• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 131
  • 39
  • 19
  • 15
  • 9
  • 8
  • 8
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 267
  • 57
  • 53
  • 38
  • 38
  • 36
  • 36
  • 33
  • 32
  • 29
  • 28
  • 28
  • 28
  • 24
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Molekularer Entwurf neuer Isolationsmaterialien für mikroelektronische Anwendungen

Zagorodniy, Kostyantyn 22 October 2009 (has links)
Die ITRS (International Technology Roadmap for Semiconductors) sagt voraus, dass die fortlaufende Miniaturisierung der Transistoren und Verdrahtungen auch neue Isolationsmaterialien mit äußerst niedrigen (ultralow) Dielektrizitätskonstanten k erfordern wird. Die Miniaturisierung der Bauteile der ULSI (Ultra Large Scale Integration) führt zu starken Anforderungen an die Fertigung der kritischen Bereiche (backend-of-line, BEoL). Die ITRS deutet darauf hin, dass die k-Werte bis zu 2.0 für die 45 nm Technologie reduziert werden müssen, und zu noch niedrigeren k-Werten (k  1.5) für die nachfolgenden Jahre. Ergänzend zur äußerst niedrigen dielektrischen Konstante müssen die Isolatoren auch über entsprechende mechanische Eigenschaften verfügen. Die vorliegende Arbeit stellt Forschungen vor, die das Ziel haben, mittels modernen ab-initio und halbempirischen theoretischen Methoden neuartige Isolationsmaterialien für zukünftige mikroelektronische Anwendungen zu entwerfen. Die umfangreichen eingesetzten Rechenmethoden wurden verwendet, um strukturelle und physikalische (mechanische, dielektrische und elektronische) Eigenschaften von entworfenen Zwischenschichtsdielektrika zu bestimmen. Eine neue Art von Materialien wird vorgestellt, die als ein möglicher Kandidat für isolierende ultralow-k dünne Schichte zwischen Metallleiterbahnen in zukünftigen CMOS (Complementary Metal-Oxide-Semiconductor) Technologien fungieren sollen. Die Struktur der neuartigen Materialien wird durch ein Modell beschrieben, das ein geordnetes dreidimensionales Netzwerk (Mosaikstruktur) darstellt. Dies besteht aus drei Hauptkomponenten: Knoten, Kanten und Topologie der Anordnung. Fullerenmoleküle (C60) werden als Knoten des Netzwerkes verwendet. Die Knoten werden durch Verknüpfermoleküle entlang der Kanten der Mosaikzelle angekoppelt. Dies wird durch kovalente Bindungen realisiert. Als Verknüpfermoleküle werden Kohlenwasserstoff- Kettenmoleküle verwendet. Einfache kubische, flächenzentrierte kubische und diamantähnliche Topologien werden für Anordnungen des Netzwerkes betrachtet. Das Innere einer Netzwerkzelle repräsentiert eine Nanopore der Größe in Bereich von 1 nm. Zunächst werden am Beispiel fluorierter Fullerene Probleme der molekularen Polarisierbarkeit untersucht. In Molekülen mit ionischem Beitrag zur Bindung kann der Beitrag der Kernverschiebungen (wegen des äußeren Feldes) zur statischen Polarisierbarkeit entscheidend sein. Mittels der Finite Field Methode wird die Struktur mit und ohne ein endliches äußeres elektrisches Feld optimiert. Dabei wird die Optimierung durch Minimierung der Gesamtenergie durchgeführt und die molekulare Polarisierbarkeit aus dem induzierten Dipolmoment bestimmt. In C60Fn erhöht meistens das Fluorieren die Polarisierbarkeit. Nur für n = 2 und 18, wobei das Molekül ohne ein äußeres Feld ein sehr großes Dipolmoment hat, wird die Polarisierbarkeit verringert. Für große Werte n (n = 20, 36 und 48) wird die Polarisierbarkeit pro zusätzliches Fluoratom wegen Kernverschiebungen deutlich erhöht. Die Modifizierung der Knoten des Netzwerkes wird betrachtet und die Anwendbarkeit des Additivitätsmodells diskutiert. Die Dielektrizitätskonstante des reinen flächenzentrierten kubischen Fullerengitters beträgt etwa 4.4. Die Einführung der Verknüpfermoleküle zwischen benachbarten Fullerenmolekülen und die gleichzeitige Verwendung von auf Kohlenstoffatomen basierten käfigförmigen Molekülen reduziert die Dichte des Materials. Dies ergibt eine beträchtliche Verringerung der makroskopischen Polarisierbarkeit des Materials. Die Struktureinheit, die aus zwei Fullerenmolekülen und einem Kohlenwasserstoff-Verknüpfermolekül besteht, wird mittels quantenchemischer Methoden (DFTB Molekulardynamik) optimiert. Es werden die Dichte der lokalen Dipole und elektronische Effekte betrachtet, um die effektive Dielektrizitätskonstante des Modells abzuschätzen. Die Berechnungen zeigen, dass k-Werte von etwa 1.4 erreicht werden können, wenn C6H12 Kettenmoleküle verwendet werden, um die C60-Moleküle im Netzwerk mit diamantähnlicher Symmetrie zu verknüpfen. Weiterhin werden molekulare Cluster mit angelegten periodischen Randbedingungen für einfache kubische und diamantähnliche Topologien konstruiert. Kombinationen der klassischen und quantentheoretischen Methoden werden eingesetzt, um die Struktur zu optimieren, Kompressionsmodule zu berechnen und die dielektrischen Eigenschaften der fullerenbasierten Materialien zu berechnen. Dies hat das Ziel, ultralow-k Isolatoren mit entsprechenden mechanischen Eigenschaften zu finden. Es wird die kovalente Verknüpfung der C60 Moleküle untersucht und sowohl die Länge und chemische Zusammensetzung des Verknüpfermoleküles als auch die Verknüpfungsgeometrie variiert. Gemäß dem entworfenen Modell werden Strukturen mit einfacher kubischer und diamantähnlicher Topologie des Netzwerkes als vielversprechende Kandidaten betrachtet. Die (statische) Dielektrizitätskonstanten k und Kompressionsmodule B sind für einige vorgeschlagene Materialien im Bereich von k = 1.7 bis 2.2 und beziehungsweise von B = 5 bis 23 GPa. Das Clausius-Mossotti Modell wird zur Bestimmung der Dielektrizitätskonstante der entworfenen Strukturen verwendet. In den nächsten Schritten der Arbeit werden die Wege der Verbesserungen für das vorgeschlagene Modell betrachtet. Es wird analysiert, auf welche Art Verknüpfermoleküle an die Knoten gebunden werden können, um die mechanischen und dielektrischen Eigenschaften der generierten ultralow-k Strukturen zu verbessern. Es gibt zwei mögliche verschiede Arten, die Verknüpfermoleküle > C = C < und > C – CH2 – CH2 – C < an das Käfigmolekül C60 anzukoppeln. Die Berechnungen zeigen, dass es im gegenwärtigen Verbesserungsschritt möglich ist, für die einfache kubische Topologie Eigenschaftskombinationen mit k = 2.2 und B = 33 GPa zu bekommen. In der vorliegenden Arbeit wurde eine theoretische Methode ¬¬– sogenannter molekularer Entwurf – entwickelt und erfolgreich angewandt. Die theoretische Behandlung ist kompliziert, weil Wechselwirkungen im atomaren Skalabereich und auf einem strukturellen Niveau von 1 nm zusammen betrachtet werden müssen. Dies Verfahren erfordert die Anwendung komplementärer theoretischen Methoden, um das gesamte Problem beschreiben zu können. Die Methoden schließen klassische, kontinuierliche theoretische und quantenchemische Näherungen ein. Der Vorteil dieser Methode ist, dass verschiedene mögliche Kandidaten für ultralow-k Dielektrika theoretisch getestet werden können, ohne teure und zeitaufwendige Experimente durchzuführen. / The International Technology Roadmap for Semiconductors (ITRS) predicts that continued scaling of devices will require insulating materials with ultralow dielectric constant k. The shrinking of device dimensions of ultra-large-scale integrated (ULSI) chips imposes strong demands on the backend of the line (BEoL) interconnect structures. The ITRS indicates that the k values need to be reduced to 2.0 for the 45 nm technology node or below (k  1.5) in the next few years. Additionally to extremely low dielectric constants, the insulating materials must have also suitable mechanical properties. The work represents research, which is aimed to support molecular design and investigations of modelled novel insulating materials for future application in microelectronics by means of theoretical ab-initio and semiempirical methods. A wide range of computational methods were used to estimate structural and physical (mechanical, dielectrical and electronic) properties of the designed interlayer dielectrics (ILDs). A new class of materials is presented that is supposed to be a potential candidate for isolating ultralow-k thin films between metal on-chip interconnects in future CMOS technology nodes. The structure of the novel materials is described by a model that assumes an ordered three-dimensional network (mosaic structure) consisting of three main components: nodes, edges and topology of arrangement. Fullerene (C60) molecules are used as the nodes of the network. The nodes are connected by linker molecules along the edges of the mosaic cells through a covalent bonding. Hydrocarbon chain molecules are used as the linkers. Simple cubic, face-centred cubic and diamond-like topologies of the network are considered. The interior of a network cell represents a nanopore of a 1-nm scale. At first problems of molecular polarizability are investigated considering the case of fluorinated fullerenes. In molecules with ionic contribution to the binding, the contribution of nuclear displacements (due to the external field) to the static polarizability can be decisive. Using the finite field method, the structure is optimized with and without a finite external electric field by a total energy minimization and the polarizability is calculated from the induced dipole moment. In C60Fn, fluorination mostly increases the molecular polarizability. Only for n = 2 and 18, where the molecule without an external field has a very large dipole moment, fluorination does decrease it. For large n (n = 20, 36, and 48), the polarizability per added F atom due to nuclear displacements is increased by a factor of about 2. The modification of the nodes of the network is considered and the validity of the additivity model is discussed. The dielectric constant of the pure fullerene face-centred cubic lattice is about 4.4. The introduction of bridge molecules between neighbouring fullerene molecules and the simultaneous usage of cage-like molecules based on carbon atoms reduces the density of the material. This results in a considerable decrease of the macroscopic polarizability of the material. The structural units of the models consisting of two fullerenes and a hydrocarbon bridge molecule are optimized by means of quantum chemical methods (DFTB molecular dynamics). The density of local dipoles and electronic effects are considered to estimate the effective dielectric constant of the models. It is shown that k values of about 1.4 can be obtained if C6H12 chain molecules are used to connect C60 molecules on a network with diamond-like symmetry. Further, molecular clusters with applied periodic boundary conditions are constructed for simple cubic and diamond-like topologies. Combinations of classical and quantum-theoretical approaches are used to optimize the structure, to calculate bulk moduli, and for the assessment of the dielectric properties of fullerene-based materials with the goal to find ultralow-k insulators with suitable mechanical properties. The covalent linking of C60 molecules is studied and the length and chemical composition of the linker molecule as well as the linkage geometry is varied. According to the molecular design-based model, structures with simple cubic and diamond-like topology of the network are proposed as promising candidates. The (static) dielectric constants k and elastic bulk moduli B of the proposed materials are in the range of k = 1.7 to 2.2 and B = 5 to 23 GPa, respectively. The Clausius-Mossotti-Model is used to estimate dielectric constants of the designed structures. In the next steps of the work the ways of improvements for the proposed model are considered. The way to connect linker molecules to the node molecules is analyzed, in order to improve the mechanical and dielectric properties of the generated ultralow-k structures. Two different types of bonding linker molecules to the cage C60 molecule with the > C = C < and > C – CH2 – CH2 – C < linker molecules are possible. It is shown that at the present improvement step it is possible to get property combinations with dielectric constant of k = 2.2 and bulk modulus of B = 33 GPa for the simple cubic topology. In this work a theoretical method called molecular design is developed and successfully applied. The theoretical treatment is difficult since interactions both on the atomic scale and on the structural level of 1 nm must be considered. This approach requires the application of complementary theoretical methods to describe the complex problems. The methods include classical, continuum theoretical and quantum-chemical approximations. The advantage of the present approach is that various possible candidates for ultralow-k dielectrics can be tested theoretically without performing expensive and time-consuming experiments.
212

Fullerenhaltige Donor-Akzeptor-Blockcopolymere als Additive für organische Bulk-Heterojunction-Solarzellen

Heuken, Maria 08 August 2012 (has links)
Fullerenhaltige Bulk-Heterojunction-Solarzellen auf Polymerbasis zeigen derzeit eine geringe Langzeitstabilität, die unter anderem auf der Entmischung der Bulkphasen beruht. In dieser Arbeit wurden daher auf neuartige Weise Blockcopolymere entwickelt, die zur Stabilisierung der Phasen dienen können. Ausgehend von Poly-3-hexylthiophen-Makroinitiatoren wurde ein zweiter Block mit reaktivem Comonomer polymerisiert, das zur Anbindung von reinem Fullerens bzw. von Fullerenderivaten diente. Die fullerenfunktionalisierten Polymere wurden in Modell-Systeme eingemischt und zeigten erste Verbesserungen bezüglich der Phasenstabilisierung.:1 Einleitung und Zielstellung 2 Grundlagen 2.1 Polymere Solarzellen 2.1.1 Theoretische Grundlagen und Funktionsweise 2.1.2 Materialien und Materialoptimierung 2.1.3 Stabilisierung der Blendmorphologien 2.2 Blockcopolymere – Eigenschaften und Aufbau 2.2.1 Kontrolliert radikalische Polymerisationen 2.2.2 Kumada-Catalyst Transfer Polycondensation 2.3 Fullerene – Eigenschaften und Funktionalisierung 3 Ergebnisse und Diskussion 3.1 Darstellung von Akzeptor-Polymeren 3.1.1 Synthese der Copolymere 3.1.2 Bingel-Reaktion 3.1.3 Polymeranaloge Reaktionen und Anbindung von Fullerenen an Copolymere 3.2 Synthesen von Donor-Akzeptor-Blockcopolymeren 3.2.1 Synthese und Charakterisierung des Makroinitiators und der Blockcopolymere 3.2.2 Polymeranaloge Reaktionen an Blockcopolymeren 3.3 Charakterisierung der Eigenschaften von Donor-Akzeptor-Blockcopolymeren in Blends 3.3.1 Blends mit fullerenhaltigen Blockcopolymeren 3.3.2 Blends mit azidfunktionalisiertem Blockcopolymer 3.3.3 Solarzellen-Tests 4 Zusammenfassung und Ausblick 5 Experimenteller Teil 5.1 Verwendete Chemikalien und Reagenzien 5.2 Geräte und Hilfsmittel 5.3 Synthesen niedermolekularer Verbindungen 5.4 Polymersynthesen 5.5 Polymeranaloge Reaktionen 6 Literaturverzeichnis Anhang
213

Synthesis and Application of Fullerene Bis-Adduct Isomers as Novel Electron Acceptors in Polymer Solar Cells / ポリマー太陽電池用新規電子アクセプターを目指したフラーレン二付加異性体の合成と応用

Ran, Tao 24 September 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19316号 / 工博第4113号 / 新制||工||1634(附属図書館) / 32318 / 京都大学大学院工学研究科分子工学専攻 / (主査)教授 今堀 博, 教授 関 修平, 教授 梶 弘典 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
214

Functional Effects of Carbon Nanoparticles on Barrier Epithelial Cell Function

Banga, Amiraj 27 August 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / As mass production of carbon nanoparticles (CNPs) continues to rise, the likelihood of occupational and environmental exposure raises the potential for exposure‐related health hazards. Although many groups have studied the effects of CNPs on biological systems, very few studies have examined the effects of exposure of cells, tissues or organisms to low, physiologically relevant concentrations of CNPs. Three of the most common types of CNPs are single wall nanotubes (SWNT), multi wall nanotubes (MWNT) and fullerenes (C60). We used electrophysiological techniques to test the effects of CNP exposure (40 μg/cm2 – 4 ng/cm2) on barrier function and hormonal responses of well characterized cell lines representing barrier epithelia from the kidney (mpkCCDcl4) and airways (Calu‐3). mpkCCDcl4 is a cell line representing principal cell type that lines the distal nephron in an electrically tight epithelia that aids in salt and water homeostasis and Calu‐3 is one of the few cell lines that produces features of a differentiated, functional human airway epithelium in vivo. These cell lines respond to hormones that regulate salt/water reabsorption (mpkCCDcl4) and chloride secretion (Calu‐3). In mpkCCDcl4 cells, after 48 hour exposure, the transepithelial electrical resistance (TEER) was unaffected by high concentrations (40 – 0.4 μg/cm2) of C60 or SWNT while lower, more relevant levels (< 0.04 μg/cm2) caused a decrease in TEER. MWNT decreased TEER at both high and low concentrations. CNT exposure for 48 hour did not change the transepithelial ion transport in response to anti‐diuretic hormone (ADH). In Calu‐3 cells, after 48 h of exposure to CNPs, fullerenes did not show any effect on TEER whereas the nanotubes significantly decreased TEER over a range of concentrations (4 μg/cm2‐0.004 ng/cm2). The ion transport response to epinephrine was also significantly decreased by the nanotubes but not by fullerenes. To look at the effect of exposure times, airway cells were exposed to same concentrations of CNPs for 24 and 1h. While the 48 h and 24 h exposures exhibited similar effects, there was no effect seen after 1h in terms of TEER or hormonal responses. In both the cell lines the magnitude of the transepithelial resistance change does not indicate a decrease in cellular viability but would be most consistent with more subtle changes (e.g., modifications of the cytoskeleton or changes in the composition of the cellular membrane). These changes in both the cell lines manifested as an inverse relationship with CNP concentration, were further corroborated by an inverse correlation between dose and changes in protein expression as indicated by proteomic analysis. These results indicate a functional impact of CNPs on epithelial cells at concentrations lower than have been previously studied and suggest caution with regard to increasing CNP levels due to increasing environmental pollution.
215

The Molecular Organisation of Non-Fullerene Acceptors: from Single Crystals to Solar Cells

Mondelli, Pierluigi 22 April 2024 (has links)
The growing concern about climate change is pushing the global community towards greener solutions to cut down the greenhouse gases emissions. As such, producing energy from sustainable sources becomes mandatory to achieve the net zero emissions goal by 2050, as set by the United Nations. Solar panels offer the possibility to generate power from light harvesting, but it’s the use of organic materials that offers great advantages in terms of functionality and life-cycle. In particular, organic semiconductors properties such as their tunable colours, lightweight, flexibility, and semi-transparency enable the use of Organic Photovoltaics (OPV) in building façades and contribute to the realisation of Net Zero Energy Buildings (NZEB). However, the OPV scalability to terawatts of installed capacity is still non competitive with respect to its cost when compared to the conventional inorganic silicon-based technologies. One of the reasons is the lower performance achieved by the state-of-the-art OPV devices, whose active layer (the film where the light is absorbed and converted into free charges, electrons and holes, i.e. electricity) is typically composed of a blend made of an electron donor material (conjugated polymer) and a smaller compound as electron acceptor (Non-Fullerene Acceptor, NFA). A crucial factor determining the low performance of OPVs made with NFAs is related to their poor charge transport properties (e.g. low electron mobility and high recombination), which are intimately related to how these molecules are arranged in the solid film, i.e. their molecular organisation. Great progress was made in the field of organic electronics to obtain higher mobility by understanding the crystalline behaviour of organic molecules from their single crystals, and using these knowledge in the design of new compounds with the desired properties. At the beginning of this thesis project, little was known about the solid-state organisation of NFAs as very few single crystal structures were disclosed. For these reasons, we were first dedicated to the study of the intrinsic propensity of NFAs to crystallise by growing single crystals. At this fundamental level, we found that the NFA packing geometry is strongly affecting the isotropy of the charge transport, and potentially the electron mobility. On a following step, we developed a methodology to track the NFA packing geometry as we move from ideal systems (single crystals) to the most complex scenario of the solar cell active layer films, which include a donor and an acceptor (NFA) component. We discovered that NFAs generally tracks their packing motif from single crystals to blend films, and we quantified the benefit of using crystalline compounds with specific packing geometry in terms of electron mobility. Interestingly, we also found that these motifs are not necessary to obtain high performance in organic solar cells as the efficiency is mostly driven by charge recombination and domain purity, rather than electron mobility.
216

Molekulardynamische Simulation der Stabilität und Transformation von Kohlenstoff-Nanoteilchen

Fugaciu, Florin 02 May 2000 (has links) (PDF)
Ziel der Arbeit ist die theoretische Analyse von Kohlenstoff-Clustern der Größe 100 - 500 Atome. Die experimentellen Beobachtungen sind bei dieser geringen Anzahl der Atome schwierig. Anderseits sind Kenntnisse über solche Cluster sehr wichtig, z.B. für die Keimbildung von Diamant auf Substraten, oder für die Kohlenstoff-Nanotechnologie (Fullerene, Nanotubes), oder für strukturelle Defekte in Kohlenstoff-Systemen. Es wurden gekrümmte Grenzflächen im Diamant simuliert. Zuerst mit einem empirischen Potential. Es wurde danach eine Methode entwickelt, bei der die schwach gestörten Gebiete einem empirischen Potential gehorchen, und die stark gestörten Gebiete, wo eine genaue Berechnung erforderlich ist, durch eine quantenmechanische Näherung beschrieben wurden. Somit kann man mit guter Genauigkeit große Systeme, bestehend aus einigen 10 (hoch)4 Atomen, simulieren, bei denen nur lokal quantenmechanische Methoden erforderlich sind. Mit diesem Hybrid-Code wurden weiterhin Diamantkeime auf Silizium gerechnet. Es wurden Aussagen bezüglich der Stabilität des Diamants auf dem Siliziumsubstrat, der kritischen Keimgröße, der Änderungen, die der Keim erfährt, gemacht. Ein anderes Gebiet ist die molekulardynamische Simulation bezüglich der Stabilität und des Transformationsverhaltens von Kohlenstoff-Nanoteilchen. Es wurden als »Rohstoffe» sowohl Diamant- und Graphitkristalle sphärischer, ellipsoidischer oder quadratischer Form benutzt, als auch amorpher Kohlenstoff. Es wurde demonstriert, daß sich Diamant unter höherer Temperatur und Bestrahlung in Kohlenstoffzwiebeln transformiert. Es wurde der innere Kern, bestehend aus zwei Schalen, der Kohlenstoffzwiebel simuliert. Es wurde, nach meinem Wissen, zum ersten Mal gezeigt, daß zwischen den Schalen der Kohlenstoffzwiebel Quer-Verbindungen (cross-links) existieren. Diese waren von den Experimentatoren vermutet worden. Sie bilden die Initiatoren der Diamantkeime der Kohlenstoffzwiebel bei ihrer ohne äußeren Druck möglichen Transformation in Diamant. Die Zentren der Kohlenstoffzwiebeln befinden sich bereits in der Entstehung der Zwiebel unter einem Selbstdruck. Bei den größeren Kohlenstoffzwiebeln beträgt der experimentell bestimmte Abstand zwischen den Schalen von außen nach innen von 3.34 Å bis 2.2 Å. Anlagen: nano1.mpg (91,8 MB); nano2.mpg (131 MB) Nutzung: Referat Informationsvermittlung der SLUB / The scope of this work is the analysis of carbon clusters of about 100 - 500 atoms. The experimental studies are at such small clusters heavy. Knowledges about thus clusters are very important, for example in the field of the nucleation of diamond on substrates, or for the carbon nano-technology (fullerene, nanotubes), or for local defects in carbon systems. There were simulated curved interfaces in diamond. Firstly with an empirical potential. Than I developed a method, in wich the defects and the structure around them are treated by a quantum mechanical algorithm and the rest with a near to ideal structure with an empirical potential. So, it is possible an accurate calculation of great systems of about 10 (high)4 atoms on wich only locally quantum mechanical methods are necessary. With this hybrid-code diamond nuclei on silicon substrate were simulated. The stability of the diamond nuclei on the silicon substrate, the critical radius of the nuclei and the changes of the nuclei during his transformation was investigated. Another field of investigations is the molecular dynamics simulation of free carbon clusters. The initial structures had spherical, ellipsoidical or square form and consists of diamond and graphite or a free form in the case of amorphous carbon. It was demonstrated that diamond transforms at higher temperatures and under irradiation in carbon onions. The genesis of the nucleus of a carbon onion with two shells was here for the first time simulated. The existence of the cross-links between the shells of a carbon onion was demonstrated. These existence was expected from the experimentators. The cross-links are the initiators of the transformation of carbon onions to diamond. The center of carbon onions is under self-pressure, because the distance between the outer shells is about 3.34 Å and between the inner shells about 2.2 Å. Appendix: nano1.mpg (91,8 MB); nano2.mpg (131 MB) Usage: Referat Informationsvermittlung/ SLUB
217

Ab-initio molecular dynamics studies of laser- and collision-induced processes in multielectron diatomics, organic molecules and fullerenes / Ab-initio Molekulardynamik-Studien von laser- und stoßinduzierten Prozessen in Vielelektronen-Dimeren, organischen Molekülen und Fullerenen

Handt, Jan 22 December 2010 (has links) (PDF)
This work presents applications of an ab-initio molecular dynamics method, the so-called nonadiabatic quantum molecular dynamics (NA-QMD), for various molecular systems with many electronic and nuclear degrees of freedom. Thereby, the nuclei will be treated classically and the electrons with time-dependent density functional theory (TD-DFT) in basis expansion. Depending on the actual system and physical process, well suited basis sets for the Kohn-Sham orbitals has to be chosen. For the ionization process a novel absorber acting in the energy space as well as additional basis functions will be used depending on the laser frequency. In the first part of the applications, a large variety of different laser-induced molecular processes will be investigated. This concerns, the orientation dependence of the ionization of multielectronic diatomics (N2, O2), the isomerization of organic molecules (N2H2) and the giant excitation of the breathing mode in fullerenes (C60). In the second part, fullerene-fullerene collisions are investigated, for the first time in the whole range of relevant impact velocities concerning the vibrational and electronic energy transfer (\"stopping~power\"). For low energetic (adiabatic) collisions, it is surprisingly found, that a two-dimensional, phenomenological collision model can reproduce (even quantitatively) the basic features of fusion and scattering observed in the fully microscopic calculations as well as in the experiment. For high energetic (nonadiabatic) collisions, the electronic and vibrational excitation regimes are predicted, leading to multifragmentation up to complete atomization.
218

Magneto-optical Kerr Effect Spectroscopy Study of Ferromagnetic Metal/Organic Heterostructures

Li, Wen 14 January 2011 (has links) (PDF)
Diese Dissertation stellt die erste Anwendung des magneto-optischen Kerr Effektes (MOKE) auf ferromagnetische Metall/Organische Heterostrukturen zur Aufklärung der optischen und chemischen Eigenschaften dar. Die MOKE-Untersuchungen wurden spektroskopisch in einem Energiebereich von 1.7 eV bis 5.5 eV durchgeführt. Heterostrukturen, wie sie hier untersucht werden, sind relevant für Anwendungen in der organischen Spintronik. Die Auswertung der Experimentellen Daten wird unterstützt durch numerische Simulationen eines Schichtmodells und ergänzende Untersuchung der strukturellen und magnetischen Eigenschaften unter Zuhilfenahme von AFM, TEM, SEM, STXM und SQUID-Magnetometrie. In der aktuellen Arbeit wurde Ni als Beispiel einer ferromagnetischen Schicht oberhalb oder unterhalb des organischen Films verwendet. Die organische Schicht besteht jeweils aus den diamagnetischen Molekülen Rubren, Pentacen und Fulleren, welche nur ein vernachlässigbares MOKE-Signal aufweisen. Zum Vergleich wurden das metallfreie Phtalocyanin H2Pc, welche ein nur eine bis zwei Größenordnungen schwächeres MOKE Signal als das genutzte Ni zeigen, betrachtet. Selbst Moleküle, welche kein intrinsisches MOKE-Signal zeigen, können über die optische Interferenz Einfluss auf das MOKE Signal von Ni nehmen. Daher kann die Dicke der organischen Schicht genutzt werden, um den Verlauf des MOKE Spektrum zu kontrollieren. Dies wird für Rubren und C60 gezeigt. Beim Vergleich des MOKE-Spektrums von Rubren/Ni- und Ni/Rubren-Doppelschichten war es möglich zu zeigen, dass die Metallablagerung an der Oberfläche einen Versiegelungseffekt hat, welcher die Oxidation der organischen Unterschicht verlangsamt. AFM und TEM Messungen zeigen, dass Ni die Morphologie der unteren Rubrenschicht annimmt. Die Proben, die mit einer geringen Wachstumsrate von Rubren hergestellt wurden, weisen bei einer nominellen Schichtdicke von 15 nm klar geformte Rubren-Inseln mit großen Abständen zwischen ihnen auf. In diesen Fällen zeigte die magnetische Hysteresemessung von MOKE bei Raumtemperatur eine unterschiedliche Gestalt in Abhängigkeit von der Photonenenergie. Die Hystereseschleifen wurden durch die Präsenz zweier magnetischer Phasen interpretiert. Die MOKE-Spektren dieser beiden Phasen wurden aus dem experimentellen Spektrum separiert. Die Gestalt des gemessenen Spektrums ändert sich mit der Stärke des angelegten Feldes aufgrund der unterschiedlichen Beiträge der zwei Phasen. An den ferromagnetischen Metall/organischen Schichten wurde TEM angewendet, um die Größe der Metallpartikel zu bestimmen, sowie STXM um die Orientierung der organischen Moleküle festzustellen. Die Schichtdicke, das Massenverhältnis sowie die Wechselwirkung zwischen Metall und organischen Material beeinflussen nachweislich das MOKE Signal.
219

<i>C</i><sub>60</sub> as a template for the creation of metal and semiconductor nanoclusters / <i>C</i><sub>60</sub> als Vorlage zur Herstellung von Metall- und Halbleiterclustern

Kröger, Helge 13 December 2005 (has links)
No description available.
220

Molekulardynamische Simulation der Stabilität und Transformation von Kohlenstoff-Nanoteilchen

Fugaciu, Florin 15 May 2000 (has links)
Ziel der Arbeit ist die theoretische Analyse von Kohlenstoff-Clustern der Größe 100 - 500 Atome. Die experimentellen Beobachtungen sind bei dieser geringen Anzahl der Atome schwierig. Anderseits sind Kenntnisse über solche Cluster sehr wichtig, z.B. für die Keimbildung von Diamant auf Substraten, oder für die Kohlenstoff-Nanotechnologie (Fullerene, Nanotubes), oder für strukturelle Defekte in Kohlenstoff-Systemen. Es wurden gekrümmte Grenzflächen im Diamant simuliert. Zuerst mit einem empirischen Potential. Es wurde danach eine Methode entwickelt, bei der die schwach gestörten Gebiete einem empirischen Potential gehorchen, und die stark gestörten Gebiete, wo eine genaue Berechnung erforderlich ist, durch eine quantenmechanische Näherung beschrieben wurden. Somit kann man mit guter Genauigkeit große Systeme, bestehend aus einigen 10 (hoch)4 Atomen, simulieren, bei denen nur lokal quantenmechanische Methoden erforderlich sind. Mit diesem Hybrid-Code wurden weiterhin Diamantkeime auf Silizium gerechnet. Es wurden Aussagen bezüglich der Stabilität des Diamants auf dem Siliziumsubstrat, der kritischen Keimgröße, der Änderungen, die der Keim erfährt, gemacht. Ein anderes Gebiet ist die molekulardynamische Simulation bezüglich der Stabilität und des Transformationsverhaltens von Kohlenstoff-Nanoteilchen. Es wurden als »Rohstoffe» sowohl Diamant- und Graphitkristalle sphärischer, ellipsoidischer oder quadratischer Form benutzt, als auch amorpher Kohlenstoff. Es wurde demonstriert, daß sich Diamant unter höherer Temperatur und Bestrahlung in Kohlenstoffzwiebeln transformiert. Es wurde der innere Kern, bestehend aus zwei Schalen, der Kohlenstoffzwiebel simuliert. Es wurde, nach meinem Wissen, zum ersten Mal gezeigt, daß zwischen den Schalen der Kohlenstoffzwiebel Quer-Verbindungen (cross-links) existieren. Diese waren von den Experimentatoren vermutet worden. Sie bilden die Initiatoren der Diamantkeime der Kohlenstoffzwiebel bei ihrer ohne äußeren Druck möglichen Transformation in Diamant. Die Zentren der Kohlenstoffzwiebeln befinden sich bereits in der Entstehung der Zwiebel unter einem Selbstdruck. Bei den größeren Kohlenstoffzwiebeln beträgt der experimentell bestimmte Abstand zwischen den Schalen von außen nach innen von 3.34 Å bis 2.2 Å. Anlagen: nano1.mpg (91,8 MB); nano2.mpg (131 MB) Nutzung: Referat Informationsvermittlung der SLUB / The scope of this work is the analysis of carbon clusters of about 100 - 500 atoms. The experimental studies are at such small clusters heavy. Knowledges about thus clusters are very important, for example in the field of the nucleation of diamond on substrates, or for the carbon nano-technology (fullerene, nanotubes), or for local defects in carbon systems. There were simulated curved interfaces in diamond. Firstly with an empirical potential. Than I developed a method, in wich the defects and the structure around them are treated by a quantum mechanical algorithm and the rest with a near to ideal structure with an empirical potential. So, it is possible an accurate calculation of great systems of about 10 (high)4 atoms on wich only locally quantum mechanical methods are necessary. With this hybrid-code diamond nuclei on silicon substrate were simulated. The stability of the diamond nuclei on the silicon substrate, the critical radius of the nuclei and the changes of the nuclei during his transformation was investigated. Another field of investigations is the molecular dynamics simulation of free carbon clusters. The initial structures had spherical, ellipsoidical or square form and consists of diamond and graphite or a free form in the case of amorphous carbon. It was demonstrated that diamond transforms at higher temperatures and under irradiation in carbon onions. The genesis of the nucleus of a carbon onion with two shells was here for the first time simulated. The existence of the cross-links between the shells of a carbon onion was demonstrated. These existence was expected from the experimentators. The cross-links are the initiators of the transformation of carbon onions to diamond. The center of carbon onions is under self-pressure, because the distance between the outer shells is about 3.34 Å and between the inner shells about 2.2 Å. Appendix: nano1.mpg (91,8 MB); nano2.mpg (131 MB) Usage: Referat Informationsvermittlung/ SLUB

Page generated in 0.048 seconds