• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 272
  • 152
  • 89
  • 25
  • 17
  • 10
  • 8
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 652
  • 233
  • 193
  • 162
  • 148
  • 122
  • 108
  • 78
  • 74
  • 72
  • 71
  • 67
  • 65
  • 57
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Impacto do sedimento sobre espécies que interagem = modelagem e simulações de bentos na Enseada Potter / Sediment impact upon interacting species : modeling and numerical simulation of benthos at Potter Cove

Carmona Tabares, Paulo Cesar, 1976- 08 August 2012 (has links)
Orientador: João Frederico da Costa Azevedo Meyer / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-21T04:55:31Z (GMT). No. of bitstreams: 1 CarmonaTabares_PauloCesar_D.pdf: 24565019 bytes, checksum: 8ebe9aed1d258a0712f49e9711f8d107 (MD5) Previous issue date: 2012 / Resumo: Neste trabalho, construímos um modelo matemático para avaliar as conjecturas existentes acerca do impacto que tem o material inorgânico particulado (sedimento) nas populações bentônicas predominantes na Enseada Potter. Na construção do modelo são utilizadas informações do fenômeno, proporcionadas pelas pesquisas permanentes na região de estudo. Como resultado, logramos comprovar mediante simulações numéricas, o efeito que produz o sedimento na distribuição e abundância das espécies do substrato marinho, constatando neste ecossistema particular as consequências do aquecimento global nessa parte da região antártica. A modelagem é feita com um sistema de equações diferenciais parciais não- lineares sobre um domínio bidimensional irregular (descritiva da região original), o qual é discretizado nas variáveis espaciais por elementos finitos de primeira ordem e na variável temporal pelo Método de Crank-Nicolson. A resolução do sistema não-linear resultante é aproximada através de um método preditor-corretor cuja solução aproximada é visualizada e valorada qualitativamente usando gráficos evolutivos obtidos por simulações em ambiente MATLAB / Abstract: In this work, we built a mathematical model to evaluate existing conjectures about the impact that inorganic particulate material (sediment) has upon predominating benthic populations in Potter Cove. For the mathematical model, phenomena information was that provided by permanent researches in the study area. As a result, by means of numerical simulations, we were able to confirm the effect of sediment over distribution and abundance for species of marine substrate, verifying in this particular ecosystem, the effects of global warming in this specific Antarctic region. Modeling is done with a system of nonlinear partial differential equations over an irregular two-dimensional domain (descriptive of the original region), which is discretized in the spatial variables by first order finite elements and in the time variable by Crank-Nicolson. The resolution of the resulting nonlinear system is approximated by a predictor-corrector method and the solution is displayed and qualitatively valorized using evolutive graphics, obtain in a MATLAB environment / Doutorado / Matematica Aplicada / Doutor em Matemática Aplicada
252

Desenvolvimento de metodo implicito para simulador numerico tridimensional de escoamentos compressiveis inviscidos

Santos, Erick Slis Raggio 30 July 2004 (has links)
Orientadores: Philippe Remy Bernard Devloo, Sonia Maria Gomes / Dissertação (Mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo / Made available in DSpace on 2018-08-04T00:26:41Z (GMT). No. of bitstreams: 1 Santos_ErickSlisRaggio_M.pdf: 3573187 bytes, checksum: 016737de065f039de0141d987e4bdd7a (MD5) Previous issue date: 2004 / Resumo: A simulação de escoamentos compressíveis considerados sem viscosidade tem grande aplicabilidade na aeronáutica. Atualmente tem sido foco de muitas pesquisas o desenvolvimento destas simulações segundo o método de Galerkin descontínuo[7, 12, 16, 20], que alia as boas características dos métodos de elementos finitos e volumes finitos, beneficiando-se da modelagem polinomial no interior de subdomínios e escontínua nas interfaces entre subdomínios. Neste trabalho o autor se propõe a estender as funcionalidades do ambiente de elementos finitos PZ[28], habilitando-o a modelar as equações de Euler de dinâmica dos gases com o método de Galerkin descontínuo em 3 dimensões. Para cálculo dos fluxos nas interfaces entre os subdomínios emprega-se o fluxo de Roe de primeira ordem e para estabilizar eventuais oscilações na distribuição da solução no interior dos subdomínios são adicionados termos de difusão artificial à formulação. O esquema de integração temporal a empregar é o de Euler implícito, resolvido pelo método de Newton-Raphson. O cálculo da matriz jacobiana do resíduo de Euler, necessário para o método de Newton-Raphson, é desafiador devido à complexidade dos termos de difusão e fluxo numérico, mas viabilizado pelo emprego de técni-cas de diferenciação automática. Dada a qualidade do integrador temporal consistentemente implícito, algoritmos de evolução de CFL são desenvolvidos e aplicados, visando a redução dos tempos de simulação. A validação do esquema proposto e a avaliação da qualidade dos resultados fornecidos pelo simulador são obtidas através da simulação de problemas teste modelados pelo autor. O resultado é um simulador 2D e 3D robusto e que fornece resultados consistentes com os da literatura. Destaca-se o desenvolvimento de um esquema de evolução de CFL que reduz o número de iterações para convergência até a solução estacionária, a com-paração de eficiência dos termos de difusão artificial e o desenvolvimento matricial destes. O trabalho evidencia as qualidades da aproximação numérica segundo o método de Galerkin descontínuo em comparação com resultados analíticos e de simulações por volumes finitos e as qualidades do integrador temporal desenvolvido, guiando futuros desenvolvimentos e elencando sugestões de extensões que visam aumentar a eficiência e ampliar as funcionalidades do simulador / Abstract: The simulation of compressible flows considered inviscid is largely appliable to aeronautics. The development of such simulations using the Garlekin discontinuous method[7,12,16,20], wich presents the good characteristics of fine element and finite volume methods, benefitting from the polynomial interpolation within subdomains and discontinuous across interfaces among them, has been the focus of many current researches. In this work the author extends the functionalities of the PZ finite element environment[28], enabling it to model the Euler equations of gas dynamics with the discontinuous Galerkin method in three space dimensions. The flux evaluation across interfaces uses the first order Roe¿s numerical flux. Artificial diffusive terms added to the formulation aatempt to stabilize spatial oscillations of the distribution of the solution within each subdomain. The time marcing scheme applied is the implicit first order Euler, solved by a Newton-Raphson method. The evaluation of the matrix tangent to the Euler residual required by the neton-Raphson method is challenging due to the complexity of the artificial diffusive and numerical flux terms, but feasible thanks to the automatic differentiation techniques. Given the quality of the consistently implicit time integrator. CFL evolution algorithms are developed and applied to reduce the simulation ti-ming. The proposed scheme validation as well as the result quality juclgements are obtained through the simulation of test problems proposed by the author. The result is a 2D and 3D robust simulator that off'ers results consistent ivith those availabe in the bibliography. Outstanding qualities are presented by the CFL c.volution scheme. which reduces the num-ber of time marching iterations required to converge to steady-state solutions. An efficiency benchmark of the artificial cliff'usive terms and the matricial development of such are also emphasized. This work evinces the qualities of the discontinuous Galerkin approximation method compared to analytical and finite volume simulation solutions and the qualities of the developed time integrator. guiding future developments and stating suggestions on pos-sible extensions focusing performance enhancement and additional features / Mestrado / Estruturas / Mestre em Engenharia Civil
253

Analyse et développement de méthodes de raffinement hp en espace pour l'équation de transport des neutrons

Fournier, Damien 10 October 2011 (has links)
Pour la conception des cœurs de réacteurs de 4ème génération, une précision accrue est requise pour les calculs des différents paramètres neutroniques. Les ressources mémoire et le temps de calcul étant limités, une solution consiste à utiliser des méthodes de raffinement de maillage afin de résoudre l'équation de transport des neutrons. Le flux neutronique, solution de cette équation, dépend de l'énergie, l'angle et l'espace. Les différentes variables sont discrétisées de manière successive. L'énergie avec une approche multigroupe, considérant les différentes grandeurs constantes sur chaque groupe, l'angle par une méthode de collocation, dite approximation Sn. Après discrétisation énergétique et angulaire, un système d'équations hyperboliques couplées ne dépendant plus que de la variable d'espace doit être résolu. Des éléments finis discontinus sont alors utilisés afin de permettre la mise en place de méthodes de raffinement dite hp. La précision de la solution peut alors être améliorée via un raffinement en espace (h-raffinement), consistant à subdiviser une cellule en sous-cellules, ou en ordre (p-raffinement) en augmentant l'ordre de la base de polynômes utilisée.Dans cette thèse, les propriétés de ces méthodes sont analysées et montrent l'importance de la régularité de la solution dans le choix du type de raffinement. Ainsi deux estimateurs d'erreurs permettant de mener le raffinement ont été utilisés. Le premier, suppose des hypothèses de régularité très fortes (solution analytique) alors que le second utilise seulement le fait que la solution est à variations bornées. La comparaison de ces deux estimateurs est faite sur des benchmarks dont on connaît la solution exacte grâce à des méthodes de solutions manufacturées. On peut ainsi analyser le comportement des estimateurs au regard de la régularité de la solution. Grâce à cette étude, une stratégie de raffinement hp utilisant ces deux estimateurs est proposée et comparée à d'autres méthodes rencontrées dans la littérature. L'ensemble des comparaisons est réalisé tant sur des cas simplifiés où l'on connaît la solution exacte que sur des cas réalistes issus de la physique des réacteurs.Ces méthodes adaptatives permettent de réduire considérablement l'empreinte mémoire et le temps de calcul. Afin d'essayer d'améliorer encore ces deux aspects, on propose d'utiliser des maillages différents par groupe d'énergie. En effet, l'allure spatiale du flux étant très dépendante du domaine énergétique, il n'y a a priori aucune raison d'utiliser la même décomposition spatiale. Une telle approche nous oblige à modifier les estimateurs initiaux afin de prendre en compte le couplage entre les différentes énergies. L'étude de ce couplage est réalisé de manière théorique et des solutions numériques sont proposées puis testées. / The different neutronic parameters have to be calculated with a higher accuracy in order to design the 4th generation reactor cores. As memory storage and computation time are limited, adaptive methods are a solution to solve the neutron transport equation. The neutronic flux, solution of this equation, depends on the energy, angle and space. The different variables are successively discretized. The energy with a multigroup approach, considering the different quantities to be constant on each group, the angle by a collocation method called Sn approximation. Once the energy and angle variable are discretized, a system of spatially-dependent hyperbolic equations has to be solved. Discontinuous finite elements are used to make possible the development of $hp-$refinement methods. Thus, the accuracy of the solution can be improved by spatial refinement (h-refinement), consisting into subdividing a cell into subcells, or by order refinement (p-refinement), by increasing the order of the polynomial basis.In this thesis, the properties of this methods are analyzed showing the importance of the regularity of the solution to choose the type of refinement. Thus, two error estimators are used to lead the refinement process. Whereas the first one requires high regularity hypothesis (analytical solution), the second one supposes only the minimal hypothesis required for the solution to exist. The comparison of both estimators is done on benchmarks where the analytic solution is known by the method of manufactured solutions. Thus, the behaviour of the solution as a regard of the regularity can be studied. It leads to a hp-refinement method using the two estimators. Then, a comparison is done with other existing methods on simplified but also realistic benchmarks coming from nuclear cores.These adaptive methods considerably reduces the computational cost and memory footprint. To further improve these two points, an approach with energy-dependent meshes is proposed. Actually, as the flux behaviour is very different depending on the energy, there is no reason to use the same spatial discretization. Such an approach implies to modify the initial estimators in order to take into account the coupling between groups. This study is done from a theoretical as well as from a numerical point of view.
254

Nouvelle approche pour l'obtention de modèles asymptotiques en océanographie / New method to obtain asymptotic models in oceanography

Bellec, Stevan 05 October 2016 (has links)
Dans ce manuscrit, nous nous inéressons à l'étude du mouvement des vagues soumises uniquement à leur poids par le biais d'équations asymptotiques. Nous commençons par rappeler la dérivation des principaux modèles généralement utilisés (Boussinesq, Green-Naghdi,...). Nous introduisons également un nouveau modèle exprimé en amplitude-flux qui correspond à une variante des équations de Nwogu. Dans le second chapitre, nous démontrons un résultat d'existence en temps long pour ces nouvelles équations et nous étudions l'existence d'ondes solitaires pour les équations de Boussinesq. Ce travail permet notamment de calculer avec une grande précision ces solutions exactes. Le troisième chapitre détaille les différences non linéaires que l'on retrouve entre les différentes équations de Boussinesq (modèles en flux-amplitude comparés aux modèles en vitesse-amplitude). Enfin, les deux derniers chapitres introduisent un nouveau paradigme pour trouver des schémas numériques adaptés aux modèles asymptotiques. L'idée est d'appliquer une analyse asymptotique aux équations d'Euler discrétisées. Ce nouveau paradigme est appliqué aux équations de Peregrine, de Nwogu et de Green-Naghdi. Plusieurs cas tests sont proposés dans ces deux chapitres. / In this work, we are interested in the evolution of water waves under the gravity force using asymptotics models. We start by recalling the derivation of most used models (Boussinesq, Green-Naghdi,...) and we introduce a new model expressed amplitude-flux, which is an alternative version of the Nwogu equations. In the second chapter, we prove a long time existence result for the new model and we investigate the existence of solitary waves for the Boussinesq models. This work allow us to compute these solutions with a good precision. The third chapter highlights the nonlinear differences between the Boussinesq equations (amplitude-flux models versus amplitude-velocity models). Finally, the two last chapter introduce a new paradigm in order to find numerical schemes adapted to asymptotics models. The idea is to apply an asymptotic analysis to a discretized Euler system. This new paradigm is applied to Peregrine equations, Nwogu equations and Green-Naghdi equations. Test cases are presented in these two chapters
255

Étude des phénomènes d'instabilités en présence d'une suspension dans l'écoulement de Taylor-Dean / Study of instability phenomena in the presence of a suspension in the Taylor-Dean flow

Daimallah, Ahmed 21 September 2013 (has links)
La résolution analytique du problème de la stabilité d’une suspension solide (particules rigides de forme sphérique) dans le système de Taylor-Couette cylindrique a été menée. On s’est basé sur les travaux de Ali and Lueptow (2002) pour formuler les équations régissant la stabilité de l’écoulement dans le cadre d’une théorie linéaire. Ces équations sont valables dans l’approximation du faible espace annulaire et ont pour but la prévision de l’instabilité primaire. A cet effet, nous avons utilisé une méthode variationnelle telle que la méthode de Galerkin pour résoudre le problème aux valeurs propres conduisant à établir le diagramme de stabilité liée au nombre d’onde au voisinage de l’état critique du développement de la première instabilité. Tout d’abord, on a cherché à mettre au point les calculs dans le cas de l’écoulement de Taylor-Couette classique en se référant aux travaux de Ali and Lueptow (2002). Ensuite on a procédé à la résolution systématique des équations du mouvement et l’on cherche à déterminer le critère d’apparition des instabilités en présence de particules en suspension et l’on détermine simultanément les paramètres de couplage entre forces d’interaction liquide-solide. L’ensemble des travaux ainsi réalisés permettront de lever la contradiction fondamentale entre la théorie et l’expérience. L’étude expérimentale a permis d’analyser les effets de la concentration des particules en suspension (disques) et du rapport d’aspect radial ’ sur l’apparition des instabilités dans le système de Taylor-Dean. Le dispositif expérimental utilisé est constitué d’un cylindre intérieur tournant et le cylindre extérieur est maintenu fixe. Le comportement rhéologique du fluide utilisé est viscoplastique obéissant au modèle de Herschel Bulkley. L’apparition des instabilités est examinée en utilisant une technique de visualisation. Pour une concentration donnée dans l’intervalle étudié, la nature des structures apparaissant dans le système d’écoulement dépend ’, alors que pour une valeur donnée de ’ dans l’intervalle étudié, la valeur du nombre de Taylor critique Tac dépend de la concentration des particules. Nous avons obtenu que le nombre de Taylor critique Tac correspondant au déclenchement de la première instabilité évolue non linéairement en fonction de ’. De plus, nous avons examiné expérimentalement les effets de limitation axiale (effet de bords) sur le déclenchement des instabilités dans le système de Taylor-Dean. Les résultats obtenus montrent que les bords tournants n’affectent pas le type de structures qui apparaissent dans le système d’écoulement de Taylor-Dean. Cependant, ils influencent le seuil critique d’apparition des instabilités qui est marquée par des valeurs élevées du nombre de Taylor critique pour des bords tournants ce qui indique un effet stabilisant des bords mobiles. / The analytical solution of the stability problem of a solid suspension (rigid spherical particles) in the system of cylindrical Taylor-Couette was conducted. We are based on the work of Ali and Lueptow (2002) to formulate the equations governing the stability of the flow in a linear theory. These equations are valid in the approximation of small gap configuration and aim to predict the primary instability. For this purpose, we used a variational method such as the Galerkin method to solve the eigenvalue problem leading to establish the stability diagram related to the wave number in the vicinity of the critical state of development of the first instability. First, we develop the calculations in the case of Taylor-Couette flow with reference to classic work of Ali and Lueptow (2002). Then, we carried out a systematic solution of the equations of motion and we search to determine the criterion of onset of instabilities in the presence of suspended particles and coupling parameters are simultaneously determined from liquid-solid interaction force. All work carried out and will remove the fundamental contradiction between theory and experiment. The experimental study has analyzed the effect of the concentration of suspended particles (disks) and radial aspect ratio ' on the occurrence of instabilities in the Taylor-Dean flow system. The experimental device used consists of a rotating inner cylinder and the outer cylinder is stationary. The rheological behavior of the fluid is viscoplastic obeying to Herschel Bulkley model. The onset of instability is examined using a visualization technique. For a given concentration in the range studied, the nature of the structure appearing in the flow system depends on ', while for a given value of ' in the range studied, the value of the critical Taylor number Tac depends on the particle concentration. We obtain that the critical Taylor number Tac corresponding to the onset of the first instability evolves nonlinearly versus '. In addition, we examined experimentally the effect of axial limitation (endwall effects) on the onset of instabilities in the Taylor-Dean flow system. The results show that the rotating endwalls do not affect the type of structures that appear in the Taylor-Dean flow system. However, they influence the threshold of appearance of instabilities which is characterized by high values of the critical Taylor number for rotating endwalls indicating a stabilizing effect of the rotating endwalls.
256

Simulation de la propagation d'ondes élastiques en domaine fréquentiel par des méthodes Galerkine discontinues / High order discontinuous Galerkin methods for time-harmonic elastodynamics

Bonnasse-Gahot, Marie 15 December 2015 (has links)
Le contexte scientifique de cette thèse est l'imagerie sismique dont le but est de reconstituer la structure du sous-sol de la Terre. Comme le forage a un coût assez élevé, l'industrie pétrolière s'intéresse à des méthodes capables de reconstituer les images de la structure terrestre interne avant de le faire. La technique d'imagerie sismique la plus utilisée est la technique de sismique-réflexion qui est basée sur le modèle de l'équation d'ondes. L'imagerie sismique est un problème inverse qui requiert de résoudre un grand nombre de problèmes directs. Dans ce contexte, nous nous intéressons dans cette thèse à la résolution du problème direct en régime harmonique, soit à la résolution des équations d'Helmholtz. L'objectif principal est de proposer et de développer un nouveau type de solveur élément fini (EF) caractérisé par un opérateur discret de taille réduite (comparée à la taille des solveurs déjà existants) sans pour autant altérer la précision de la solution numérique. Nous considérons les méthodes de Galerkine discontinues (DG). Comme les méthodes DG classiques sont plus coûteuses que les méthodes EF continues si l'on considère un même problème à cause d'un grand nombre de degrés de liberté couplés, résultat des approximations discontinues, nous développons une nouvelle classe de méthode DG réduisant ce problème : la méthode DG hybride (HDG). Pour valider l'efficacité de la méthode HDG proposée, nous comparons les résultats obtenus avec ceux obtenus avec une méthode DG basée sur des flux décentrés en 2D. Comme l'industrie pétrolière s'intéresse au traitement de données réelles, nous développons ensuite la méthode HDG pour les équations élastiques d'Helmholtz 3D. / The scientific context of this thesis is seismic imaging which aims at recovering the structure of the earth. As the drilling is expensive, the petroleum industry is interested by methods able to reconstruct images of the internal structures of the earth before the drilling. The most used seismic imaging method in petroleum industry is the seismic-reflection technique which uses a wave equation model. Seismic imaging is an inverse problem which requires to solve a large number of forward problems. In this context, we are interested in this thesis in the modeling part, i.e. the resolution of the forward problem, assuming a time-harmonic regime, leading to the so-called Helmholtz equations. The main objective is to propose and develop a new finite element (FE) type solver characterized by a reduced-size discrete operator (as compared to existing such solvers) without hampering the accuracy of the numerical solution. We consider the family of discontinuous Galerkin (DG) methods. However, as classical DG methods are much more expensive than continuous FE methods when considering steady-like problems, because of an increased number of coupled degrees of freedom as a result of the discontinuity of the approximation, we develop a new form of DG method that specifically address this issue: the hybridizable DG (HDG) method. To validate the efficiency of the proposed HDG method, we compare the results that we obtain with those of a classical upwind flux-based DG method in a 2D framework. Then, as petroleum industry is interested in the treatment of real data, we develop the HDG method for the 3D elastic Helmholtz equations.
257

hp-Adaptive Discontinuous Galerkin Finite Element In Time For Rotor Dynamics Problem

Gudla, Pradeep Kumar 07 1900 (has links) (PDF)
No description available.
258

A Smooth Finite Element Method Via Triangular B-Splines

Khatri, Vikash 02 1900 (has links) (PDF)
A triangular B-spline (DMS-spline)-based finite element method (TBS-FEM) is proposed along with possible enrichment through discontinuous Galerkin, continuous-discontinuous Galerkin finite element (CDGFE) and stabilization techniques. The developed schemes are also numerically explored, to a limited extent, for weak discretizations of a few second order partial differential equations (PDEs) of interest in solid mechanics. The presently employed functional approximation has both affine invariance and convex hull properties. In contrast to the Lagrangian basis functions used with the conventional finite element method, basis functions derived through n-th order triangular B-splines possess (n ≥ 1) global continuity. This is usually not possible with standard finite element formulations. Thus, though constructed within a mesh-based framework, the basis functions are globally smooth (even across the element boundaries). Since these globally smooth basis functions are used in modeling response, one can expect a reduction in the number of elements in the discretization which in turn reduces number of degrees of freedom and consequently the computational cost. In the present work that aims at laying out the basic foundation of the method, we consider only linear triangular B-splines. The resulting formulation thus provides only a continuous approximation functions for the targeted variables. This leads to a straightforward implementation without a digression into the issue of knot selection, whose resolution is required for implementing the method with higher order triangular B-splines. Since we consider only n = 1, the formulation also makes use of the discontinuous Galerkin method that weakly enforces the continuity of first derivatives through stabilizing terms on the interior boundaries. Stabilization enhances the numerical stability without sacrificing accuracy by suitably changing the weak formulation. Weighted residual terms are added to the variational equation, which involve a mesh-dependent stabilization parameter. The advantage of the resulting scheme over a more traditional mixed approach and least square finite element is that the introduction of additional unknowns and related difficulties can be avoided. For assessing the numerical performance of the method, we consider Navier’s equations of elasticity, especially the case of nearly-incompressible elasticity (i.e. as the limit of volumetric locking approaches). Limited comparisons with results via finite element techniques based on constant-strain triangles help bring out the advantages of the proposed scheme to an extent.
259

Approximation Methods for Convolution Operators on the Real Line

Santos, Pedro 22 April 2005 (has links)
This work is concerned with the applicability of several approximation methods (finite section method, Galerkin and collocation methods with maximum defect splines for uniform and non uniform meshes) to operators belonging to the closed subalgebra generated by operators of multiplication bz piecewise continuous functions and convolution operators also with piecewise continuous generating function.
260

Coupling Methods for Interior Penalty Discontinuous Galerkin Finite Element Methods and Boundary Element Methods

Of, Günther, Rodin, Gregory J., Steinbach, Olaf, Taus, Matthias 19 October 2012 (has links)
This paper presents three new coupling methods for interior penalty discontinuous Galerkin finite element methods and boundary element methods. The new methods allow one to use discontinuous basis functions on the interface between the subdomains represented by the finite element and boundary element methods. This feature is particularly important when discontinuous Galerkin finite element methods are used. Error and stability analysis is presented for some of the methods. Numerical examples suggest that all three methods exhibit very similar convergence properties, consistent with available theoretical results.:1. Introduction 2. Model Problem and Background 3. New Coupling Methods 4. Stability and Error Analysis 5. Numerical Examples 6. Summary A. Appendix

Page generated in 0.0557 seconds