Spelling suggestions: "subject:"finiteelemente"" "subject:"finiteelement""
651 |
Finite-Elemente-Mortaring nach einer Methode von J. A. Nitsche für elliptische RandwertaufgabenPönitz, Kornelia 29 June 2006 (has links)
Viele technische Prozesse führen auf Randwertprobleme mit partiellen
Differentialgleichungen, die mit Finite-Elemente-Methoden näherungsweise
gelöst werden können. Spezielle Varianten dieser Methoden sind
Finite-Elemente-Mortar-Methoden. Sie erlauben das Arbeiten mit an
Teilgebietsschnitträndern nichtzusammenpassenden Netzen, was für
Probleme mit komplizierten Geometrien, Randschichten, springenden
Koeffizienten sowie für zeitabhängige Probleme von Vorteil sein kann.
Ebenso können unterschiedliche Diskretisierungsmethoden in den einzelnen
Teilgebieten miteinander gekoppelt werden.
In dieser Arbeit wird das Finite-Elemente-Mortaring nach einer Methode
von Nitsche für elliptische Randwertprobleme auf zweidimensionalen
polygonalen Gebieten untersucht. Von besonderem Interesse sind dabei
nichtreguläre Lösungen (u \in H^{1+\delta}(\Omega), \delta>0) mit
Eckensingularitäten für die Poissongleichung sowie die Lamé-Gleichung
mit gemischten Randbedingungen. Weiterhin werden singulär gestörte
Reaktions-Diffusions-Probleme betrachtet, deren Lösungen zusätzlich zu
Eckensingularitäten noch anisotropes Verhalten in Randschichten
aufweisen.
Für jede dieser drei Problemklassen wird das Nitsche-Mortaring
dargelegt. Es werden einige Eigenschaften der Mortar-Diskretisierung
angegeben und a-priori-Fehlerabschätzungen in einer H^1-artigen sowie
der L_2-Norm durchgeführt. Auf lokal verfeinerten Dreiecksnetzen können
auch für Lösungen mit Eckensingularitäten optimale Konvergenzordnungen
nach gewiesen werden. Bei den Lösungen mit anisotropen Verhalten werden
zusätzlich anisotrope Dreiecksnetze verwendet. Es werden auch hier
Konvergenzordnungen wie bei klassischen Finite-Elemente-Methoden ohne
Mortaring erreicht. Numerische Experimente illustrieren die Methode und
die Aussagen zur Konvergenz.
|
652 |
Beiträge zur Technologieentwicklung für die Erzeugung von Airgap - Strukturen in Metallisierungssystemen in integrierten SchaltkreisenSchulze, Knut 26 March 2008 (has links)
Die Arbeit beschreibt die Entwicklung und Evaluierung zweier neuartiger Technologien (Maske und Spacer) zur Erzeugung von Airgap-Strukturen in Mehrebenenmetallisierungen integrierter Schaltkreise. Ausgangspunkt der Arbeit bildet die Aufarbeitung der Thematik der low-k Materialien sowie der aus der Literatur bekannten Airgap-Ansätze. Es werden die beiden entwickelten Konzepte zur Airgap-Erzeugung prinzipiell beschrieben und hinsichtlich der definierten Zielstellungen (konventionelle Prozessierung, Skalierbarkeit, selektiver Eintrag) sowie vergleichend zu alternativen Airgap-Ansätzen diskutiert. Im Fortgang werden Präparationen beider Technologien vorgestellt und deren Machbarkeit nachgewiesen. Die Erprobung und Optimierung einzelner Prozesse werden dokumentiert. Anhand der funktionsbedingten Anforderungen an Materialien und Grenzflächen werden ausgewählte Integrationsaspekte untersucht. Den Schwerpunkt bildet dabei der Einfluss von Fluorwasserstoffsäure auf elektrisch leitfähige und dielektrische Diffusionsbarrieren, Kupfer sowie deren Verbund. Es werden Möglichkeiten gezeigt, unerwünschte Wechselwirkungen zu minimieren und die Zuverlässigkeit der defektfreien Airgap-Erzeugung zu steigern. Die Arbeit beinhaltet zudem die Charakterisierung von Airgap-Strukturen entsprechend beider Ansätze hinsichtlich ihres elektrischen, thermischen und mechanischen Verhaltens für variierte Geometrien und Materialeigenschaften. Es werden FEM-Simulationen genutzt, um Messwerte zu verifizieren, Extrapolationen bei variierten Eingabedaten durchzuführen oder nicht messbare Größen zu extrahieren.
|
653 |
Identification of material parameters in mechanical modelsMeyer, Marcus 04 June 2010 (has links)
Die Dissertation beschäftigt sich mit
Parameteridentifikationsproblemen, wie sie häufig in
Fragestellungen der Festkörpermechanik zu finden sind. Hierbei
betrachten wir die Identifikation von Materialparametern -- die
typischerweise die Eigenschaften der zugrundeliegenden
Materialien repräsentieren -- aus gemessenen Verformungen oder
Belastungen eines Testkörpers. In mathematischem Sinne
entspricht dies der Lösung von Identifikationsproblemen, die
eine spezielle Klasse von inversen Problemen bilden.
Der Inhalt der Dissertation ist folgendermaßen gegliedert. Nach
dem einführenden Abschnitt 1 wird in Abschnitt 2 ein Überblick
von Optimierungs- und Regularisierungsverfahren zur stabilen
Lösung nichtlinearer inverser Probleme diskutiert. In Abschnitt
3 betrachten wir die Identifikation von skalaren und stückweise
konstanten Parametern in linearen elliptischen
Differentialgleichungen. Hierbei werden zwei Testprobleme
erörtert, die Identifikation von Diffusions- und
Reaktionsparameter in einer allgemeinen elliptischen
Differentialgleichung und die Identifikation der
Lame-Konstanten in einem Modell der linearisierten Elastizität.
Die zugrunde liegenden PDE-Modelle und Lösungszugänge werden
erläutert. Insbesondere betrachten wir hier Newton-artige
Algorithmen, Gradientenmethoden, Multi-Parameter
Regularisierung and den evolutionären Algorithmus CMAES.
Abschließend werden Ergebnisse einer numerischen Studie
präsentiert. Im Abschnitt 4 konzentrieren wir uns auf die
Identifikation von verteilten Parametern in hyperelastischen
Materialmodellen. Das nichtlineare Elastizitätsproblem wird
detailiert erläutert und verschiedene Materialmodelle werden
diskutiert (linear elastisches St.-Venant-Kirchhoff Material
und nichtlineare Neo-Hooke, Mooney-Rivlin und Modified-Fung
Materialien. Zur Lösung des resultierenden
Parameteridentifikationsproblems werden Lösungsansätze aus der
optimalen Steuerung in Form eines Newton-Lagrange SQP
Algorithmus verwendet. Die Resultate einer numerischen Studie
werden präsentiert, basierend auf einem zweidimensionales
Testproblem mit einer sogenannten Cook-Mebran. Abschließend
wird im Abschnitt 5 die Verwendung adaptiver FEM für die Lösung
von Parameteridentifikationsproblems kurz erörtert. / The dissertation is focussed on parameter identification
problems arising in the context of structural mechanics. At
this, we consider the identification of material parameters -
which typically represent the properties of an underlying
material - from given measured displacements and forces of a
loaded test body. In mathematical terms such problems denote
identification problems as a special case of general inverse
problems.
The dissertation is organized as follows. After the
introductive section 1, section 2 is devoted to a survey of
optimization and regularization methods for the stable solution
of nonlinear inverse problems. In section 3 we consider the
identification of scalar and piecewise constant parameters in
linear elliptic differential equations and examine two test
problems, namely the identification of diffusion and reaction
parameters in a generalized linear elliptic differential
equation of second order and the identification of the Lame
constants in the linearized elasticity model. The underlying
PDE models are introduced and solution approaches are discussed
in detail. At this, we consider Newton-type algorithms,
gradient methods, multi-parameter regularization, and the
evolutionary algorithm CMAES. Consequently, numerical studies
for a two-dimensional test problem are presented. In section 4
we point out the identification of distributed material
parameters in hyperelastic deformation models. The nonlinear
elasticity boundary value problem for large deformations is
introduced. We discuss several material laws for linear elastic
(St.-Venant-Kirchhoff) materials and nonlinear Neo-Hooke,
Mooney-Rivlin, and Modified-Fung materials. For the solution of
the corresponding parameter identification problem, we focus on
an optimal control solution approach and introduce a
regularized Newton-Lagrange SQP method. The Newton-Lagrange
algorithm is demonstrated within a numerical study. Therefore,
a simplified two-dimensional Cook membrane test problem is
solved. Additionally, in section 5 the application of adaptive
methods for the solution of parameter identification problems
is discussed briefly.
|
654 |
Das Konzept des effektiven Indenters für die Ermittlung des Elastizitätsmoduls und der Fließgrenze dünner SchichtenHerrmann, Matthias 27 May 2010 (has links)
Nanoindentations-Messungen haben in den letzten Jahrzehnten als Verfahren zur Ermittlung mechanischer Eigenschaften dünner Schichten stark an Bedeutung gewonnen. Für die Gewinnung eines tiefergreifenden Verständnisses des mechanischen Verhaltens dieser Schichten ist die Kenntnis des Elastizitätsmoduls und der Fließgrenze von essentieller Bedeutung – nicht zuletzt, da diese auch als Eingabeparameter für Simulationen des Materialverhaltens gefordert sind. Eine noch nicht im Detail verstandene Forschungsfrage bei der Kennwertermittlung ist die Berücksichtigung des Dünnschichtcharakters der Proben, deretwegen diese Untersuchungen im Wesentlichen immer noch einen Grundlagencharakter tragen und derzeit Gegenstand intensiver weltweiter Forschung sind. Auswege für eine solche Berücksichtigung existieren bisher nur für wenige Anwendungsfälle. Das Konzept des effektiven Indenters stellt eine Erweiterung der Auswerteansätze und damit neue Möglichkeit für die mechanische Charakterisierung der Dünnschichteigenschaften dar.
In der vorliegenden Arbeit wird untersucht, inwieweit dieses Konzept zur Ermittlung des Elastizitätsmoduls dünner Schichten geeignet ist. Ebenso werden die Untersuchungen auf die Fließgrenze ausgeweitet. Beispielhaft kommen unterschiedliche Schichtmaterialien zum Einsatz, mit denen der Unterschied zwischen den Schicht-Substrat-Eigenschaften – Elastizitätsmodul und Fließgrenze – variiert werden kann. Durch Vergleich der für die BERKOVICH-Eindrücke erhaltenen Ergebnisse zu den mittels der Kugeleindrucksversuche bestimmten Werte – als etabliertes Messverfahren – wird festgestellt, dass o. g. Konzept prinzipiell für die oben angeführten Fragestellungen geeignet ist, insofern die erreichten Eindringtiefen im Vergleich zur Schichtdicke relativ gering sind. Physikalische Ursachen für dieses Verhalten werden vorgeschlagen und diskutiert. Ebenso wird eine spezielle Vorgehensweise des Konzepts des effektiven Indenters für die Charakterisierung von porösen sowie nichtporösen Low-k-Schichtmaterialien untersucht. Zusätzlich werden Finite-Elemente-Simulationen für grundlegende Betrachtungen zur Wirkungsweise des o. g. Konzepts anhand von massiven Proben herangezogen. / Considerable research effort has focused on measuring the mechanical properties of thin films via nanoindentation. To characterize the mechanical behavior of thin films, accurate determination of Young’s modulus and yield strength is required. For the purpose of modeling and dimensioning, these quantities serve as input parameters as well.
An existing major challenge in the context of (nanoindentation) data analysis is the complete consideration of the layered structure of the specimen. In the literature, a few experimental and theoretical-based approaches have been developed to extract actual film properties. However, those approaches are only applicable under specific conditions and, hence, the problem is not satisfyingly solved to date. Therewith, investigations of accurately assessing mechanical properties of thin films, in general, or Young’s modulus and yield strength, in detail, are still part of ongoing research in the field of mechanical testing in materials research and development. The concept of the “effective indenter” is an extension of the current and established analysis of nanoindentation data and is a new possibility to determine mechanical properties of thin films.
In this work, an investigation is given concerning the suitability of the model, in a specific approximation, for determining Young’s modulus of thin films. In a second step, the investigations are focused on the determination of yield strength. Film/substrate composites having a varying ratio of modulus and yield strength between film and substrate are chosen; BERKOVICH indentations are analyzed and spherical indentation experiments are used as second and independent technique. It is shown that the model is suitable to deliver Young’s modulus of thin films. However, a critical ratio of indentation depth to film thickness is identified; for ratios above this critical value, the model, in the present approximation, can no longer be used. Physical mechanisms that explain this finding are suggested and discussed. Moreover, the above-mentioned model is used to characterize the very specific class of materials of non-porous and porous low-k dielectric thin films in terms of yield strength and Young’s modulus. Finally, finite element modeling is used to study critical issues in applying the model of the “effective indenter” and its specific approximation used here for analysis of nanoindentation data for bulk materials.
|
655 |
Grundgleichungen für transversal isotropes MaterialverhaltenWeise, Michael, Meyer, Arnd January 2010 (has links)
In diesem Preprint werden grundlegende Gleichungen zur Behandlung von transversal isotropem Materialverhalten zusammengetragen. Wir betrachten ein transversal isotropes Materialgesetz mit linear elastischem Verhalten. Die angegebenen Materialgleichungen sind zur Beschreibung sowohl kleiner als auch großer Deformationen geeignet. Sie bilden eine wesentliche Grundlage zur Lösung statischer Probleme mit der Methode der finiten Elemente. Es werden Gleichungen für den ebenen Spannungszustand und den ebenen Verzerrungszustand hergeleitet.:1 Einführung
2 Energiefunktional
3 Umrechnung der Materialkonstanten
4 Elastizitätsmatrix
5 Eigenwerte
6 Ebener Verzerrungszustand
7 Ebener Spannungszustand
8 Anhang
|
656 |
Numerische Singularitäten bei FEM-AnalysenReul, Stefan 10 May 2012 (has links)
Der Vortrag beschreibt numerische Singularitäten bei der h- und p-FEM, wie sie erkannt werden und welche Lösungen möglich sind bzw. was nicht vermieden werden kann.
|
657 |
Fast simulation of (nearly) incompressible nonlinear elastic material at large strain via adaptive mixed FEMBalg, Martina, Meyer, Arnd 19 October 2012 (has links)
The main focus of this work lies in the simulation of the deformation of mechanical components which consist of nonlinear elastic, incompressible material and that are subject to large deformations. Starting from a nonlinear formulation one can derive a discrete problem by using linearisation techniques and an adaptive mixed finite element method. This turns out to be a saddle point problem that can be solved via a Bramble-Pasciak conjugate gradient method. With some modifications the simulation can be improved.:1. Introduction
2. Basics
3. Mixed variational formulation
4. Solution method
5. Error estimation
6. LBB conditions
7. Improvement suggestions
|
658 |
Beitrag zur numerischen Beschreibung des funktionellen Verhaltens von PiezoverbundmodulenKranz, Burkhard 12 June 2012 (has links)
Die Arbeit befasst sich mit der effizienten Simulation des funktionellen Verhaltens von Piezoverbundmodulen als Aktor oder Sensor zur Schwingungsbeeinflussung mechanischer Strukturen.
Ausgehend von einem FE-Modell werden über den Ansatz energetischer Äquivalenz die effektiven elektro-mechanischen Materialparameter ermittelt.
Zur Berücksichtigung im Inneren der Einheitszelle liegender Elektroden werden die elektrischen Randbedingungen der Homogenisierungslastfälle angepasst.
Die Homogenisierungslastfälle werden auch genutzt, um Phasenkonzentrationen für die Beanspruchungen der Verbundkomponenten zu ermitteln.
Diese Phasenkonzentrationen werden eingesetzt, um aus dem effektiven Gesamtmodell die Beanspruchungen der Komponenten zu extrahieren.
Zur dynamischen Modellbildung wird die Zustandsraumbeschreibung verwendet.
Die Überführung einer piezo-mechanischen FE-Diskretisierung in ein Zustandsraummodell gelingt mit der Betrachtung der mechanischen Freiheitsgrade als Zustandsvariablen.
Zur Abbildung der elektrischen Impedanz im Zustandsraum muss die elektrische Kapazitätsmatrix als Durchgangsmatrix einbezogen werden.
Die Reduktion des Zustandsraums basiert auf der modalen Superposition.
Die modale Transformationsbasis wird um Moden ergänzt, die die Verformung bei statischer elektrischer Erregung charakterisieren.
Die Zustandsraumbeschreibung wird sowohl für eine Potential- als auch für eine Ladungserregung ausgeführt.
Das Zustandsraummodell wird unter Verwendung von Filtermatrizen um Ausgangssignale für die mechanischen und elektrischen Beanspruchungsgrößen erweitert.
Dies gestattet eine Kopplung der Zustandsraummodelle mit den Beanspruchungsanalysen.
Die Anwendung der Berechnungsmethode wird am Beispiel der im SFB/TRR PT-PIESA entwickelten Piezo-Metall-Module demonstriert, die durch direkte Integration von piezokeramischen Basiselementen in Blechstrukturen gekennzeichnet sind.:1 Einleitung
2 Grundlagen
3 Stand der Forschung
4 Beanspruchungsermittlung für piezo-mechanische Verbunde
5 Zustandsraumbeschreibung piezo-mechanischer Systeme
6 Gesamtmodell
7 Zusammenfassung / This thesis deals with the efficient simulation of the functional behaviour of piezo composite modules for applications as actuators or sensors to influence vibrations of machine structures.
Based on a FE-discretisation the effective electro-mechanical material parameters of the piezo composite modules are determined with an ansatz of energetic equivalence.
To consider electrodes which are located inside the representative volume element the electrical boundary conditions of the load cases for homogenisation are adapted.
The load cases for homogenisation are also used to determine the phase concentrations (or fluctuation fields) of stress/strain and electric field/electric displacement field in the composite constituents.
These phase concentrations are required to extract stress and strain of the composite components based on the overall model with effective material parameters.
For dynamical modelling a state space representation is used.
The transformation of a FE-discretisation of the piezo-mechanical system into a state space model is possible by choosing the mechanical degree of freedom as state variables.
For consideration of the electrical impedance in the state space model the electrical stiffness respectively capacitance matrix has to incorporate as feedthrough matrix.
The dynamical model reduction of the state space model is based on modal superposition.
For the correct reproduction of the electrical impedance the modal transformation basis has to be amended by deformation modes which represent the deformation behaviour due to static electrical excitation at the electrodes.
The state space representation is built for potential and charge excitation.
The state space model is enhanced by filter matrices to incorporate output signals for stress/strain and also for electric field/electric displacement field.
This allows the coupling of the state space models with the stress analyses.
The application of the simulation method is demonstrated using the example of the piezo-metal-modules developed in the CRC/TR PT-PIESA (German: SFB/TRR PT-PIESA).
These piezo-metal-modules are characterised by direct integration of piezoceramic base elements in sheet metal structures.:1 Einleitung
2 Grundlagen
3 Stand der Forschung
4 Beanspruchungsermittlung für piezo-mechanische Verbunde
5 Zustandsraumbeschreibung piezo-mechanischer Systeme
6 Gesamtmodell
7 Zusammenfassung
|
659 |
A Thermodynamically Consistent Electro-Chemo-Hydro-Mechanical Model for Smart PolymersRossi, Marco 21 February 2020 (has links)
Smart polymers are stimuli-responsive materials that undergo reversible and large changes of the material properties as a consequence of small environmental variations. Their light weight, biocompatibility, adaptability, mechanical strength and environment-friendly properties make them suitable for a wide range of applications, such as actuators, sensors and energy transducers.
Despite their very interesting properties, there are still many problems which need to be solved. In particular, there is a high demand by the scientific community to develop advanced theoretical models which aim at understanding the complex and unclear phenomena occurring in smart polymers.
In the present thesis, an innovative multiphysics electro-chemo-hydro-mechanical (ECHM) model is formulated within the framework of continuum mechanics. The proposed model assumes the solvent-ion-polymer mixture as a continuum homogenized body and takes into account four different physical fields, namely: (i) the electrical field, (ii) the chemical field related to the ion transport, (iii) the chemical field related to the water/solvent transport, and (iv) the mechanical field within the framework of large deformations. Couplings terms are derived at the constitutive level among the involved physical fields and allow to model a key aspect of smart polymers, i.e. the capability of transducing energy from one form to another.
Reduced versions of the ECHM model are used to investigate, numerically and analytically, three particular problems involving smart polymers, namely: (i) the chemical reactions occurring at the interface between the polymer membrane and the electrodes of electrochemical cells, (ii) the electro-chemo-mechanical state of a single polymeric membrane within a stack of membranes, and (iii) the swelling/shrinking process of constrained and stressed polymer gels.
The performed investigation confirm that the ECHM model and its reduced versions are capable of describing the complex multiphysics behavior of smart polymers. The current research improves the theoretical knowledge concerning the behavior of smart polymers and gives further contributions in literature. Starting from the outcomes of the proposed research, many interesting extensions can be potentially developed in order to address very important topics as, for example, fatigue in polymers. / Smarte Polymere sind stimulierbare Materialien, die, verursacht durch die Änderung ihrer Umgebung, eine reversible und große Änderung ihrer materiellen Eigenschaften erfahren. Ihr leichtes Gewicht, ihre Biokompatibilität, ihr Anpassungsvermögen, ihre mechanische Beanspruchbarkeit und ihre umgebungsfreundlichen Eigenschaften machen sie attraktiv für weite Anwendungsbereiche, z. B. als Aktoren, Sensoren oder Energiewandler.
Trotz ihrer exzellenten Eigenschaften gibt es noch viele Probleme, die gelöst werden müssen. Insbesondere die Nachfrage nach fortgeschrittenen theoretischen Modellen mit dem Ziel die komplexen physikalischen Phänomene zu beschreiben, die in smarten Polymeren ablaufen, ist sehr hoch.
In der eingereichten Doktorarbeit, wird ein elektro-chemo-hydro-mechanisches (ECHM) Modell basierend auf der Kontinuumsmechanik vorgestellt. In dem dargelegten Modell wird die Mischung aus Lösungsmittel, Ionen und Polymer als homogenisiertes Kontinuum betrachtet, wobei vier verschiedene physikalische Felder berücksichtigt werden: (i) das elektrische Feld, (ii) das auf den Ionentransport bezogene chemische Feld (iii) das auf den Wasser- bzw. den Lösungsmitteltransport
bezogene chemische Feld und (iv) das mechanische Feld unter der Berücksichtigung von großen Deformationen. Kopplungsterme werden auf konstitutiver Ebene aus den beteiligten physikalischen Feldern abgeleitet. Die elektro-chemo-mechanische Kopplung erlaubt die Modellierung einer der wesentlichen Eigenschaften smarter Polymere, nämlich die Fähigkeit zur Umwandlung der verschiedenen Energieformen.
Drei spezielle Problemstellungen von smarten Polymeren, wurden numerisch und analytisch auf Grundlage reduzierter Varianten des ECHM-Modells untersucht: (i) die auftretenden chemischen Reaktionen an der materiellen Grenzfläche zwischen Polymermembran und den Elektroden der elektrochemischen Zelle, (ii) das elektro-chemo-mechanische Verhalten einer einzelnen Polymer-membran in einem Membranstapel und (iii) der Quellungs- bzw. Entquellprozess von vorgespannten Polymergelen.
Die durchgeführten Untersuchungen bestätigen die Anwendbarkeit des ECHM-Modells und seinen reduzierten Varianten zur Beschreibung des komplexen physikalischen Verhaltens von smarten Polymeren. Die dargelegte Forschung verbessert das theoretische Verständnis hinsichtlich des Verhaltens von smarten Polymeren und leistet einen Beitrag zum aktuellen Stand der Wissenschaft. Auf den Resultaten der dargelegten Forschung basierend, können viele interessante Erweiterungen gemacht werden, welche sich auf wichtige Themengebiete, wie z. B. die Ermüdung von Polymeren, beziehen.
|
660 |
Experimentelle und numerische Untersuchungen zur Analyse der umformtechnischen Herstellung metallischer BipolarplattenBauer, Alexander 14 August 2020 (has links)
Um die wirtschaftliche Relevanz von Polymerelektrolytmembran-Brennstoffzellen (PEM-FC) als alternatives Antriebskonzept zu stärken, befasst sich die vorliegende Arbeit mit der umformtechnischen Fertigung der metallischen Bipolarplatte als eine der benötigten Teilkomponenten. Bipolarplatten werden in hoher Stückzahl innerhalb von Brennstoffzellenstapeln benötigt und sind aufgrund der hohen geometrischen, physikalischen und chemischen Anforderungen einer der wesentlichen Kostentreiber. Zur Senkung der Produktions- und Stückkosten bei der Herstellung von Bipolarplatten liegt der Fokus der Arbeit darin einen Beitrag zur Lösung damit verbundener Herausforderungen zu leisten. Zunächst erfolgte dazu die Entwicklung eines schnellen und flexiblen numerischen Berechnungsmodells zum Tiefziehen eines 0,1 mm dicken aus 1.4404-Edelstahl gefertigten Vorversuchsmusters. Die Basis bildete ein Vergleich mehrerer Modellaufbauten in verschiedenen umformtechnischen FE-Programmen. Durch eine umfassende Materialcharakterisierung und die Verifikation mit experimentellen Versuchen sowie dem Einsatz eines daraufhin entwickelten Sicherheitsfaktors gelang die Auswahl des bestmöglich geeigneten Setups. Mit Hilfe des kalibrierten numerischen Berechnungsmodells konnte die Optimierung der Fertigung des Vorversuchsmusters und nachfolgend die Überführung in die Herstellung eines als mögliche Bipolarplatte funktionsfähigen Forschungsfunktionsmusters umgesetzt werden. Da die Qualität des Bauteils im wesentlichen Maße vom verwendeten Halbzeug abhängt, erfolgte anschließend die Analyse der Auswirkung bei der Verwendung verschiedener Gefügezustände des bereits vorab genutzten 1.4404-Edelstahls. Die durch die Größeneffekte in Wechselwirkung auftretenden Mechanismen bei der Umformung von Halbzeugen der Dicke 0,1 mm wurden mit einem breiten Spektrum von Analyseverfahren wie Röntgendiffraktometrie und Elektronenrückstreubeugung untersucht. Basierend auf den Ergebnissen erfolgte die Auswahl eines für die Fertigung metallischer Bipolarplatten verbesserten Halbzeugzustands, welcher dem aktuell eingesetzten Standard-Ausgangszustand widerspricht. Als finaler Forschungsgegenstand erfolgte der erstmalige Einsatz des Walzformverfahres zur Herstellung relevanter abgeschlossener Bipolarplatten-Kanalstrukturen. Die numerische und experimentelle Umsetzung und die darauf aufbauende Optimierung einer kontinuierlichen Bipolarplattenfertigung zeigt im experimentellen Maßstab ein hohes Potential für eine wirtschaftliche Umsetzung in der Serienfertigung. Die innerhalb der Arbeit erlangten Ergebnisse ermöglichen zusammen einen weiteren Schritt zur Steigerung der Wirtschaftlichkeit bei der Herstellung von Bipolarplatten und somit ferner von PEM-Brennstoffzellen. / To strengthen the economical relevance of polymer electrolyte membrane fuel cells (PEM-FC) as an alternative drive solution, this doctoral thesis deals with the manufacturing of metallic bipolar plates by forming. Bipolar plates are required in a high amount within fuel cell stacks and the enhanced geometrical, physical and chemical demands make them to one of the most costly parts. To decrease the production costs and the costs per unit, the purpose of the thesis is a contribution to finding a solution for the related challenges. At first, the development of a fast and flexible numerical calculation tool for the deep drawing of preliminary test samples made from 316L-foils with a thickness of 0.1 mm was conducted. The fundamentals were set through a comparison between multiple model setups within different finite-element programs which are specialized in forming operations. With the help of a comprehensive material characterization and the verification with experimental tests as well as the development of a safety factor, the most suitable model was chosen. With the calibrated numerical model the process of forming the preliminary test samples was optimized followed by the transfer of the findings to the manufacturing process of an enhanced test sample which includes all of the functionalities as they can be found within operable bipolar plates. As the quality of the manufactured parts essentially depends on the used semi-finished product, an evaluation of effects caused by variating microstructures from the previously used 316L stainless steel was implemented. The specific mechanisms which appear during the forming process of 0.1 mm metal foils and which were caused by size effects were characterized by a wide spectrum of analytical methods like X-ray diffraction and electron backscatter diffraction. Based on the results an optimized initial state of the semi-finished product was determined, which contradicts the state of the art that is currently being used for the forming of metallic bipolar plates. The final object of research was conducted with the first-time application of a roll-forming process to produce geometrical relevant closed bipolar plate channel contours. The numerical and experimental tests followed by an optimization of the continuous bipolar plate rolling show a high potential for an economical realization of a series production. The results gained from this thesis enable a further step towards an increase of economic efficiency in the production of metallic bipolar plates and further PEM fuel cells.
|
Page generated in 0.0939 seconds