Spelling suggestions: "subject:"rer souffrent"" "subject:"beer souffrent""
1 |
Les glutarédoxines : de la réduction des peroxyrédocines de type II aux systèmes d'assemblage des centres fer-souffre / Caracteristion of thioredoxins-dependant peroxiredoxins and glutaredoxins from poplar : role of monocysteinic glutaredoxins in iron-sulfur cluster assemblyGama, Filipe 10 November 2010 (has links)
Les variations de l'environnement peuvent influer sur le métabolisme de la plante, notamment à travers la formation des espèces oxygénées réactives (EOR) nocives à forte concentration. Des systèmes enzymatiques vont dégrader ces EOR mais aussi réparer les molécules oxydées par ces réactifs. Ils sont composés notamment de peroxydases (glutathion peroxydases utilisant les thiorédoxines comme réducteur, et les peroxyrédoxines utilisant les glutarédoxines et les thiorédoxines pour leur régénération) dont l'activité s'appuie sur des échanges dithiol-disulfure. Ces systèmes présentent une complexité liée à l'existence de familles multigéniques. Des hybrides Prx-Grx actifs ont été produits de façon recombinante, donnant des indications sur les interactions entre Prx et Grx. Les études enzymatiques réalisées sur les Prx IIF et IIE ont montré qu'elles sont capables de réduire de nombreux substrats autres que le peroxyde d'hydrogène avec des efficacités variables. De plus, leurs localisations tissulaires sont différentes ainsi que leurs réactions en réponse à divers stress oxydant. Outre leur fonction de réducteurs, les glutarédoxines pourraient participer aussi à la signalisation par le mécanisme de glutathionylation, impliqué dans la protection de cystéines critiques par fixation d'une molécule de glutathion. Un rôle nouveau est apparu, elles aident à la formation et l'intégration des centres fer-soufre et participent donc à la maturation des protéines fer-soufre. Les Grxs chloroplastiques S14 et S16 intègrent de façon naturelle un centre fer-soufre et complémentent des mutants de levure déficients en Grx5, une glutarédoxine CGFS nécessaire pour l'assemblage des centres fer-soufre. Enfin, la GrxS14 est capable de transférer efficacement son centre à une molécule acceptrice. Ces résultats nous permettent de mieux comprendre la redondance des ces familles : ces systèmes modulent différents processus physiologiques, dont certains encore inconnus, en réponse au stress oxydant / Environment variations can modify plant metabolism in particular by production of reactive oxygen species (ROS) which are harmfull at high level. Enzymatic systems are to degrade these ROS but also repair oxidized molecules. They are composed by peroxidases (thioredoxins-reduced glutathione peroxidases and thioredoxin or glutaredoxin-reduced peroxiredoxins) using dithiol exchange for their activity. These systems present a complexity according to their multigenic family origin. Recombinant Prx-Grx hybrids have been produced giving clue to interactions between Prx and Grx. Enzymatic studies showed Prx IIF and IIE can reduced a wide range of substrates other than hydrogen peroxide, with variable activity. Furthermore they are not found identically in plant tissue and react to oxidative stress in different ways. Besides reducing properties Grx could participate in cell signalling by glutathionylation, mechanism which protects cystein by fixating a molecule of GSH. A new role appeared recently, they help production of iron-sulfur cluster and play a role in iron-sulfur proteins maturation. Plastidials S14 and S16 Grxs can naturally bind an iron-sulfur cluster and complement Grx5 (CGFS Grx known entering in iron-sulfur proteins maturation) deficient mutants yeast. Finally GrxS14 is able to transfer efficiently his cluster to accepting molecule. These results allow us understanding better these multigenic families regulating several physiological processes, some still unknown, in oxidative stress
|
2 |
Développements méthodologiques pour l'identification in silico des métalloprotéines dans les protéomes bactériens : le cas des protéines à centre Fer-Soufre / Methodological developments for in silico identification of metalloproteins in bacterial proteomes : the iron-sulfur proteins case studyEstellon, Johan 22 October 2012 (has links)
Jusqu’à 40% des protéines sont connues pour fixer des métaux, ces hétéroatomes jouant un rôle capital dans la régulation, la catalyse ou le maintien de la structure de ces protéines. Ces métalloprotéines sont ubiquitaires et d’une importance primordiale dans les trois domaines du vivant. Cependant, les méthodes actuelles dédiées à l’identification des membres de cette grande famille dans les protéomes bactériens sont soit inadaptées pour des approches à grande échelle, soit présentent des performances relativement limitées en l’absence d’une structure tridimensionnelle résolue. Dans ce contexte, différents outils d’analyse de séquence ont été testés, en recherchant des descripteurs de ces protéines (e.g. motifs, domaines conservés, empreintes phylogénétiques). Pour pallier le relatif manque de sensibilité de ceux-ci, de nouveaux descripteurs ont été construits, dédiés spécifiquement à l’identification des protéines à centre fer-soufre : (i) des profils de co-conservation des ligands du métal et (ii) des profile-HMMs adaptés à la détection d’homologues distants. Les pouvoirs prédictifs respectifs de ces catégories de descripteurs ont été évalués sur un jeu de protéines fer-soufre expertisé, en les considérant soit séparément soit en combinaison. L’ensemble de ces descripteurs a finalement été intégré dans un modèle linéaire généralisé en utilisant la technique d’elastic-net. Le modèle prédictif obtenu a été évalué sur le protéome complet d’Escherichia coli, sur lequel il atteint une précision de 89% et une sensibilité de 83%. Enfin, il a été appliqué à environ 300 protéomes pour explorer différentes relations biologiques comme l’abondance relative des protéines Fe-S et la tolérance à l’oxygène des organismes auxquelles elles appartiennent. / Up to 40% of all proteins are known to bind metals, the intrinsic metal atoms providing catalytic, regulatory and/or structural roles critical to their functions. These metalloproteins are ubiquitous and of major importance within the three domains of life. However, current methods dedicated to identifying members of this large family within bacterial proteomes are either not suitable for large-scale approach or are of relatively limited performance when no 3D structural template is available. Within this context, different sequence analysis tools relying on different category of protein descriptors (e.g. patterns, conserved domains, phylogenetic prints) were assessed. To overcome their relative lack of sensibility, new descriptors, specific towards iron-sulfur proteins identification were built: (i) co-conservation profiles of the metal ligands and (ii) tailored profile-HMMs for remote homologs detection. Their respective predictive power towards the identification of a manually curated iron-sulfur proteins dataset were assessed, either separately or in combination. All relevant descriptors were finally gathered into a generalized linear model by using the elastic-net method. The predictive model has been evaluated on Escherichia coli whole proteome resulting in a precision of 89% and a recall of 83%. Eventually, it has been applied to 300 proteomes allowing investigating different biological relationships, such as iron-sulfur proteins relative abundances and the oxygen dependency of bacterial organisms.
|
3 |
Etude des relations structure-fonctions de l´hydrogénase à fer de Clostridium acetobutylicum et de ses partenaires d'oxydo-réductionDemuez, Marie 05 November 2007 (has links) (PDF)
Source d'énergie renouvelable et non polluante, le biohydrogène connaît un intérêt croissant. En culture continue sur glucose, la productivité d'hydrogène la plus élevée est réalisée par la bactérie anaérobie Clostridium acetobutylicum avec 2,4 litres d'hydrogène produit l-1 h-1. Cette production d'hydrogène est catalysée par la [FeFe]-hydrogénase HydA. Pour comprendre et améliorer les capacités de ce micro-organisme pour la production d'hydrogène, nous avons voulu caractériser les relations structure-fonctions de HydA avec ses partenaires d'oxydo-réduction. Par homologie avec l'hydrogénase à fer I de Clostridium pasteurianum, les centres [4Fe-4S] FS4C et [2Fe-2S] FS2, situés en surface de la protéine, pourraient être impliqués dans le transfert inter-moléculaire d'électrons entre HydA et ses partenaires d'oxydoréduction. Notre objectif a alors été de déterminer l'implication de FS4C et FS2 dans ce transfert. Pour cela, des mutations par substitutions d'acides aminés et par délétions de domaines ont été effectuées au niveau de FS4C et FS2. Pour palier des problèmes d'instabilité des hydrogénases à fer native et modifiées, le protocole de purification a été amélioré. L'hydrogénase native a nettement été stabilisée, mais l'instabilité persistante des hydrogénases modifiées est restée une limitation importante pour leur caractérisation catalytique. La perte d'activité des hydrogénases modifiées a pu être corrélée à une perte importante de fonctionnalité de leur site actif et à un nombre d'atomes de fer incorporés inférieur à la valeur théorique. Les partenaires physiologiques d'oxydo-réduction de HydA chez C. acetobutylicum, la ferrédoxine CAC0303 et la flavodoxine, ont été purifiés. Le profil catalytique complet et les paramètres cinétiques des activités de consommation et de production d'hydrogène de HydA native avec différents partenaires d'oxydo-réduction ont été déterminés. L'amélioration du protocole de purification a permis d'augmenter significativement les activités de consommation et production d'hydrogène. Nous avons confirmé la préférence in vitro de HydA à catalyser la consommation de l'hydrogène par rapport à la production. Une valeur très élevée de kcat a été obtenue avec le substrat artificiel, méthyl viologène, en consommation d'hydrogène. Cela semble indiquer que le méthyl viologène pourrait interagir plus ou moins directement avec le site actif de l'enzyme, en évitant le transfert intramoléculaire d'électrons. Des efficacités catalytiques élevées de consommation et de production de l'hydrogène ont été obtenues avec le méthyl viologène (sauf sous sa forme réduite), la ferrédoxine et la flavodoxine. Ce résultat reflète le haut potentiel de HydA pour les réactions liées à l'hydrogène, potentiel conservé aussi bien pour ses partenaires redox physiologiques qu'artificiel. Ainsi, en condition de croissance en carence en fer, la substitution de la ferrédoxine par la flavodoxine ne serait pas une limitation pour l'activité hydrogénase in vivo.
|
4 |
Etude structure-fonction de l'hydrogénase à fer et ingénierie du métabolisme de l'hydrogène chez Clostridium acetobutylicum / Structure-function study of the FeFe-hydrogenase and hydrogen mtebolic engineering in clostridium acetobutylicumGauquelin, Charles 09 October 2017 (has links)
: Chez la bactérie Clostridium acetobutylicum, la production de dihydrogène est catalysée par des hydrogénases, enzymes impliquées dans l’oxydation de la ferrédoxine réduite, qui permet la réduction des protons et la formation du gaz. Toutes les hydrogénases à fer partagent un domaine protéique très conservé (le Domaine H), hébergeant le site catalytique inorganique (le Cluster H). L’enzyme CaHydA de C. acetobutylicum, possède également le Domaine F contenant en tous quatre centres fer-soufre dits accessoires. Au cours de ces travaux, l’implication des centres fer-soufre du Domaine F sur les capacités catalytiques de l’enzyme a été étudiée, ainsi que les mécanismes de transfert d’électrons entre l’enzyme et son partenaire physiologique d’oxydoréduction principal : la ferrédoxine 2[4Fe-4S]. Différents variants ciblés de l’hydrogénase ont été créés, produits puis purifiés afin de les caractériser par une combinaison de méthodes biochimiques, électrochimiques, spectroscopiques et de modélisation moléculaire. Ceci a permis de mettre en évidence pour la première fois l’implication des centres fer-soufre accessoires du Domaine F dans les capacités catalytiques de l’enzyme. Enfin, il a été démontré que le centre [2Fe-2S] de surface FS2 de l’enzyme était le point d’entrée des électrons provenant de la ferrédoxine réduite. / The hydrogenase of Clostridium acetobutylicum catalyses the oxydation of reduced ferredoxin, leading to reduction of protons and dihydrogen formation. Among the three different classes of hydrogenases, the [Fe-Fe] Hydrogenases harbor a very conserved domain (H-Domain) containing the inorganic catalytic site (Cluster H). CaHydA from C. acetobutylicum possesses, in addition, the F-Domain containing four accessory iron-sulfur clusters. The involvement of accessory iron-sulfur cluster of F-Domain on the catalytic capacities of the enzyme has never been assessed. Moreover, which of the two surface iron-sulfur cluster of the F-Domain who interacts with the physiological redox partner ferredoxin is unknown. Different CaHydA mutants enzymes, modified in the Fe-S cluster composition of the F-Domain have been purified, and spectroscopically, biochemically and electrochemically characterized. These mutants enzymes, impaired in their catalytic activity both in solution and wired to an electrode, suggested, for the first time that the Fe-S clusters of the F-Domain have a long-range thermodynamic effect on the H-cluster and modulate enzyme’s functions. Moreover, it has been shown, and confirmed by molecular modelling, that the [2Fe-2S] surface cluster FS2 of the enzyme is the entry point for the electrons coming from the reduced ferredoxin.
|
5 |
Caractérisation du rôle de la frataxine dans la machinerie de biosynthèse des clusters FeS et développement d'un logiciel de prédiction des protéines FeS / Characterization of frataxin function during the iron-sulfur clusters biosynthesis and development of a software for the in silico prediction of Fer-Sulfur Cluster proteinsColin, Florent 09 December 2013 (has links)
L’Ataxie de Friedreich est une maladie génétique récessive neurodégénérative. Elle est due à un déficit dans l’expression d’une protéine mitochondriale, la frataxine. Cette protéine est impliquée dans l’assemblage des protéines fer-soufre (FeS). Le premier axe de ma thèse a consisté à mieux caractériser le rôle de la frataxine au sein du complexe précoce de biosynthèse des clusters FeS (NFS1/ISD11/ISCU). Mes résultats m’ont permis de mettre en évidence l’importance de la frataxine dans le contrôle de l’entrée du fer au sein du complexe de biosynthèse, sur l’activité enzymatique de NFS1 et sur le transfert des clusters FeS vers les apo-protéines. Le second axe a été le développement du programme de bioinformatique (PredISC) nous permettant des candidats de protéines FeS. Ce programme a permis de générer une liste de candidat qui pourra être compilée sous la forme d’une base de données. Par la suite, des approches transversales y seront associées à afin d’affiner les listes de candidats. / Friedreich Ataxia (FA) is the most prevalent form of autosomal recessive ataxia in the Caucasian population. Frataxin is implicated in the biosynthesis of iron-sulfur (FeS). The first axis of my work was to better characterize the function of Frataxin in the “early” complex of FeS clusters biosynthesis (NFS1/ISD11/ISCU). I was able to show the crucial involvement of Frataxin in the control of iron entry in this complex, on the enzymatic activity of NFS1 and on the transfert of FeS cluster to apo-proteins. Thesecond axis was the development of a bio-informatic software (PredISC) that is able to predict potential iron-sulfur containing proteins. The software allows us to generate a list of candidates that will be compiled in a database. In the future transversal approaches have to be associated in order to reduced the number of candidates, and increase their interest.
|
6 |
Etude structurale de métalloprotéines à centres [2Fe-2S].<br />Cas d'une ferrédoxine et d'une dioxygénase impliquée dans la biodégradation des<br />hydrocarbures aromatiques.<br />Cristallographie des protéines à très haute énergie.<br />Méthodes de phasage d'une protéine modele à 55 keV.Jakoncic, Jean 22 January 2007 (has links) (PDF)
Les métalloprotéines contenant des centres Fe-S jouent un rôle important dans la<br />nature car elles sont impliquées dans des fonctions physiologiques essentielles telles que la<br />photosynthèse, la respiration et la fixation de l'azote.<br />Dans cette thèse, une ferrédoxine impliquée dans la biogenèse des centres Fe-S, et une<br />dioxygenase bactérienne jouant un rôle crucial dans la biodegradation des hydrocarbures<br />aromatiques ont fait l'objet d‘analyses structurales par cristallographie aux rayons X. La<br />structure d'une ferrédoxine de la bactérie photosynthétique Rhodobacter capsulatus, a été<br />résolue dans les états oxyde et réduit. De petits changements structuraux ont été observes lors de la réduction, notamment au voisinage du centre [2Fe-2S]. Ces changements sont compares a ceux décrits pour des ferrédoxines de structure similaire mais de fonction différente.<br />Une métalloprotéine plus complexe, appartenant a une grande famille de dioxygenases<br />bactériennes, a été étudiée pour son activité d'oxydation des hydrocarbures aromatiques<br />polycycliques (HAP). Cette enzyme a trois composantes, isolée d'une souche de<br />Sphingomonas dégradant les HAP comprend une oxydoréductase a NAD(P)H, une<br />ferrédoxine a centre [2Fe-2S], et composante oxygenase de six sous-unités assemblées en un hexamère de type α3β3. La composante oxygenase, appelée PhnI, contient une centre [2Fe-2S] de type Rieske et un ion ferreux par sous-unité α, qui ont été identifies par leur signature RPE. L'enzyme est douée d'une spécificité du substrat extrêmement large, puisqu'elle est capable d'hydroxyle toute une gamme de HAP fait de 2 a 5 cycles aromatiques, y compris des cancérogènes comme le benz[a]anthracene et le benzo[a]pyrene. Avec le naphtalène comme substrat, des mesures de cinétique ont montre que cette enzyme a un Km bas (0.92 WM) et une constante de spécificité de 2.0 WM-1. s-1. La proteine Phn1 a été cristallisée, et sa structure 3D a été résolue avec une résolution de 1.85 A. En dépit d'une modeste similitude de séquence avec des dioxygenases homologues, le repliement polypeptidique est très semblable.<br />Des différences ont toutefois été observées au niveau de la poche catalytique.<br />Les protéines sous forme cristallisée, notamment les protéines Fe-S, peuvent subir des<br />dommages dus au rayonnement X synchrotron, causant des artefacts lors de la détermination<br />de la structure. Pour essayer de palier cet inconvénient, des rayons X de très haute énergie (55 keV; 0.22 A), qui sont peu absorbes par les protéines, ont été utilises pour résoudre la<br />structure d'une proteine modèle, le lysozyme. Une structure a été établie pour la première fois<br />par cette approche, en utilisant les phases expérimentales obtenues par différentes méthodes.<br />Les applications potentielles en biologie structurale sont discutées.
|
7 |
Structure et Mécanisme de la Quinolinate Synthase : enzyme à centre [4Fe-4S]2+ et cible d'agents antibactériens / Structure et Mechanism of Quinolinate Synthase : an enzyme with a [4Fe-4S]2+ cluster & an antibacterial targetChan, Alice 05 December 2014 (has links)
Le Nicotinamide Adénine Dinucléotide (NAD) est un cofacteur clé du métabolisme cellulaire. Synthétisé à partir d'acide quinolinique (QA) chez tous les organismes vivants, la biosynthèse du QA diffère entre les eucaryotes et les procaryotes. Chez les eucaryotes, il est produit à partir de L-tryptophane alors que chez les procaryotes et les plantes, il est synthétisé par l'action concertée de deux enzymes: la L-aspartate oxydase (NadB) qui permet la formation d'iminoaspartate (IA) à partir de L-aspartate et la quinolinate synthase (NadA) qui permet la condensation de deux molécules, la dihydroxyacétone-phosphate (DHAP) et l'iminoaspartate, pour former l'acide quinolinique. En plus de cette voie dite « de novo », la plupart des organismes possèdent une voie de secours qui produit le NAD à partir de niacine provenant de l'alimentation ou de la dégradation du NAD. Chez certains pathogènes tels que Mycobacterium leprae et Helicobacter pylori, cette voie de secours n'existe pas. Ceci fait de NadA une cible particulièrement attractive pour la conception d'antibactériens et ceci d'autant plus qu'elle est absente chez l'homme.NadA est la seule enzyme de la voie de biosynthèse de novo du NAD dont le mécanisme moléculaire et la structure tridimensionnelle sous forme active (avec son centre [4Fe-4S]2+) sont inconnus. Grâce à l'utilisation d'analogues de substrats ou d'intermédiaires réactionnels, nous avons pu non seulement avancer dans l'élucidation du mécanisme moléculaire de NadA et notamment dans la compréhension du rôle du centre [4Fe-4S]2+ dans la catalyse mais en plus, nous avons été en mesure de proposer un 1er inhibiteur in vitro et in vivo de NadA : l'acide 4,5 Dithiohydroxyphtalique (DTHPA). Le DTHPA nous a fourni de bonnes bases pour la conception d'inhibiteurs puissants et spécifiques de NadA grâce à une étude Structure-Activité. Par ailleurs, nous avons résolu la 1ère structure aux rayons X de NadA sous forme holoprotéine dont les données structurales nous ont grandement aidé dans la compréhension du mécanisme de NadA. / The Nicotinamide Adenine Dinucleotide (NAD) is a key cofactor essential for cellular metabolism. Synthesized from quinolinic acid (QA) in all living organisms, NAD biosynthesis is different between eucaryotes and procaryotes. Indeed, most of eukaryotes produce QA from L-tryptophan, whereas most of prokaryotes and plants synthesize QA by the concerted action of 2 enzymes: L-aspartate oxydase (NadB), an FAD enzyme, which catalyzes L-Aspartate oxidation to form iminoaspartate (IA) while quinolinate synthetase (NadA) allows condensation between IA and Dihydroxyacetone Phosphate (DHAP) to produce QA. Besides this « de novo » pathway, most eukaryotes and some bacteriae have a salvage pathway which allows NAD synthesis from nutrients and metabolites of NAD degradation in order to maintain a correct pool of NAD in the cell. However, some pathogens like Mycobacterium leprae, Helicobacter pylori do not possess this pathway. As a consequence, NadA represents a very attractive target for designing specific antibacterial agents since it does not exist in Human.NadA is the only metalloenzyme of NAD de novo biosynthesis whose molecular mechanism and tridimensional structure with its [4Fe-4S]2+ cluster are unknown. Using substrate and intermediate analogues, we have been able to understand better NadA mechanism, especially [4Fe-4S]2+ cluster role in catalysis. Moreover, we proposed the first in vitro and in vivo inhibitor of NadA : the 4,5 Dithiohydroxyphtalic Acid (DTHPA) which gave us basis to design powerful and specific NadA inhibitors thanks to a structure-activity relationship study. Besides, we resolved the first X-rays structure of NadA under its holoprotein form. Datas we extracted from it helped us greatly to understand NadA mechanism.
|
8 |
Caractérisation de nouvelles enzymes impliquées dans la biosynthèse de cofacteurs de microorganismes. Mécanismes des tyrosine lyases à radical SAM / Characterization of novel enzymes involved in biosynthesis of microbial cofactors. Mechanisms of radical SAM tyrosine lyasesDecamps, Laure 13 January 2014 (has links)
Le cofacteur F420 est un coenzyme d’oxydoréduction essentiel pour la méthanogenèse chez les archées, un processus qui influence fortement les interactions métaboliques au sein du microbiote intestinal ; en outre, il joue un rôle important dans la pathogénicité de la bactérie Mycobacterium tuberculosis. L’étude de sa biosynthèse présente donc un intérêt majeur en Biologie.La formation du chromophore du F420 est catalysée par la F0-synthase, qui contient, de façon unique, deux domaines caractéristiques des enzymes à radical SAM (rSAM). Ces enzymes catalysent le clivage de la S-adénosylméthionine (SAM) pour former un radical 5′ déoxyadénosyle, capable d’initier un grand nombre de réactions radicalaires.Nous avons réussi à identifier les substrats de la F0-synthase et à reconstituer la synthèse du F0 in vitro. Nous avons également démontré que cette enzyme contient deux centre [4Fe-4S] 2+/1+ rSAM fonctionnels et caractérisé les étapes de la synthèse du F0. Ceci nous a permis de proposer un mécanisme réactionnel pour la F0 synthase. Nous avons ensuite entrepris la comparaison de la F0 synthase avec les deux autres enzymes rSAM tyrosine lyases connues à ce jour : ThiH, impliquée dans la biosynthèse de la vitamine B1, et HydG, impliquée dans la biosynthèse du cofacteur métallique de l’hydrogénase à fer-fer. Nous avons ainsi découvert de nouveaux aspects de la réaction de clivage de la tyrosine par ces enzymes, permettant une meilleure compréhension de ce groupe émergent au sein de la superfamille des enzymes rSAM. / Cofactor F420 is a redox coenzyme crucial for methanogenesis in Archaea, a process which plays a major role in metabolic interactions in the gut microbiota ; It also constitutes a key pathogenicity factor for Mycobacterium tuberculosis. Understanding the biosynthesis of this cofactor is thus of major interest.The biosynthesis of the chromophore of F420 is catalyzed by F0 synthase, which comprises, in a unique manner, two radical SAM (rSAM) domains. These enzymes catalyze the cleavage of S adenosylmethionine (SAM) to produce a 5′-deoxyadenosyl radical, which can initiate a broad range of radical reactions.We succeeded to identify the substrates of F0-synthase and to perform the biosynthesis of F0 in vitro. We ascertained that F0-synthase contains two functional [4Fe-4S]2+/1+ rSAM clusters, and characterized the steps of the reaction of F0 synthesis. Based on these date, we proposed a mechanism for the F0-synthase reaction. Furthermore, we compared F0 synthase with the two other radical SAM tyrosine lyases identified to date: ThiH, which is involved in vitamin B1 biosynthesis, and HydG, which is involved in the biosynthesis of the metal cofactor of iron-iron hydrogenases. We obtained novel insights of the reaction of tyrosine cleavage catalyzed by these enzymes, providing a better understanding of this emerging group in the rSAM enzyme superfamily.
|
9 |
Functional redox compartmentation of GSH in the yeast Saccharomyces cerevisiae / Compartimentalisation du glutathion dans les cellules de levure S. cerevisiae et de ses conséquences fonctionnellesIgbaria, Aeid 23 September 2011 (has links)
L'oxydation des résidus cystéines est une modification biochimique très répandue survenant dans tous les compartiments des cellules eucaryotes. Ce phénomène sert le repliement oxydatif des protéines dans le réticulum endoplasmique (RE), l'importation de protéines dans l'espace intermembranaire de la mitochondrie (IMS). De plus, il a un rôle régulateur dans la matrice mitochondriale et dans le cytosol où il contrôle l’activité des enzymes et des protéines de signalisation et de régulation. Dans tous ces procédés, la réversibilité de l'oxydation des résidus Cys est une caractéristique essentielle. Deux systèmes oxydoréductase puissants existent : les voies de glutathion (GSH) et la thiorédoxine ; ils catalysent la réduction des ponts disulfure, et contrôlent la plupart des processus cellulaires thiol-redox dépendant. Cependant, en dépit d'énormes connaissances portant sur leur enzymologie, peu est connu sur les caractéristiques physiologiques de ces systèmes chez les eucaryotes. Pour déterminer l'importance physiologique de ces systèmes et indiquer lequel est à la base de l'exigence du GSH pour la viabilité, nous avons effectué une analyse complète des cellules de levure épuisée ou contenant des niveaux toxiques de GSH. Les deux conditions déclenchent une réponse « iron-starvation-like » et une altération de l'activité des enzymes d’assemblage des centres fer-soufre (Iron sulfure cluster : ISC) extra-mitochondriales. Cependant, elles n’ont pas d'impact sur l’entretien thiol redox, à l’exception des niveaux élevés de glutathion qui ont altéré le repliement oxydatif des protéines dans le reticulum endoplasmique. Alors que le fer sauve partiellement la maturation des ISC et les défauts de croissance des cellules appauvries eh GSH, des expériences génétiques ont indiqué que, contrairement à la thiorédoxine, le glutathion ne peut pas assurer par lui-même les fonctions thiol-redox de la cellule. Nous proposons que le glutathion soit essentiel par son exigence dans l’assemblage des centres fer-soufre, mais ne serve comme backup que pour maintenir l’état thiol-redox de la cellule. Des niveaux physiologiques élevés de GSH sont ainsi destinés à isoler sa fonction dans le métabolisme du fer des variations de sa concentration pendant le stress redox, ce qui constitue un modèle contestant la vision traditionnelle du GSH comme acteur primordial du contrôle thiol-redox cytosolique.Nos données préliminaires sur la distribution de GSH dans les cellules recueillies par lasurveillance de l'état redox de rxYFP ciblée pour différents compartiments cellulaires (RE,Matrice, cytosol et IMS) dans les cellules HGT1 indiquent un transport spécifique du GSH vers le RE et l'exportation de GSSG de ce compartiment. Nous avons pu caractériser deuxtransporteurs ABC dont la suppression modifie le RE plus oxydant et entraîne une accumulation de GSSG par rapport aux cellules sauvages. Ces données ont été confirmées par le suivi de l'état redox de PDI1 et ERO1 (WT et hyper active). Elles suggèrent un rôle de ces transporteurs dans l'exportation du GSSG du la RE, et que le flux de GSH entre les différents compartiments est très régulé. / Cys residue oxidation is a widespread biochemical modification occurring in all eukaryotic cells compartments. It serves oxidative protein folding in the endoplasmic reticulum (ER), protein import in the intermembrane space of mitochondria (IMS), and it has a regulatory role in the mitochondrial matrix and in the cytosol where it controls enzymes and signaling regulatory proteins activity. In all these processes, reversibility of Cys residue oxidation is a crucial feature. Two potent oxidoreductase systems, the glutathione (GSH) and thioredoxin pathways, catalyze disulfide bond reduction, and presumably control most thiol-redox-dependent cellular processes. However, despite tremendous knowledge of their enzymology, little is known about the physiological features of these systems in eukaryotes. To determine the physiologic importance of these functions and sort out which of them accounts for the GSH requirement for viability, we performed a comprehensive analysis of yeast cells depleted of or containing toxic levels of GSH. Both conditions triggered an intense iron-starvation-like response and impaired the activity of extra-mitochondrial ISC enzymes, but did not impact thiol-redox maintenance, except high glutathione levels that altered oxidative protein folding in the endoplasmic reticulum. While iron partially rescued the ISC maturation and growth defects of GSH-depleted cells, genetic experiments indicated that unlike thioredoxin, glutathione could not support by itself the thiolredox duties of the cell. We propose that glutathione is essential by its requirement in ISC assembly but only serves as a thioredoxin back up in cytosolic thiol-redox maintenance. Glutathione high physiologic levels are thus meant to insulate its function in iron metabolism from variations of its concentration during redox stresses, a model challenging the traditional view of it as prime actor in cytosolic thiol-redox control.Our preliminary data on the distribution of GSH inside cells collected by monitoring the redox state of rxYFP targeted to different cell compartments (ER, Matrix, Cytosol and IMS) in HGT1 cells indicate a specific transport of GSH into the ER and export of GSSG out of it. We were able to characterize two ABC transporters on which their deletion modify the redox state of the ER to more oxidizing and result in accumulation of higher GSSG content compared to WT. These data were confirmed by looking to the redox state of the PDI1 and ERO1 (WT and hyper active), all together suggest a role of these transporters in GSSG export from the ER, and that GSH flux between the different compartments is highly regulated.
|
10 |
Réparation de l'ADN par une protéine « Radical-SAM » : Etude de la Spore Photoproduct LyaseChandor-Proust, Alexia 28 November 2008 (has links) (PDF)
Chez les spores de bactéries, le photoproduit le plus abondant formé dans l'ADN irradié par les UV est un dimère de thymines appelé Photoproduit des spores (SP, 5-(a-thyminyl)-5,6-dihydrothymine). Au début de la germination, ce photoproduit est spécifiquement réparé par une enzyme, la Spore Photoproduct Lyase (SPL), régénérant les deux résidus thymine originaux. Cette enzyme est une protéine Fe-S qui appartient à la famille des « Radical-SAM ». Les protéines de cette famille d'enzymes possèdent un centre [4Fe-4S], coordiné par 3 cystéines conservées organisées selon le motif CxxxCxxC, et utilisent la SAdénosylméthionine comme cofacteur. Elles fonctionnent toutes selon un mécanisme <br />radicalaire, initié par la formation du radical 5'-désoxyadénosyle issu de la coupure homolytique de la S-Adénosylméthionine par le centre [4Fe-4S] réduit. Dans ce travail, nous avons effectué une caractérisation biochimique et spectroscopique des SPL de Clostridium acetobutylicum et Bacillus subtilis. Par ailleurs, nous avons synthétisé un substrat minimum sous la forme d'un dinucléoside monophosphate appelé SPTpT, pour lequel une caractérisation structurale par RMN a été réalisée. Le SPTpT est reconnu et efficacement réparé par l'enzyme, ce qui nous a permis d'obtenir de nouvelles informations sur le mécanisme enzymatique de réparation. Enfin, la séquence primaire des SPL contient une 4e cystéine conservée, essentielle à la réparation, mais qui n'est pas impliquée dans la coordination du centre [Fe-S]. Nous nous sommes intéressés au rôle de cette cystéine dans le mécanisme de réparation grâce à l'étude biochimique et enzymatique du mutant SPLC141A.
|
Page generated in 0.0489 seconds