verfahren basieren auf einer Formulierung als Sattelpunktproblem und der Nutzung von Polynomen höherer Ordnung. Die Analyse der vorgestellten Verfahren beginnt mit dem Zeigen der Wohldefiniertheit und der Konvergenz. Im nächsten Schritt werden a priori Abschätzungen der Konvergenzraten gezeigt. Weiterhin führt die Einführung von Lagrange Multiplikatoren zu einem einheitlichen Ansatz zur a posteriori Abschätzung des Diskretisierungfehlers unter der Verwendung von Elementen höherer Ordnung. Zusätzlich ermöglicht es der Zugang über Lagrange Multiplikatoren die Äquivalenz der Diskretisierungsfehler in den Spannungen und in den Energien für finite Elemente niederer Ordnung zu zeigen, was insbesondere neu für Viereckselemente ist. Diese Äquivalenz wiederum erlaubt nun den Beweis der Konvergenz von adaptiven finiten Elementen niederer Ordnung. Für Dreieckselemente wird sogar die optimale Konvergenz bewiesen. Die theoretischen Erkenntnisse werden durch numerische Experimente bestätigt. / The topic of this thesis is the derivation and analysis of some finite element schemes for a contact problem in elastoplasticity. These schemes are based on the formulation of the models as saddle point problems and use finite element spaces of arbitrary polynomial degrees. In this thesis, these new approaches with higher-order finite elements are shown to be well defined and convergent. Moreover, some a~priori estimates on the rates of convergences are proven. The use of Lagrange multipliers in the saddle point formulation yields a coherent approach to reliable a~posteriori error estimates for the proposed higher-order schemes. Additionally, the Lagrange multipliers are used to show the equivalence of the errors of the stresses and the energies, for low order finite elements using triangular or quadrilateral cells. For the first time, this allows for a proof of convergence for quadrilateral-based adaptive finite elements. Furthermore, the approach based on triangular cells is shown to be of optimal convergence. The theoretical findings are confirmed by numerical experiments.
|
20 |
High-order in time discontinuous Galerkin finite element methods for linear wave equationsAl-Shanfari, Fatima January 2017 (has links)
In this thesis we analyse the high-order in time discontinuous Galerkin nite element method (DGFEM) for second-order in time linear abstract wave equations. Our abstract approximation analysis is a generalisation of the approach introduced by Claes Johnson (in Comput. Methods Appl. Mech. Engrg., 107:117-129, 1993), writing the second order problem as a system of fi rst order problems. We consider abstract spatial (time independent) operators, highorder in time basis functions when discretising in time; we also prove approximation results in case of linear constraints, e.g. non-homogeneous boundary data. We take the two steps approximation approach i.e. using high-order in time DGFEM; the discretisation approach in time introduced by D Schötzau (PhD thesis, Swiss Federal institute of technology, Zürich, 1999) to fi rst obtain the semidiscrete scheme and then conformal spatial discretisation to obtain the fully-discrete formulation. We have shown solvability, unconditional stability and conditional a priori error estimates within our abstract framework for the fully discretized problem. The skew-symmetric spatial forms arising in our abstract framework for the semi- and fully-discrete schemes do not full ll the underlying assumptions in D. Schötzau's work. But the semi-discrete and fully discrete forms satisfy an Inf-sup condition, essential for our proofs; in this sense our approach is also a generalisation of D. Schötzau's work. All estimates are given in a norm in space and time which is weaker than the Hilbert norm belonging to our abstract function spaces, a typical complication in evolution problems. To the best of the author's knowledge, with the approximation approach we used, these stability and a priori error estimates with their abstract structure have not been shown before for the abstract variational formulation used in this thesis. Finally we apply our abstract framework to the acoustic and an elasto-dynamic linear equations with non-homogeneous Dirichlet boundary data.
|
Page generated in 0.111 seconds