Spelling suggestions: "subject:"experimentation"" "subject:"xperimentation""
331 |
Desseins polymorphes, une approche poétique de la lumière : dessiner la lumière / Polymorphic ambitions/designs, a poetic approach to light : drawing lightDudragne, Julie 10 November 2015 (has links)
La narration d'une pratique s'ébauche parfois par la présence d'une simple lettre, comme un humble point dévoile l'existence d'une ligne. Le "e" réapparaît au sein du dessin, le pare d'une multiplicité de significations, lui donne le poids perdu ou jamais acquis d'une esquisse autonome.La tradition du dessein se questionne par le biais d'un phénomène, dessiner la lumière, à l'heure d'une reproductibilité technique exacerbée.Le chemin sinueux emprunté par le dessin le mène au franchissement de frontière pléthorique, annonçant sa transversalité. Le mouvement immanent à la matière utilisée et l'hybridation comme notion intrinsèque à la création actuelle, toujours au service de l'élément graphique, vont faire opérer au dessin de nombreux déplacements intra et interdisciplinaires - conviant origines, idées, concepts et procédés techniques - mais aussi physiques. La réalisation de la lumière produite par l'expérience graphique, ses passages entre visible et non visible, se retrouve dans le signe et dans l'indice photographique et interroge la perception. La recherche de luminosité et de contraste, souvent traduites par la présence de noirs et de blancs, offre à l'espace plastique une palette infinie de possibles variations.Cette potentialité exhaustive requiert l'ultième acte du processus créatif, le choix, façonnant la mise en espace de la lumière en de multiples compositions graphiques.Le jeu, la phantasia et la poétique du phénomène lumineux, malgré l'évolution des procédés techniques employés, préservent la confidence qui confère au dessin se caractère intime dans lequel se silhouette un onirisme, une manière de résister. Travailler la lumière aujourd'hui dans le secret d'un acte aveugle, aveuglé, aveuglant, problématise la notion d'authenticité induisant un rapport à l'aura toujours en valse-hésitation entre apparition et disparition face à sa perte auparavant annoncée. / The narrative outline of a practice is sometimes sketched by the presence of a simple letter, like a humble dot can reveal the existence of a line.The "e" appears again in the drawing, adorns it with a multiplicity of meanings, giving it the weight never acquired of an autonomous sketch. (There is distinction in French language between the words "dessein" and "dessin" which one I play). At a time of heightened technical reproducibility and through a phenomenon - drawing the Light - the ambition and its tradition question themselves.The Drawing, on a sinuous path, crosses some excessive borders/frontiers, announcing his "transversality". The movement immanent to the material used and the hybridization as an intrinsic concept of the actual creative process, always at the service of the graphic element, will push the Drawing in many directions within and across disciplines - inviting origins, ideas, technical concepts and processes - but also physical. The light produced by the graphic experience, movements between visible and invisible, can be found not only in the sign but also in the photographic index and questions our perception.The research forn brightness and contrast in shades, often with black and white tons, gives an infinite range of potential variations to the creative/esthetic space/arena. This exhaustive potential is threatened by the ultimate act of creativity : the choice, shaping the spatial dispositions of light into multiple graphic compositions.Despite certain technical processes and their evolution, play, phantasy and light phenomenon' poetics protecting the Drawing' secret : an intimate characteristic in which onirism, as a wayto resist, appears. Working with light today - in a secret of a blind act, blinded, blinding - questions the Authenticity as a concept, creating an uneasy relationship to the aura, always between appearance and disappearance facing its previously announced loss.
|
332 |
l’incertitude comme levier de co-construction au prisme du projet urbain : L'émergence d'un mode de conception "transitionnel" des espaces urbains : entre pratiques institutionnelles et pratiques alternatives / Uncertainty as a way to leverage the co-production process of urban projetRamirez cobo, Ines 16 December 2016 (has links)
Les crises actuelles de l’économie, mais aussi de la démocratie représentative, impactent fortement les processus de conception de la ville contemporaine, les faisant passer d’un modèle de planification traditionnelle (rationnel et hiérarchique) à un modèle consensuel fondé sur la négociation, la communication et l’interaction entre les différents acteurs du territoire. Le mode projet, en tant que mode de conception privilégié des espaces urbains, récupère à notre sens une bonne partie des limitations et des paradoxes d’une planification urbaine confrontée à un contexte de plus en plus complexe. L’étude de plusieurs interventions urbaines en France et en Espagne, conçues avec différents degrés d’incertitude, nous fournira des conditions qui permettront de discuter d’un renouvellement des pratiques de conception des espaces urbains, en même temps que nous nous interrogerons sur la pertinence de continuer à penser la ville « en mode projet ».Notre objectif de recherche concerne donc la définition d’un mode de conception alternatif et transitionnel, incorporant de l’incertitude. Celui-ci s’appuie sur la co-construction d’un projet-processus collectif, soutenu par l’expérimentation, la schématisation et la démocratisation des pratiques de conception, que nous appelons « Projet Urbain Stochastique ». / The current crises of the economy, but also of representative democracy, influence strongly the contemporary design processes of city, moving them from a traditional planning model (rational and hierarchical) to a consensual model based on negotiation, communication and interaction between several stakeholders in the territory.The “project mode”, as a preferred way of designing urban spaces, recovers a good part of limitations and paradoxes of urban planning confronted with an increasingly complex context.The study of several urban interventions in France and Spain, conceived with different degrees of uncertainty, will provide us with conditions that will allow us to discuss a renewal of the design practices of urban spaces, at the same time that we will question the relevance to continue thinking about city in “project mode”.Our research goal therefore concerns the definition of an alternative and transitional design mode, incorporating uncertainty. This latter is based on the co-construction of a collective project-process, supported by the experimentation, schematization and democratization of design practices, which we call "Stochastic Urban Project".
|
333 |
Regulation of δ-Aminolevulinic Acid Synthase and Heme Oxygenase in Cultured Chick Embryo Liver Cells: Synergistic Induction of Both Enzymes by Glutathimide and Iron and Repression of δ-Aminolevulinic Acid Synthase by Metalloporphyrins and Heme: A DissertationCable, Edward Earl 01 April 1993 (has links)
Primary chick embryo liver cells were used to explore the regulation of δ-aminolevulinic acid synthase and heme oxygenase, the enzymes that catalyze the rate-limiting reactions of heme anabolism and catabolism, respectively. The general focus of the work was the exploration of the novel observation in which glutethimide and iron synergistically induced both δ-aminolevulinic acid synthase and heme oxygenase, a phenomenon that would not be predicted a priori. The course of events appeared to be: first, that heme synthesis was increased after addition of the glutethimide and that iron potentiated heme synthesis; second, the heme induced heme oxygenase five to ten fold; and third, that heme oxygenase degraded the heme permitting an uncontrolled induction of δ-aminolevulinic acid synthase. This induction of δ-aminolevulinic acid synthase could be prevented by the addition of a metalloporphyrin inhibitor of heme oxygenase. Induced δ-aminolevulinic acid synthase activity could be dramatically reduced by the addition of nanomolar concentrations of a metalloporphyrin, inhibitory for heme oxygenase, and heme.
Specific observations related to the synergistic induction of heme oxygenase by glutethimide and iron was that the induction of heme oxygenase activity by glutethimide and iron occurred rapidly, with maximal increases occurring four to six hours after original treatment. Induction of heme oxygenase by glutethimide and iron was shown to be dependent on de novoheme synthesis since 4,6-dioxoheptanoic acid, a potent and specific inhibitor of heme biosynthesis, prevented the activity of heme oxygenase from increasing in the presence of glutethimide and iron. Induction of activity was associated with increases in heme oxygenase mRNA and protein; and, when induction was prevented by 4,6-dioxoheptanoic acid, no increase in either mRNA or immunoreactive protein was observed.
δ-Aminolevulinic acid synthase activity was also synergistically increased by glutethimide and iron; this increase occurred 4-6 hours after maximal heme oxygenase activity had been attained. The temporal relationship between the induction of δ-aminolevulinic acid synthase and heme oxygenase suggested that the oxygenase depleted a regulatory heme pool that would normally prevent uncontrolled induction of the synthase. When cultures were exposed to tin-mesoporphyrin, a potent inhibitor of heme oxygenase, induction of δ-aminolevulinic acid synthase, normally produced by glutethimide and iron, was prevented. Addition of tin-mesoporphyrin after δ-aminolevulinic acid synthase induction had already been established promptly halted any further induction. When heme or a combination of heme and tin-mesoporphyrin was added after induction of δ-aminolevulinic acid synthase was established, activity of the synthase was rapidly reduced.
Finally, experiments in primary chick embryo liver cells with tin-, zinc- and copper- chelated porphyrins were done to assess their effects on activities of δ-aminolevulinic acid synthase, induced by prior treatment of cells with glutethimide and iron. Nanomolar concentrations of zinc- or tin porphyrins reduced δ-aminolevulinic acid synthase activities, while copper-chelated porphyrins did not. When nanomolar concentrations of heme were added with zinc- or tin-porphyrins, δ-aminolevulinic acid synthase activity was further reduced. Effects of the non-heme metalloporphyrins on δ-aminolevulinic acid synthase were closely correlated with their abilities to inhibit heme oxygenase (r=0.78). The largest decrease of δ-aminolevulinic acid synthase (67%) was obtained with zinc-mesoporphyrin and heme. There was a rapid appearance of the cytosolic, precursor form of δ-aminolevulinic acid synthase in the presence of both 10 μM heme or 50 nM zinc-mesoporphyrin and 200 nM heme. Reduction of the half-life of the mRNA from 5.2 hours to 2.2-2.5 hours was observed in the presence of both 10 μM heme or 50 nM zinc-mesoporphyrin and 200 nM heme.
In summary, the chick embryo liver cell culture model treated with glutethimide and iron may serve as one experimental model for patients suffering from acute porphyrias, in whom uncontrolled induction of hepatic δ-aminolevulinic acid synthase plays a key role in pathogenesis of disease. The synergistic induction of δ-aminolevulinic acid synthase in the presence of glutethimide and iron may serve as an experimental paradigm for this disease. The reduction of δ-aminolevulinic acid synthase by low doses of zinc-mesoporphyrin and heme may help form the experimental foundation for eventual studies in patients suffering from acute porphyrias.
|
334 |
Characterization of Immune Responses Following Neonatal DNA Immunization: A DissertationPertmer, Tamera Marie 03 April 2000 (has links)
Neonatal mice have immature immune systems with defects in several components of inflammatory, innate, and specific immune responses and develop a preferential T helper type 2 (Th2) response following immunization with many vaccine antigens. Although maternal antibody is the major form of protection from disease in early life when the neonatal immune system is still immature, the presence of maternal antibody also interferes with active immunization, placing infants at risk for severe bacterial and viral infection. Recent studies have suggested that immunizing with DNA plasmids encoding the vaccine antigen of interest is highly efficacious in a variety of adult animal models. However, similar extensive studies have not been conducted in infants. In this dissertation, we examine both the quantitative and qualitative differences between neonatal and adult humoral and cell-mediated immune responses in the presence or absence of maternal antibody.
First, we wished to determine if one-day-old neonatal mice immunized with plasmid DNA expressing influenza A/PR/8/34 hemagglutinin (HA) by either intramuscular (i.m.) or gene gun (g.g.) inoculation were capable of generating humoral responses comparable to those in mice immunized as adults. We found that newborn mice developed stable, long-lived, protective anti-HA-specific IgG responses similar in titer to those of adult DNA-immunized mice. However, unlike the adult i.m. and g.g. DNA immunizations, which develop polarized IgG2a and IgG1 responses, respectively, mice immunized as neonates developed a variety of IgG1-, IgG2a-, and mixed IgG1/IgG2a responses regardless of the inoculation method. Boosting increased, but did not change these antibody profiles. We also found that, in contrast to the DNA immunizations, inoculations of newborn mice with an A/PR/8/34 viral protein subunit preparation failed to elicit an antibody response. Further, temporal studies revealed that both responsiveness to protein vaccination and development of polarized patterns of T help following DNA immunization appeared by 2 weeks of age.
To determine if the disparity of polarized IgG responses between neonatal and adult DNA vaccinated mice was due to deficiencies in Th1 promoting cytokines, we addressed the ability of DNA encoding Th1 cytokines to bias the isotype of antibody raised by neonatal DNA immunization. We found that neonatal mice coimmunized with HA and either IL-12 or IFNγ-expressing DNAs developed IgG2a-biased immune responses, regardless of inoculation method, whereas these DNAs had no effect on IgG subtype patterns in adult DNA immunized mice. Consistent with the Th1-promoting effects of these cytokines, we also observed that codelivery of IL-12 or IFNγ DNAs raised T helper responses toward Th1 in mice immunized both as neonates or adults. Thus, codelivery of cytokine DNAs may be effective at tailoring immune responses depending on the required correlates of protection for a given pathogen.
Finally, we addressed the effect of maternal antibody on the elicitation of humoral and cell-mediated immune responses. We tested the ability of i.m. and g.g. immunization with DNA expressing influenza HA and/or nucleoprotein (NP) to raise protective humoral and cellular responses in the presence and absence of maternal antibody. We found that neonatal mice born to influenza-immune mothers raised full antibody responses to NP but failed to generate antibody responses to HA. In contrast, the presence of maternal antibody did not affect the generation of long-lived CD4+ and CD8+ T cell responses to both HA and NP. Thus, maternal antibody did not affect cell-mediated responses, but rather it limited humoral responses, with the ability to limit the antibody response correlating with whether the DNA-expressed immunogen was localized in the plasma membrane or within the cell. We further observed that protection from influenza virus challenge was dependent on the presence of anti-HA IgG and was independent of the presence T cell responses.
Taken together with other published studies, the data presented in this dissertation help better characterize the responses elicited by DNA vaccines at birth. This dissertation presents several novel observations including the temporal development of polarized IgG subtype responses, the ability of codelivered Th1 cytokine DNA to affect both antibody and T cell responses in the neonate, and the ability to generate humoral responses to intracellular, but not plasma membrane proteins, in the presence of maternal antibody. Furthermore, the data provides rationale for further development of DNA vaccines in the neonate.
|
335 |
Cloning and Characterization of Dynamitin, the 50 kDa Subunit of Dynactin: A Study of Dynactin and Cytoplasmic Dynein Function in VertebratesEcheverri, Christophe de Jesus 30 January 1998 (has links)
Dynactin is a multi-subunit complex which was initially identified in 1991 as an activator of cytoplasmic dynein-driven microtubule-based organelle motility in vitro. Although genetic studies also supported the involvement of both complexes in the same functional pathways in yeast, filamentous fungi, and Drosophila, none of these findings yielded significant insights into dynactin's mechanism of action. The full range of cytoplasmic dynein functions in vertebrate cells has also remained poorly understood, due, in large part, to the lack of a specific method of inhibition. The present thesis work was designed to investigate these issues through a study of the 50 kDa subunit of dynactin.
As a first step (Chapter 1), I cloned mammalian p50 and characterized its expression at the tissue and subcellular levels. Rat and human cDNA clones revealed p50 to be a novel α-helix-rich protein containing several highly-conserved structural features including one predicted coiled-coil domain. Immunofluorescence staining of p50, as well as other dynactin and cytoplasmic dynein components in cultured vertebrate cells showed that both complexes are recruited to kinetochores during prometaphase and concentrate near spindle poles thereafter. These findings represented the first evidence for dynactin and cytoplasmic dynein co-localization within cells, and for the presence of dynactin at kinetochores.
The second major phase of the thesis (Chapter 2) was focused on investigating dynactin and cytoplasmic dynein function in cultured cells in vivo using a dominant negative inhibition approach based on transient transfections of p50 constructs. Overexpression of wild type human p50 in cultured cells resulted in a dramatic fragmentation and dispersal of the Golgi apparatus. Time-lapse fluorescence microscopy analysis of p50-overexpressing cells revealed that microtubule-based vesicle transport from the endoplasmic reticulum to the Golgi was inhibited. Also, the interphase microtubule organizing center was found to be less well-focused in some but not all transfected cells. Overexpression of p50 also disrupted mitosis, causing cells to accumulate in a prometaphase-like state. Chromosomes were condensed but unaligned, and spindles, while still generally bipolar, were dramatically distorted. Sedimentation analysis revealed the dynactin complex to be dissociated in the transfected cultures. Furthermore, both dynactin and cytoplasmic dynein staining at prometaphase kinetochores was markedly diminished in cells expressing high levels of p50. These findings provided the first in vivoevidence for the role of dynactin in cytoplasmic dynein function, i.e. mediating the motor's binding to at least one "cargo" organelle, the kinetochore, and probably also to others such as vesicles destined for the Golgi complex. These data also strongly implicated both dynactin and dynein in Golgi organization during interphase, and chromosome alignment and spindle organization during mitosis. Based on the remarkable disruptive phenotypic effects associated with overexpressing of p50, the name of dynamitin was proposed for this polypeptide.
In the third and last phase of the thesis (Chapter 3), two issues were addressed: first, the dynamitin-induced mitotic arrest phenotype was studied in greater detail to better understand the exact sites of dynactin and cytoplasmic dynein activity throughout mitosis. Second, a domain analysis of dynamitin was performed to gain insight into its function within the dynactin complex. A time-lapse fluorescence microscopy study of mitosis in living dynamitin-overexpressing COS-7 cells strongly suggested specific defects in interactions of astral microtubules with the cell cortex, and in both spindle pole assembly and maintenance. Analysis of the mitotic arrest phenotype in a second cell line revealed a second arrest point at metaphase, and a clear effect of dynamitin overexpression on spindle axis orientation, again consistent with defects in interactions between microtubules and the cell cortex. Refined analyses of kinetochore and spindle pole components also confirmed specific defects in kinetochore function and spindle pole organization. Taken together, these findings support three main sites of dynactin and cytoplasmic dynein activity during vertebrate mitosis: prometaphase kinetochores, spindle poles, and the cell cortex. Finally, the domain analysis revealed dynamitin to be capable of self-association through at least two separate interaction domains, consistent with models of the mechanism underlying dynamitin-induced dynactin dissociation, and therefore, yielding important new insights into dynactin assembly. This study also indicated that a third region within dynamitin, residues 105 to 154, is essential for dynamitin and dynactin function. An independent study confirmed this finding, implicating this region in binding to ZW10, an upstream kinetochore protein. Dynamitin has therefore been revealed to be the kinetochore-targeting subunit of dynactin, and indirectly, cytoplasmic dynein. Through the body of this thesis work, dynamitin has also emerged as a powerful new tool for studying vertebrate dynactin and cytoplasmic dynein function in vivo and in vitro.
|
336 |
<em>In Vivo</em> Regulation of Murine Cytomegalovirus Infections: The Role of Cell Surface Molecules and Mechanisms of Control by Natural Killer Cells: A DissertationTay, Chin Hun 01 July 1997 (has links)
The overall aim of this thesis was to determine how natural killer (NK) cells regulate virus infections in vivo. Anti-viral mechanisms by which NK cells control murine cytomegalovirus (MCMV) infection in the spleens and livers of adult C57BL/6 mice were first studied, revealing different mechanisms of control in different organs. Three days post-infection, MCMV titers in the spleens of perforin-deficient (perforin 0/0) mice were higher than in wild type controls, but no elevation of liver titers was found in perforin 0/0 mice. NK cell depletion in MCMV-infected perforin 0/0 mice resulted only in an increase in liver viral titers but not in spleen titers. Depletion of IFN-γ in adult C57BL/6 mice by injections with mAbs to IFN-γ resulted in an increase in viral titers in the liver but not in the spleen. Analyses using IFN-γ-receptor-deficient (IFN-γR0/0) mice, rendered chimeric with C57BL/6 bone marrow cells, indicated that even though the donor spleen cells could respond to IFN-γ, the depletion of NK cells in a recipient environment where the host cells could not respond to IFN-γ caused an increase in MCMV titers in the spleens but had little effect in the liver. IFN-γ has the ability to induce a variety of cells to produce nitric oxide (NO), and administrating the nitric oxide synthase (NOS) inhibitor Nω-monomethyl-L-arginine (L-NMA) into MCMV-infected adult C57BL/6 mice resulted in MCMV titer increases in the liver but not in the spleen. These data indicate that in adult C57BL/6 mice, there is a dichotomy in the mechanisms utilized by NK cells in the regulation of MCMV in different organs. In the spleen NK cells exert their effects in a perforin-dependent manner, suggesting a cytotoxic mechanism, whereas in the liver the production of IFN-γ by NK cells may be a predominant mechanism in the regulation of MCMV synthesis. These results may explain why the Cmv-1r (Cmv-1-resistant) locus, which maps closely to genes regulating NK cell cytotoxic function, confers an NK cell-dependent resistance to MCMV infection in the spleen but not in the liver.
The ability of adoptively transferred cells to protect suckling mice from MCMV was another model used to study the mechanisms utilized by NK cells in the regulation of MCMV. Adoptive transfers of 129, C57BL/6 and perforin 0/0 spleen cells or lymphokine-activated killer (LAK) cells into 4 - 6 day old MCMV-infected C57BL/6 suckling mice significantly lowered the splenic MCMV titers in these mice compared to the infected controls. Adoptive transfers of C57BL/6 spleen cells into MCMV-infected 129 suckling mice also decreased the amount of MCMV in the 129 suckling mice, but C57BL/6 spleen cells could not regulate MCMV synthesis when adoptively transferred into 129/IFN-γR0/0 suckling mice. These results suggest that, in the suckling mouse model, the regulation of MCMV by the adoptively transferred NK cells is via an IFN-γ-dependent, perforin-independent, Cmv-1-independent mechanism.
The Cmv-1 gene locus resides within the NK gene complex, in close proximity to the Ly49 NK cell receptor family. Analyses were carried out to determine if any of the 4 known Ly49 NK cell receptors (Ly49A, C, D and G2) played a role in the control of MCMV synthesis by NK cells. Studies comparing the expression of the different Ly49 NK cell subsets in the spleen and the peritoneal cavity revealed that there were differences in the distribution of the Ly49 receptors on NK1.1+ cells. Three days post-MCMV infection, the percentage of NK1.1+- Ly49+ NK cells in the spleen and the peritoneal cavity were different than in naive controls. Within the splenic NK1.1+ population, increases in NK1.1+ -Ly49A+ and NK1.1+-Ly49G2+ cells but decreases in NK1.1+-Ly49C+ and NK1.1+-Ly49D+ cells were observed. These changes in the spleen were accompanied by a concomitant decrease in NK1.1+ - Ly49A+ cells and increases in NK1.1+-Ly49C+, NK1.1+-Ly49D+ and NK1.1+-Ly49G2+ cells within the NK1.1+ population in the peritoneal cavity. These data suggest that 3 days post-MCMV infection, there may be movement of NK cells between the different organs. The role of Ly49 NK cell receptors in the regulation of MCMV was tested using adult C57BL/6 mice depleted of single or multiple Ly49 NK cell subsets. These in vivo depletions did not affect the ability of the residual NK cells to regulate MCMV synthesis. LAK cells sorted into the different Ly49 NK cell subsets and adoptively transferred into C57BL/6 suckling mice lowered the splenic MCMV titers in these mice. Together, these results indicate that even though there is a redistribution of the Ly49 NK cell subsets during MCMV infection, the presence or absence of anyone of the 4 tested Ly49 NK cell receptors does not affect the regulation of MCMV by NK cells. However, there remain a possibility that one of the undefined Ly49 receptors or an untested NK cell receptor may be important in the control ofMCMV.
Most of the cloned NK cell receptors have been shown to bind to MHC class I molecules, and MHC class I antigens have been implicated as modulators of target cell sensitivity to NK cell-mediated lysis. The regulation of virus infections and the fate of NK cells and their natural targets was examined in β2-microglobulin-deficient mice [β2m (-/-)], which have defective MHC class I expression. Infections with either the NK cell-sensitive MCMV or the NK cell-resistant lymphocytic choriomeningitis virus (LCMV) significantly augmented NK cell activity in either C57BL/6 or β2m (-/-) mice. Depletion of NK cells in vivo with antiserum to asialo GM1 markedly enhanced the synthesis of MCMV but had no effect on the synthesis of LCMV in either strain of mouse. Adoptively transferred β2m (-/-) spleen cells lowered splenic MCMV titers in C57BL/6 suckling mice, not unlike adoptively transferred C57BL/6 spleen cells. Analysis of naturally NK cell-sensitive thymocyte targets from these virus-infected β2m (-/-) mice revealed no cell surface expression of class I MHC detectable by conformation-dependent or -independent antibodies, but the virus infections enhanced class I expression on thymocytes from C57BL/6 mice. The sensitivity of C57BL/6 thymocytes to NK cell-mediated lysis was markedly reduced after in vivo poly inosinic:cytidylic (poly I:C) treatment or viral infection; in contrast, the sensitivity of the β2m (-/-) thymocytes was significantly less affected by poly I:C or viral infection. These data indicate that the normal expression of MHC class I antigens on NK cells or their targets is not required for the anti-viral functions of NK cells against an NK-sensitive virus (MCMV) nor do they protect an NK-resistant virus (LCMV) from the anti-viral activity of NK cells.
Together, the data presented in this thesis help to further our understanding of the mechanisms utilized by NK cells in the control ofMCMV in both adult and suckling mice, and also help clarify the roles played by Ly49 NK cell receptors and MHC class I molecules in the regulation of MCMV.
|
337 |
Signal Transduction Mechanisms for the Stimulation of Lipolysis by Growth Hormone: A DissertationYip, Rupert G. 01 August 1994 (has links)
The purpose of this study was to investigate the mechanism of action of lipolysis by growth hormone in rat adipocytes. GH-induced lipolysis, in contrast to that of isoproterenol (ISO), is slow in onset (lag time >1h), small in magnitude (~2X basal). and requires corticosteroid. Evidence for direct coupling between GH receptors and adenylyl cyclase or G-proteins is lacking, and although we could detect no measurable change in cAMP content after treatment with GH + dexamethasone (Dex), it is likely that cAMP activation of protein kinase A is a central event in GH-induced lipolysis. Rp-cAMPS, a competitive antagonist of cAMP was equally effective in decreasing lipolysis in tissues treated with GH/Dex or a comparably lipolytic dose of ISO. Incorporation of 32P from γ-32P-ATP into kemptide, a synthetic oligopeptide substrate for protein kinase A, was increased in homogenates of GH/Dex-treated tissue. This increase was correlated with increased lipolysis. Earlier estimates based upon 32P-ribosylation of Gi catalysed by pertussis toxin (PTx) suggested that the abundance of Gi in adipocyte membranes was decreased 4h after treatment of hypophysectomized rats with GH. We therefore examined the possibility that changes in amount or distribution of G-proteins in adipocyte membranes might account for the lipolytic action of GH. Homogenates of GH/Dex-treated and control adipocytes were subjected to differential centrifugation and the abundance of G-proteins in low speed, l6k x g (16k), pellets and high speed, 100k x g (100k), pellets were determined by quantitative Western analysis with densitometry. A 35% loss of Giα2 from the l6k pellet compared from tissues treated with GH/Dex was associated with a 70% increase of Giα2 in the 100k pellet. No change in Gsα was observed in the l6k pellet but a 35% loss of Gsα was seen in the 100k pellet. The G proteins in the l6k pellet were fractionated on a continuous sucrose gradient followed by quantitation with Western analysis or autoradiography after 32P-NAD ribosylation. Giα2 was consistently shifted from heavier to lighter fractions of the l6k pellet after treatment with GH/Dex. Similar shifts of Gsα were not seen. The distribution of 32P-labelled proteins was comparably altered after incubation of homogenates of control and GH/Dex treated adipocytes with PTx and 32P-NAD. These shifts were blocked by treatment of adipocytes with 100μM colchicine which also blocked the lipolytic action of GH/Dex. We propose that an action of GH/Dex on the cytoskeleton of fat cells may change the cellular distribution of G-proteins in a manner that produces a relative decrease in the tonic inhibitory influence of Gi on adenylyl cyclase.
|
338 |
Analysis of RNA Interference in <em>C. elegans</em>: A DissertationGrishok, Alla 27 September 2001 (has links)
RNA interference (RNAi) in the nematode Caenorhabditis elegans is a type of homology-dependent post-transcriptional gene silencing induced by dsRNA. This dissertation describes the genetic analysis of the RNA interference pathway and inheritance properties associated with this phenomenon. We demonstrate that the RNAi effect can be observed in the progeny of the injected animal for at least two generations. Transmission of the interference effect occurs through a dominant extragenic agent. The wild-type activities of the RNAi pathway genes rde-l and rde-4 are required for the formation of this interfering agent but are not needed for interference thereafter. In contrast, the rde-2 and mut-7 genes are required downstream for interference. These findings provide evidence for germline transmission of an extragenic sequence-specific silencing factor and implicate rde-l and rde-4in the formation of the inherited agent.
Other forms of homology-dependent silencing in C. elegansinclude co-suppression and transcriptional silencing of transgenes in the germline. We demonstrate that silencing of a germline transgene can be initiated by injected dsRNA, via the RNAi pathway, and then maintained on a different level. This observation indicates that post-transcriptional and transcriptional silencing of homologous genes could be connected.
This dissertation also describes the connection between RNAi and developmental pathways of gene regulation in C. elegans. We show that inactivation of genes related to RNAi pathway genes, a homolog of Drosophila Dicer (dcr-l), and two homologs of rde-1 (alg-l and alg-2) cause heterochronic phenotypes similar to lin-4 and let-7 mutations. Further we show that dcr-l, alg-l, and alg-2 are necessary for the maturation and activity of the lin-4 and let-7small temporal RNAs that regulate stage-specific development. Our findings suggest that a common processing machinery generates guide RNAs that mediate both RNAi and endogenous gene regulation.
Finally, this study illustrates the detection of small interfering RNAs (siRNAs), intermediates in the RNAi process, and describes requirements for their accumulation. We show that, in the course of RNAi induced by feeding dsRNA, C. elegans accumulate only siRNAs complementary to the target gene. This accumulation depends on the presence of the target sequence and requires activities of several RNAi-pathway genes. We show that selective retention or amplification of RNAi-active molecules can create a reservoir of memory antisense siRNAs that prevent future expression of the genes with complementary sequence. This suggests a parallel at the molecular level with the clonal selection of antibody forming cells and in the vertebrate immune system.
|
339 |
Genetic Dissection of the Neural Circuitry Underlying Memory Stability in Drosophila: A DissertationKeene, Alex Carl 22 August 2006 (has links)
Understanding how memory is formed requires looking beyond the genes involved to the neural circuitry and temporal aspects of memory. In this dissertation I have focused my investigation on Dorsal Paired Medial (DPM) neurons, two modulatory neurons essential for memory in Drosophila. DPM neurons highly express the amnesiac (amn) gene, which encodes for a putative pre-pro-neuropeptide. amn function in DPM neurons is required for memory. Here I provide evidence that DPM neurons are cholinergic and that acetylcholine (ACh) and AMN act as co-transmitters essential for DPM function. In order to investigate the temporal requirements of DPM output I blocked transmitter release during discrete intervals in the memory process using shibirets1 and tested flies for shock and sugar-reinforced memory. These experiments demonstrated that stable memory requires persistent transmitter release from DPM neurons. Furthermore these results suggest AMN and DPM neurons act as general stabilizers of mushroom body dependent memory. To further investigate the neural circuitry underlying DPM function I disrupted DPM projections onto the mushroom body lobes by ectopically expressing DScam17-2::GFP in DPM neurons. Flies with DPM neurons that predominantly project to the mushroom body α´/β´ lobes exhibit normal memory, and blocking transmitter release from the mushroom body prime lobes neurons themselves abolishes memory indicating DPM neuron-mushroom body α´/β´ neuron interaction that are critical for memory. Taken together, the experimental evidence presented here are used to provide a rudimentary model of the neural circuitry involved in memory stability, where DPM neurons form a recurrent feedback loop with the mushroom body α´/β´ lobe neurons and act to stabilize odorspecific conditioned memories at Kenyon cell synapses.
|
340 |
A Mutational Analysis of Structural Determinants Within the Newcastle Disease Virus Fusion Protein: a DissertationReitter, Julie N. 01 April 1994 (has links)
The fusion protein of the Newcastle Disease Virus (NDV) contains three hydrophobic domains. To explore the topogenic signals of these domains, mutants were constructed in which each of the hydrophobic domains was deleted. The membrane insertion and topology of these proteins was characterized in a wheat germ cell-free translation system supplemented with canine microsomal membranes. The results indicated that the first 13 amino acids of the fusion protein are necessary to confer translation inhibition by SRP. Translocation of the nascent chains containing all or part of the first hydrophobic sequence resulted in the appearance of a species of higher molecular weight consistent with glycosylation of at least four of the five potential N-linked glycosylation sites. When glycosylation was inhibited with a glycosylation competitor peptide, signal sequence cleavage was detected. Protease digestion of mutants missing the C-terminal hydrophobic domain indicated that the C-terminus has stop transfer activity. A comparison of membrane insertion of the wild-type fusion protein to that of a mutant missing the second hydrophobic domain, the fusion sequence, indicated that the fusion domain has stop-transfer activity when synthesized in vitro. Furthermore, the fusion domain shows little signal sequence activity when positioned near the amino terminus of the fusion protein.
The fusion protein has a highly conserved leucine zipper motif immediately upstream from the transmembrane domain of the F1 subunit. In order to determine the role that the conserved leucines have for the oligomeric structure and biological activity of the NDV fusion protein, the heptadic leucines at positions 481,488, and 495 were changed individually and in combination to an alanine residue. Whereas single amino acid changes had little effect on fusion, substitution of two or three leucine residues abolished the fusogenic activity of the protein although cell surface expression of the mutants and sedimentation in sucrose gradients was similar to that of the wild type. Furthermore, deletion of the C-terminal 91 amino acids, including the leucine zipper motif and transmembrane domain resulted in secretion of an oligomeric structure. These results indicate that the conserved leucines do not play a role in oligomer formation but are required for the fusogenic ability of the protein. When the polar face of the potential alpha helix was altered by nonconservative substitutions of a serine-to-alanine (position 473), glutamic acid-to-lysine (position 482) or an asparagine-to-lysine (position 485), the fusogenic ability of the protein was not significantly disrupted.
A phenylalanine residue is at the amino terminus of the F1 protein of all paramyxovirus fusion proteins with the exception of the avirulent strains which have a leucine residue in this position. To explore the role of this phenylalanine in the fusion activity of the protein, this residue was changed to leucine (F117L) or to glycine (F117G) by site-specific mutagenesis while maintaining the cleavage site sequence of virulent strains of NDV. Whereas both the wild-type and the F117G proteins were proteolytically cleaved and F1 was detected, the leucine subsitution abolished cleavage. When co-expressed with the HN protein, the fusion protein with either a phenylalanine and glycine residue at position 117, but not a leucine, was shown to stimulate membrane fusion. However, incubation in trypsin activated the fusion activity of the F117L protein. Thus the presence of a leucine at position 117 of the precursor sequence blocks cleavage, but not fusion acitivity, and indicated that the phenylalanine at the amino terminus of the F1 subunit is not conserved for the fusion activity of the protein.
|
Page generated in 0.1106 seconds