• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 131
  • 39
  • 19
  • 15
  • 9
  • 8
  • 8
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 267
  • 57
  • 53
  • 38
  • 38
  • 36
  • 36
  • 33
  • 32
  • 29
  • 28
  • 28
  • 28
  • 24
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Association supramoléculaire à l'état solide des fullerènes C60 et C70 avec le centrohexaindane

Lachapelle, Virginie 09 1900 (has links)
Le fullerène C60, une molécule sphérique, et le C70, un analogue ellisoïde, sont des composés aromatiques convexes constitués exclusivement d'atomes de carbone. La nature aromatique de la surface de ces cages de carbone rend possible leur association à l'état solide avec d'autres molécules aromatiques de topologie complémentaire. En particulier, l'association des fullerènes avec des composés présentant des motifs concaves aromatiques, via une association de type concave-convexe, est favorable. En effet, les interactions π•••π de type concave-convexe sont amplifiées grâce à la complémentarité topologique des partenaires impliqués. Le centrohexaindane est un hydrocarbure non planaire rigide qui a été synthétisé pour la première fois en 1988 par Kuck et collaborateurs. Cette molécule possède quatre surfaces aromatiques concaves orientées dans une géométrie tétraédrique qui sont susceptibles d'interagir favorablement avec les fullerènes. Nous avons ainsi avec succès cocristallisé le centrohexaindane avec les fullerènes C60 et C70. Puis, nous avons étudié les assemblages à l'état solide entre le centrohexaindane et les fullerènes par l'analyse des structures résolues via diffraction des rayons X. Les surfaces concaves aromatiques du centrohexaindane se sont révélées être propices à une association avec les fullerènes C60 et C70 via des interactions π•••π de type concave-convexe, tel que prévu. En outre, nous avons découvert que les liaisons C-H situées à la périphérie du centrohexaindane prennent part à une multitude de contacts C-H•••π avec les molécules de fullerène. Les échantillons de cocristaux composés de centrohexaindane et de fullerène ont aussi été caractérisés par diffraction de poudre des rayons X et par analyse thermogravimétrique dans le but d'en évaluer l'homogénéité. / Spherical fullerene C60 and C70, its ellipsoidal analogue, are convex aromatic compounds consisting exclusively of carbon atoms. The aromatic nature of the surface of these carbon cages enables their solid-state association with aromatic molecules that have complementary shapes. In particular, the association of fullerenes with compounds that have concave aromatic units, by a concave-convex type of association, is favored. Indeed, concave-convex π•••π interactions are enhanced because of the topological complementarity of the partners. Centrohexaindane is a rigid nonplanar hydrocardon that was first synthesized in 1988 by Kuck and coworkers. It contains four concave aromatic surfaces, oriented in a tetrahedral geometry, that are likely to interact favorably with fullerenes. To study this phenomenon, we successfully cocrystallized centrohexaindane with fullerenes C60 and C70. We then resolved the structure of the resulting solid-state assemblies by X-ray diffraction. The concave aromatic surfaces of centrohexaindane proved to be conducive for an association with fullerenes involving concave-convex π•••π interactions, as expected. In addition, we found that C-H bonds located at the periphery of centrohexaindane participate in a variety of C-H•••π contacts with the fullerene partners. Samples of cocrystals containing centrohexaindane and fullerene were also characterized using powder X-ray diffraction and thermogravimetric analysis in order to assess their homogeneity.
252

Dynamique et contrôle de systèmes quantiques ouverts / Dynamics and control of open quantum systems

Chenel, Aurélie 16 July 2014 (has links)
L'étude des effets quantiques, comme les cohérences quantiques, et leur exploitation en contrôle par impulsion laser constituent encore un défi numérique pour les systèmes de grande taille. Pour réduire la dimensionnalité du problème, la dynamique dissipative se focalise sur un sous-espace quantique dénommé 'système', qui inclut les degrés de liberté les plus importants. Le système est couplé à un bain thermique d'oscillateurs harmoniques. L'outil essentiel de la dynamique dissipative est la densité spectrale du bain, qui contient toutes les informations sur le bain et sur l'interaction entre le système et le bain. Plusieurs stratégies complémentaires existent. Nous adoptons une équation maîtresse quantique non-markovienne pour décrire l'évolution de la matrice densité associée au système. Cette approche, développée par C. Meier et D.J. Tannor, est perturbative en fonction du couplage entre le système et le bain, mais pas en fonction de l'interaction avec un champ laser. Le but est de confronter cette méthodologie à des systèmes réalistes calibrés par des calculs de structure électronique ab initio. Une première étude porte sur la modélisation du transfert d'électron ultrarapide à une hétérojonction oligothiophène-fullerène, présente dans des cellules photovoltaïques organiques. La description du problème en fonction d'une coordonnée brownienne permet de contourner la limitation du régime perturbatif. Le transfert de charge est plus rapide mais moins complet lorsque la distance R entre les fragments oligothiophène et fullerène augmente. La méthode de dynamique quantique décrite ci-dessus est ensuite combinée à la Théorie du Contrôle Optimal (OCT), et appliquée au contrôle d'une isomérisation, le réarrangement de Cope, dans le contexte des réactions de Diels-Alder. La prise en compte de la dissipation dès l'étape d'optimisation du champ permet à l'algorithme de contrôle de contrer la décohérence induite par l'environnement et conduit à un meilleur rendement. La comparaison de modèles à une et deux dimensions montre que le contrôle trouve un mécanisme adapté au modèle utilisé. En deux dimensions, il agit activement sur les deux coordonnées du modèle. En une dimension, le décohérence est minimisée par une accélération du passage par les états délocalisés situés au-dessus de la barrière de potentiel. / The study of quantum effects as quantum coherences and their exploitation for control by laser pulse are still a numerical challenge in big systems. To reduce the dimensionality of the problem, dissipative dynamics focuses on a quantum subspace called 'system', that includes the most important degrees of freedom. The system is coupled to a thermal bath made of harmonic oscillators. The essential tool of dissipative dynamics is the spectral density of the bath, that contains all the information about the bath and the interaction between the system and the bath. Several strategies coexist and complement one another. We adopt a non-Markovian quantum master equation for the evolution of the density matrix associated to the system. This approach, developped by C. Meier and D.J. Tannor, is perturbative in the system-bath coupling, but not in the interaction with a laser field. Our goal is to confront this methodology to realistic systems calibrated by ab initio electronic structure calculations. We first study the ultrafast electron transfer modelling an oligothiophene-fullerene heterojunction, found in organic photovoltaic cells. We present a way of overcoming the limitation of the perturbative regime, using a Brownian oscillator representation to describe the problem. Charge transfer is faster but less complete when the R distance between oligothiophene and fullerene fragments increases. Then we combine the quantum dynamical method described above with the Optimal Control Theory (OCT) method. An application is the control of an isomerization, the Cope rearrangement, in the context of Diels-Alder reactions. Including the dissipation at the design stage of the field enables the control algorithm to react on the environment-induced decoherence and to lead to a better yield. Comparing one and two-dimension models shows that control finds a mechanism adapted to the model. In two dimensions, it actively acts on the two coordinates of the model. In one dimension, decoherence is minimized by accelerating the way through the delocalized states located above the potential energy barrier.
253

Simulation der Nanostrukturbildung in Alkali-dotierten Fullerenschichten / Simulation of nanostructure formation in alkali-doped fullerene layers

Touzik, Andrei 07 March 2004 (has links) (PDF)
This work presents theoretical background for the investigation of nanostructure formation in alkali-metal doped fullerene layers. A number of computational methods are used to describe structural transformation in the fullerene layer. They include tight-binding molecular dynamics, empirical molecular dynamics, Monte-Carlo calculations as well as other methods. The doped fullerene layers show the highest superconducting critical temperature among organic superconductors. A new electrochemical method of synthesis of potassium and rubidium fullerides has been recently developed by Professor Dunsch and coworkers in the department of electrochemistry and conductive polymers at IFW Dresden. The process of electrochemical doping is accompanied by several side effects, and one of them is nanostructure formation at the surface of the fullerene layer. In the present work an explanation is given for the nanostructure formation observed recently by scanning tunnel microscopy. The corresponding model is based on the concept of spontaneous phase separation that has been realized by kinetic Monte Carlo calculations. These calculations predict instability of initially homogeneous alkali-doped fullerene layers. Due to the significant gap in the Madelung energy formation of an alkali-poor and an alkali-reach phase is expected. The results of the Monte Carlo simulations point out that the particle size of the corresponding phases remains in the nanometer range. Interpretation of experimental data for metal deposition on fullerene substrates can be easily given in the framework of the phase separation concept as well. Metal clusters of the size order 50 to 100 nm emerge in course of electrochemical copper deposition on alkali-doped fullerene layers. The electrically conductive paths through the insulating fullerene layer are probably responsible for the inhomogeneous copper deposition under electrochemical conditions. A novel computer program has been developed in course of this work, which is designed as a distributed application. It can be used for diverse conventional and kinetic Monte Carlo calculations. / Die vorliegende Arbeit präsentiert theoretische Arbeiten, die das Ziel haben, die Nanostrukturbildung in dotierten Fullerenschichten zu verstehen. Diverse Rechenmethoden wurden verwendet, um die strukturellen Umwandlungen in der Fullerenschicht zu beschreiben. Die Tight-Binding-Molekulardynamik, die empirische Molekulardynamik und Monte-Carlo-Berechnungen sowie andere Methoden sind eingeschlossen. Die dotierten Fullerenschichten zeigen die höchste supraleitende kritische Temperatur unter den organischen Supraleitern. Eine neue elektrochemische Methode der Synthese von Kalium- und Rubidium-Fulleriden wurde vor kurzem von Professor Dunsch und Mitarbeitern in der Abteilung Elektrochemie und leitfähigen Polymere am IFW Dresden entwickelt. Der Prozess der elektrochemischen Dotierung wird von mehreren Nebenprozessen begleitet, und einer davon ist die Nanostrukturbildung an der Oberfäche der Fullerenschicht. In der vorliegenden Arbeit wird eine Erklärung für die Herausbildung der Nanostrukturen, die mit Hilfe von Rastertunnelmikroskopie beobachtet wurden, gegeben. Das entsprechende Modell basiert auf dem Konzept der spontanen Phasenentmischung und wird durch kinetische Monte-Carlo-Simulationen realisiert. Diese Simulationen sagen Instabilität der zunächst homogenen Alkali-dotierten Fullerenschichten voraus. Wegen des wesentlichen Unterschieds in der Madelungenergie ist die Herausbildung einer Alkalimetall-armen und einer Alkalimetall-reichen Phase zu erwarten. Die Ergebnisse der Monte-Carlo-Simulationen weisen darauf hin, dass die Teilchengröße der entsprechenden Phasen im Nanometer-Bereich bleibt. Im Rahmen des Phasenentmischungskonzepts können auch experimentelle Daten zur Metallabscheidung auf Fullerensubstraten problemlos interpretiert werden. Bei elektrochemischer Kupferabscheidung auf Alkali-dotierten Fullerenschichten entstehen Metallcluster der Größenordnung von 50 bis 100 nm. Die elektrisch leitfähige Pfade, die in einer isolierenden Matrix auftreten, sind wahrscheinlich für die ungleichmäßige Kupferabscheidung unter elektrochemischen Bedingungen verantwortlich. Ein neuartiges Computerprogramm wurde im Rahmen dieser Arbeit entwickelt, das als eine verteilte Anwendung entworfen ist. Damit können diverse konventionelle und kinetische Monte-Carlo-Simulationen durchgeführt werden.
254

Präzisionsmassebestimmung einzelner Partikel im Femtogrammbereich und Anwendungen in der Oberflächenphysik

Illemann, Jens 03 August 2000 (has links) (PDF)
In this work, a new method for mass determination of single low-charged particles in the sub-picogram regime is developed. It opens applications to chemical physics and surface science via determination of growth rates. The method combines the well-known electrodynamic quadrupole ion trap in a UHV-chamber and fourier transformation of scattered light. The achieved mass resolution of down to $10^{-4}$ at 100 fg mass on a time scale of ten seconds allows a resolution of a few percent of the mass of an adsorbed monolayer and to determine growth rates down to one molecule per second on a time scale of one day. The observation of temperature dependent sticking coefficients results in the measures of the energy of an adsorption barrier. Observation of discrete steps in the rate gives information about the density of molecules in an ordered layer. Temperature dependent desorption data gives the binding energy. The dependence of these observables on the controllable curvature and charge of the substrate's surface is measurable. The first part of this dissertation consists of a description of the common theory of the quadrupole ion trap with the completion of not widely known, newly introduced, contributions to the trapping potential. These contributions lead to systematic shifts in the mass determination. In particular the influence of the inhomogenity of the electrical field, that is used for compensating the gravitational force, is investigated analytically and corroborated experimentally. It is assumed, that the particle's finite size effects in a further shift. In the experimental part initial demonstrative measurements are presented: the time-resolved adsorption of fullerene, anthracene and NO on silica spheres with 500nm diameter has been measured at room temperature. In addition the secondary electron yield of in-situ prepared particles during irradiation with monoenergetic electrons has been determined by analyzing the distribution of change of the number of elementary charges by single events of charging.
255

Studies on Organic Solar Cells Composed of Fullerenes and Zinc-Phthalocyanines

Pfützner, Steffen 29 February 2012 (has links) (PDF)
This work deals with the investigation and research on organic solar cells. In the first part of this work we focus on the spectroscopical and electrical characterization of the acceptor molecule and fullerene derivative C70. In combination with the donor molecule zinc-phthalocyanines (ZnPc) we investigate C70 in flat and bulk heterojunction solar cells and compare the results with C60 as acceptor. The stronger and spectral broader thin film absorption of C70 and thus enhanced contribution to photocurrent as well as the similar electrical properties with respect to C60 result in higher power conversion efficiencies. In the second part, modifications of the blend layer morphology of a C60:ZnPc bulk heterojunction solar cell are considered. Using substrate heating during co-deposition of acceptor and donor, the molecular arrangement is influenced. Due to the additional thermal energy at the substrate the blend layer morphology is improved and optimized for a substrate heating temperature of 110°C. With transmission electron microscopy, molecular phase separation of C60 and ZnPc and the formation of polycrystalline ZnPc domains in a lateral dimension on the order of 50 nm are detected. Mobility measurements show an increased ZnPc hole mobility in the heated blend layer. The improved charge carrier percolation and transport are confirmed by the enhanced performance of such bulk heterojunction solar cells. Furthermore, we show a strong influence of the pre-deposited p-doped hole transport layer on the molecular phase separation. In the third part, we study the dependency of the open circuit voltage on the mixing ratio of C60 and ZnPc in bulk heterojunction solar cells. For the different mixing ratios we determine the ionization potentials of C60 and ZnPc. Over the various C60:ZnPc blends from 1:3 - 6:1, the ionization potentials change linearly, but different from each other and exhibit a correlation to the change in open circuit voltage. Depending on the mixing ratio an intrinsic ZnPc layer adjacent to the blend leads to injection barriers which result in reduced open circuit voltage. We hence determine a voltage loss dependent on ZnPc layer thickness and barrier height. / Diese Arbeit beschäftigt sich mit der Untersuchung und Forschung an organischen Solarzellen und gliedert sich in drei Teile. Im ersten Teil wird auf die spektroskopische und elektrische Charakerisierung des Fullerenderivates C70 eingegangen, welches als Akzeptormolekül in Kombination mit dem Donormolekül Zink-Phthalocyanin (ZnPc) in Flach- und Mischschichtheteroübergänge organischer Solarzellen Anwendung findet. Dabei wird das Molekül mit dem bisherigen Standard Akzeptormolekül C60 verglichen. Die deutlich stärkere und spektral verbreiterte Dünnschichtabsorption von C70, sowie die vergleichbaren elektrischen Eigenschaften zu C60 führen zu einer Effizienzsteigerung in den Flach- und Mischschichtsolarzellen, welche maßgeblich durch die Erhöhung des Kurzschlussstromes erreicht wird. Im zweiten Teil widmet sich diese Arbeit der Morphologiemodifizierung des Mischschichtsystems C60:ZnPc, welche durch Heizen des Substrates während der Mischverdampfung von Akzeptor- und Donormolekülen in organischen Mischschichtsolarzellen erreicht werden kann. Es wird gezeigt, dass mit der zusätzlichen Zufuhr thermischer Energie über das Substrat die Anordnung der Moleküle in der Mischschicht beeinflusst werden kann. Unter Verwendung eines Transmissionselektronmikroskops lässt sich für die Mischschicht mit der optimalen Solarzellensubstrattemperatur von 110°C eine Phasenseparation von C60 und ZnPc unter Ausbildung von polykristallinen ZnPc Domänen in der lateralen Dimension von 50 nm nachweisen. Mit zusätzlichen Messungen der Ladungsträgerbeweglichkeiten des Mischschichtsystems kann die verbesserte Perkolation und Löcherbeweglichkeit von ZnPc für die Steigerung der Performance geheizter Solarzellen bestätigt werden. Desweiteren wird gezeigt, dass die Ausbildung einer Phasenseparation sehr stark von der darunter liegenden Molekülschicht z.B. der p-dotierte Löchertransportschicht abhängig ist. Im letzten und dritten Teil geht die Arbeit auf die Abhängigkeit der Klemmspannung von der Mischschichtkonzentration von C60 und ZnPc ein. Für die unterschiedlichen Volumenkonzentrationen von C60:ZnPc zwishen 6:1 und 1:6 kann gezeigt werden, dass sich die Ionisationspotentiale von C60 und ZnPc über einen großen Bereich linear und voneinander verschieden verändern und mit den absoluten Änderung der offenenen Klemmspannung korrelieren. Desweiteren wird gezeigt, dass sich durch eine zusätzlich an die Mischschicht angrenzende intrinsische ZnPc Schicht, abhängig von der Mischschichtkonzentration, Injektionsbarrieren ausbilden, welche nachweislich einen Spannungsverlust bedingen. Dabei kann gezeigt werden, dass der Spannungsverlust mit der ZnPc Schichtdicke und der Barrierenhöhe korreliert.
256

Etude et développement de points mémoires résistifs polymères pour les architectures Cross-Bar / Development and Study of Organic Polymer Resistive Memories For Crossbar Architectures

Charbonneau, Micaël 19 January 2012 (has links)
Ces dix dernières années, les technologies de stockage non-volatile Flash ont joué un rôle majeur dans le développement des appareils électroniques mobiles et multimedia (MP3, Smartphone, clés USB, ordinateurs ultraportables…). Afin d’améliorer davantage les performances, augmenter les capacités et diminuer les coûts de fabrication, de nouvelles solutions technologiques sont aujourd’hui étudiées pour pouvoir compléter ou remplacer la technologie Flash. Citées par l’ITRS, les mémoires résistives polymères présentent des caractéristiques très prometteuses : procédés de fabrication à faible coût et possibilité d’intégration haute densité au dessus des niveaux d’interconnexions CMOS ou sur substrat souple. Ce travail de thèse a été consacré au développement et à l'étude des mémoires résistifs organiques à base de polymère de poly-méthyl-méthacrylate (PMMA) et de molécules de fullerènes (C60). Trois axes de recherche ont été menés en parallèle: le développement et la caractérisation physico-chimique de matériaux composites, l’intégration du matériau organique dans des structures de test spécifiques et la caractérisation détaillée du fonctionnement électrique des dispositifs et des performances mémoires. / Over the past decade, non-volatile Flash storage technologies have played a major role in the development of mobile electronics and multimedia (MP3, Smartphone, USB, ultraportable computers ...). To further enhance performances, increase the capacity and reduce manufacturing costs, new technological solutions are now studied to provide complementary solutions or replace Flash technology. Cited by ITRS, the polymer resistive memories present very promising characteristics: low cost processing and ability for integration at high densities above CMOS interconnections or on flexible substrate. This PhD specifically focused on the development and study of composite material made of Poly-Methyl-Methacrylate (PMMA) polymer resist doped with C60 fullerene molecules. Studies were carried out on three different axes in parallel: Composite materials development & characterization, integration of the organic material in specific test structure and advanced devices and finally detailed electrical characterization of memory cells and performances analysis.
257

Cu(I) catalyzed alkyne-azide cycloaddition as a synthetic tool for the preparation of complex C60 derivatives / La cycloaddition alcyne-azoture catalysée au cuivre (I) comme outil synthétique pour l'élaboration de dérivés complexe du C60

Vartanian, Maida 05 January 2012 (has links)
La présente thèse décrit la synthèse de briques de base de fullerènes pour la préparation de dispositifs moléculaires photoactifs combinant C60 et porphyrines. La cycloaddition alcyne-azoture catalysée au cuivre (I) a été utilisée comme outil de synthèse pour la préparation des dérivés C60 complexes.L’utilité synthétique de synthons C60 a été montrée avec la préparation d’édifices moléculaires complexes présentant des propriétés spécifiques pour diverses applications. Ainsi, un système photoactif flexible combinant C60 et porphyrine a été synthétisé. Cependant la flexibilité de l’espaceur liant les sous-unités de ce composé conduit à des variations de structurales importantes et complique ainsi l’analyse des études photophysiques.Dans ce contexte, nous nous sommes proposé dans une première partie de la présente thèse de parfaitement contrôler l’orientation et la distance des différentes sous-unités au sein de systèmes C60-donneurs. Afin de répondre à ce besoin, nous avons construit une brique de base de C60 rigide ayant un groupe azoture aromatique. Ainsi, la réaction « click » avec un phénylacétylène conjugué au groupement donneur conduit à un espaceur rigide entre les deux sous-unités.La deuxième partie de ce travail a été consacrée à la synthèse d’hexa-adduits du C60 portant différents groupements fonctionnels. Une méthode de synthèse permettant de préparer des hexa-adduits du C60 fonctionnalisés a été mise au point au laboratoire.Cette stratégie a été modifiée et des composés de C60 comportant dix fonctions azotures et une fonction alcyne protégée ont été synthétisés; dans ce cas il est possible d’introduire dans un premier temps par une réaction click dix groupes fonctionnels. Et dans un second temps; après déprotection de la fonction alcyne, une seconde réaction de click permet alors de greffer un fonctionnel différent. / The present PhD thesis manuscript is focused on the use of fullerene building blocks for the preparation of photoactive molecular devices combining C60 and porphyrins. Cu(I) Catalyzed alkyne-azide cycloaddition was used as a synthetic tool for the preparation of complex C60 derivatives. Specifically, in the first part (Chapter II-B), a flexible fullerene-porphyrin triad has been developed and the photophysical studies were performed. The flexible linker between the fullerene core and the azide groups prevented any conformational control on the relative orientation and distance between the two photoactive subunits connected together. This prompted the development of an analogous building block in which the azide unit is directly connected to the bridging phenyl ring (Chapter II-C). In this way, the click reaction with porphyrin-alkyne derivatives give access to hybrid systems with a controlled relative orientation of the two moieties. This is of fundamental importance for a better understanding of the structural parameters affecting the electron and/or energy transfer kinetic in such dyads.In the second part (Chapter III), a fullerene hexaadduct scaffold is used to build up sophisticated multiporphyrin systems for various applications. The preparation of these multi-chromophoric ensembles relies on the click-click approach developed in our group.
258

Auto-assemblage de fullerènes C60 sur surfaces d'oxyde de silicium et d'or fonctionnalisées NH2

Delafosse, Gregory 16 December 2011 (has links)
Au cours de ce travail nous avons étudié la réalisation de couches moléculaires d’accroche terminées amine. Sur l’oxyde de silicium l’aminopropyletriméthoxysilane (APTMS) a été déposé à partir d’une solution, et via une méthode originale par voie sèche qui nous a permis de mettre en évidence les temps caractéristiques de greffage et d’organisation de la couche d’APTMS. Sur l’or, les monocouches d’aminoéthanethiol (AET) et d’aminothiophénol (ATP) ont été réalisées à partir d’une solution. Nous avons ensuite étudié les aspects structuraux et cinétiques du greffage des fullerènes C60 sur de telles couches d’accroche, constituées de terminaisons amines soit sur toute la surface soit en des zones isolées (couches binaires). Les techniques de spectroscopie UV-Visible, IRTF, Raman, et XPS ont permis d’observer le greffage des C60 sur les couches aminées. La spectroscopie Raman en mode exalté (SERS) a mis en lumière que les molécules d’ATP étaient plus inclinées après le greffage à reflux des C60. Les analyses des diverses couches à l’échelle moléculaire ont été menées par microscopie à sondes locales (AFM, STM), et les mesures électriques réalisées sur or à l’aide de la pointe STM ont montré le caractère isolant de la couche d’accroche seule et un gap proche de celui du C60 après greffage des fullerènes. Elles ont également mis en évidence que le C60 était greffé sélectivement sur les zones terminées amines des couches d’accroche binaires. Enfin, une application potentielle des couches de C60 étant les mémoires moléculaires, les propriétés électriques des diverses couches réalisées ont été mesurées à l’aide de contacts électriques évaporés. / In this work we studied the preparation of sticking amine- terminated molecular layers. On silicon dioxide, 3-aminopropyltrimethoxysilane (APTMS) was de- posited from a solution, and using an original dry method that allowed us to determine time constants of APTMS layer grafting and organization. On gold surfaces, monolayers of aminoethanethiol (AET) and aminothiophenol (ATP) molecules were prepared from a solution. Then, we studied structural and kinetic aspects of ullerene C60 grafting on such sticking layers, terminated by amines either all over the surface or on isolated areas (binary layers). UV-visible, FTIR, Raman and XPS spectroscopy techniques enabled to observe that C60 was grafted on the amine-terminated layers. Exalted Raman spec- troscopy (SERS) revealed ATP molecules were more tilted after C60 grafting under reflux. Analyses of all the layers were made at a molecular level by local probe microscopy (AFM, STM), and electrical measurements performed on gold using the STM tip showed the in- sulating nature of the sticking layer whereas a gap close to that of C60 appeared after grafting of fullerenes. They also highlighted that C60 was selectively grafted on amine- terminated zones within binary sticking layers. At last, one of potential applications of C60 layers being molecular memory cells, electrical properties of the various studied layers were measured through evaporated electrical contact pads.
259

Präzisionsmassebestimmung einzelner Partikel im Femtogrammbereich und Anwendungen in der Oberflächenphysik

Illemann, Jens 26 July 2000 (has links)
In this work, a new method for mass determination of single low-charged particles in the sub-picogram regime is developed. It opens applications to chemical physics and surface science via determination of growth rates. The method combines the well-known electrodynamic quadrupole ion trap in a UHV-chamber and fourier transformation of scattered light. The achieved mass resolution of down to $10^{-4}$ at 100 fg mass on a time scale of ten seconds allows a resolution of a few percent of the mass of an adsorbed monolayer and to determine growth rates down to one molecule per second on a time scale of one day. The observation of temperature dependent sticking coefficients results in the measures of the energy of an adsorption barrier. Observation of discrete steps in the rate gives information about the density of molecules in an ordered layer. Temperature dependent desorption data gives the binding energy. The dependence of these observables on the controllable curvature and charge of the substrate's surface is measurable. The first part of this dissertation consists of a description of the common theory of the quadrupole ion trap with the completion of not widely known, newly introduced, contributions to the trapping potential. These contributions lead to systematic shifts in the mass determination. In particular the influence of the inhomogenity of the electrical field, that is used for compensating the gravitational force, is investigated analytically and corroborated experimentally. It is assumed, that the particle's finite size effects in a further shift. In the experimental part initial demonstrative measurements are presented: the time-resolved adsorption of fullerene, anthracene and NO on silica spheres with 500nm diameter has been measured at room temperature. In addition the secondary electron yield of in-situ prepared particles during irradiation with monoenergetic electrons has been determined by analyzing the distribution of change of the number of elementary charges by single events of charging.
260

Studies on Organic Solar Cells Composed of Fullerenes and Zinc-Phthalocyanines

Pfützner, Steffen 30 January 2012 (has links)
This work deals with the investigation and research on organic solar cells. In the first part of this work we focus on the spectroscopical and electrical characterization of the acceptor molecule and fullerene derivative C70. In combination with the donor molecule zinc-phthalocyanines (ZnPc) we investigate C70 in flat and bulk heterojunction solar cells and compare the results with C60 as acceptor. The stronger and spectral broader thin film absorption of C70 and thus enhanced contribution to photocurrent as well as the similar electrical properties with respect to C60 result in higher power conversion efficiencies. In the second part, modifications of the blend layer morphology of a C60:ZnPc bulk heterojunction solar cell are considered. Using substrate heating during co-deposition of acceptor and donor, the molecular arrangement is influenced. Due to the additional thermal energy at the substrate the blend layer morphology is improved and optimized for a substrate heating temperature of 110°C. With transmission electron microscopy, molecular phase separation of C60 and ZnPc and the formation of polycrystalline ZnPc domains in a lateral dimension on the order of 50 nm are detected. Mobility measurements show an increased ZnPc hole mobility in the heated blend layer. The improved charge carrier percolation and transport are confirmed by the enhanced performance of such bulk heterojunction solar cells. Furthermore, we show a strong influence of the pre-deposited p-doped hole transport layer on the molecular phase separation. In the third part, we study the dependency of the open circuit voltage on the mixing ratio of C60 and ZnPc in bulk heterojunction solar cells. For the different mixing ratios we determine the ionization potentials of C60 and ZnPc. Over the various C60:ZnPc blends from 1:3 - 6:1, the ionization potentials change linearly, but different from each other and exhibit a correlation to the change in open circuit voltage. Depending on the mixing ratio an intrinsic ZnPc layer adjacent to the blend leads to injection barriers which result in reduced open circuit voltage. We hence determine a voltage loss dependent on ZnPc layer thickness and barrier height.:Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 15 2 History, Fundamentals, and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Photovoltaic principle and organic solar cells . . . . . . . . . . . . . . . . . ... . . 42 2.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 61 3 Materials & Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63 3.1 Organic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63 3.1.1 Standard photoactive materials . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63 3.1.2 Transport materials and dopants . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . 67 3.1.3 Material purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2 Sample preparation and vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . .. . 70 3.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70 3.2.2 Vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70 3.2.3 Substrates and layer stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 73 3.3 Solar cell characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 77 3.3.1 J(V)-measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.3.2 EQE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.4 Further characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79 3.4.1 UPS and XPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79 3.4.2 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 81 3.4.3 AFM, SEM, TEM, and WAXRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.4.4 Optical Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.5 Simulation and modeling software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.1 Optical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.2 Electrical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4 Results: C70 as acceptor molecule for organic solar cells . . . . . . . . . . . . . . 85 4.1 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 Mobility measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 88 4.3 Ultraviolet photoelectron spectroscopy . . . . . . . . . . . . . . . . . . . . . . .. . . 89 4.4 p-i-i flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 90 4.4.1 Di-NPD/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . 90 4.4.2 ZnPc/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . 91 4.5 p-i-i bulk heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.5.1 p-i-i mixed C60:C70:ZnPc bulk heterojunction solar cell . . . . . . . . . . . 99 4.6 Outlook: fullerene C84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 101 5 Results: Bulk heterojunction solar cells deposited on heated substrates . 103 5.1 150 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . 103 5.2 60 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . . 107 5.2.1 AFM and SEM measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.2.2 Absorption measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.2.3 X-Ray (WAXRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113 5.2.4 TEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 116 5.2.5 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 119 5.2.6 C70:ZnPc m-i-p bulk-heterojunctions . . . . . . . . . . . . . . . . . . . . . . .. . 121 5.3 p-i-i bulk heterojunction solar cells deposited at 110°C . . . . . . . . . . . . 124 5.3.1 Influence of sublayer on blend layer morphology . . . . . . . . . . . . . . . . 128 6 Results: On the influence of Voc in p-i-i bulk heterojunction solar cells . . 137 6.1 Dependency of Voc on C60:ZnPc mixing ratio . . . . . . . . . . . . . . . . . . . . 137 6.2 Influence of different hole transport layers on C60:ZnPc . . . . . . . . . .. . 140 6.2.1 Red and blue illumination measurements . . . . . . . . . . . . . . . . . . . . . . 143 6.2.2 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.2.3 UPS measurements for different C60:ZnPc mixing ratios . . . . . . . . .. 148 6.3 Influence of thin ZnPc and C70 interlayers on Voc . . . . . . . . . . . . . . .. . 152 6.3.1 UPS measurements of blend/ZnPc interfaces . . . . . . . . . . . . . . . . . . . 155 6.3.2 Blend/ZnPc injection barrier: experiment and simulation . . . . . . . . . . 158 7 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 / Diese Arbeit beschäftigt sich mit der Untersuchung und Forschung an organischen Solarzellen und gliedert sich in drei Teile. Im ersten Teil wird auf die spektroskopische und elektrische Charakerisierung des Fullerenderivates C70 eingegangen, welches als Akzeptormolekül in Kombination mit dem Donormolekül Zink-Phthalocyanin (ZnPc) in Flach- und Mischschichtheteroübergänge organischer Solarzellen Anwendung findet. Dabei wird das Molekül mit dem bisherigen Standard Akzeptormolekül C60 verglichen. Die deutlich stärkere und spektral verbreiterte Dünnschichtabsorption von C70, sowie die vergleichbaren elektrischen Eigenschaften zu C60 führen zu einer Effizienzsteigerung in den Flach- und Mischschichtsolarzellen, welche maßgeblich durch die Erhöhung des Kurzschlussstromes erreicht wird. Im zweiten Teil widmet sich diese Arbeit der Morphologiemodifizierung des Mischschichtsystems C60:ZnPc, welche durch Heizen des Substrates während der Mischverdampfung von Akzeptor- und Donormolekülen in organischen Mischschichtsolarzellen erreicht werden kann. Es wird gezeigt, dass mit der zusätzlichen Zufuhr thermischer Energie über das Substrat die Anordnung der Moleküle in der Mischschicht beeinflusst werden kann. Unter Verwendung eines Transmissionselektronmikroskops lässt sich für die Mischschicht mit der optimalen Solarzellensubstrattemperatur von 110°C eine Phasenseparation von C60 und ZnPc unter Ausbildung von polykristallinen ZnPc Domänen in der lateralen Dimension von 50 nm nachweisen. Mit zusätzlichen Messungen der Ladungsträgerbeweglichkeiten des Mischschichtsystems kann die verbesserte Perkolation und Löcherbeweglichkeit von ZnPc für die Steigerung der Performance geheizter Solarzellen bestätigt werden. Desweiteren wird gezeigt, dass die Ausbildung einer Phasenseparation sehr stark von der darunter liegenden Molekülschicht z.B. der p-dotierte Löchertransportschicht abhängig ist. Im letzten und dritten Teil geht die Arbeit auf die Abhängigkeit der Klemmspannung von der Mischschichtkonzentration von C60 und ZnPc ein. Für die unterschiedlichen Volumenkonzentrationen von C60:ZnPc zwishen 6:1 und 1:6 kann gezeigt werden, dass sich die Ionisationspotentiale von C60 und ZnPc über einen großen Bereich linear und voneinander verschieden verändern und mit den absoluten Änderung der offenenen Klemmspannung korrelieren. Desweiteren wird gezeigt, dass sich durch eine zusätzlich an die Mischschicht angrenzende intrinsische ZnPc Schicht, abhängig von der Mischschichtkonzentration, Injektionsbarrieren ausbilden, welche nachweislich einen Spannungsverlust bedingen. Dabei kann gezeigt werden, dass der Spannungsverlust mit der ZnPc Schichtdicke und der Barrierenhöhe korreliert.:Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 15 2 History, Fundamentals, and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Photovoltaic principle and organic solar cells . . . . . . . . . . . . . . . . . ... . . 42 2.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 61 3 Materials & Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63 3.1 Organic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63 3.1.1 Standard photoactive materials . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63 3.1.2 Transport materials and dopants . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . 67 3.1.3 Material purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2 Sample preparation and vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . .. . 70 3.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70 3.2.2 Vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70 3.2.3 Substrates and layer stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 73 3.3 Solar cell characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 77 3.3.1 J(V)-measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.3.2 EQE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.4 Further characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79 3.4.1 UPS and XPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79 3.4.2 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 81 3.4.3 AFM, SEM, TEM, and WAXRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.4.4 Optical Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.5 Simulation and modeling software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.1 Optical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.2 Electrical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4 Results: C70 as acceptor molecule for organic solar cells . . . . . . . . . . . . . . 85 4.1 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 Mobility measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 88 4.3 Ultraviolet photoelectron spectroscopy . . . . . . . . . . . . . . . . . . . . . . .. . . 89 4.4 p-i-i flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 90 4.4.1 Di-NPD/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . 90 4.4.2 ZnPc/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . 91 4.5 p-i-i bulk heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.5.1 p-i-i mixed C60:C70:ZnPc bulk heterojunction solar cell . . . . . . . . . . . 99 4.6 Outlook: fullerene C84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 101 5 Results: Bulk heterojunction solar cells deposited on heated substrates . 103 5.1 150 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . 103 5.2 60 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . . 107 5.2.1 AFM and SEM measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.2.2 Absorption measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.2.3 X-Ray (WAXRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113 5.2.4 TEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 116 5.2.5 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 119 5.2.6 C70:ZnPc m-i-p bulk-heterojunctions . . . . . . . . . . . . . . . . . . . . . . .. . 121 5.3 p-i-i bulk heterojunction solar cells deposited at 110°C . . . . . . . . . . . . 124 5.3.1 Influence of sublayer on blend layer morphology . . . . . . . . . . . . . . . . 128 6 Results: On the influence of Voc in p-i-i bulk heterojunction solar cells . . 137 6.1 Dependency of Voc on C60:ZnPc mixing ratio . . . . . . . . . . . . . . . . . . . . 137 6.2 Influence of different hole transport layers on C60:ZnPc . . . . . . . . . .. . 140 6.2.1 Red and blue illumination measurements . . . . . . . . . . . . . . . . . . . . . . 143 6.2.2 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.2.3 UPS measurements for different C60:ZnPc mixing ratios . . . . . . . . .. 148 6.3 Influence of thin ZnPc and C70 interlayers on Voc . . . . . . . . . . . . . . .. . 152 6.3.1 UPS measurements of blend/ZnPc interfaces . . . . . . . . . . . . . . . . . . . 155 6.3.2 Blend/ZnPc injection barrier: experiment and simulation . . . . . . . . . . 158 7 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Page generated in 0.0605 seconds