Spelling suggestions: "subject:"galliumnitrid"" "subject:"galliumnitride""
91 |
Ternäre Oxide zur Passivierung von GaN-basierten elektronischen BauelementenSeidel, Sarah 12 September 2023 (has links)
In der Arbeit wurden die zwei ternären Oxide GdScO3 und AlTiOx strukturell und elektrisch charakterisiert und in laterale AlGaN/GaN-MISHEMTs integriert. GdScO3 wächst hexagonal und epitaktisch bei einer Abscheidung mittels PLD bei 700°C auf einer AlGaN/GaN Heterostruktur auf. Die demonstrierten MISHEMTs zeigen einen deutlich verringerten Gate-Leckstrom. Zeit- und beleuchtungsabhängige Drain-Strom Messungen im ausgeschaltetem Transistor weisen allerdings auf photoinduzierte Trapzustände mit langer Lebensdauer im Oxid hin, die den Drain-Leckstrom limitieren. Die AlTiOx Mischoxide wurden mittels ALD abgeschieden. Dabei wurde die Stöchiometrie über das Zyklenverhältnis zwischen Al2O3 und TiO2 variiert. Es konnte gezeigt werden, dass der Brechungsindex, die Permittivität, die Bandlücke und das Bandalignment zum GaN über die Stöchiometrie eingestellt werden können. Durch die Implementierung eines high-k last Prozesses konnten schaltbare MISHEMTs prozessiert werden. Durch die Simulation der Bandstruktur konnten die Einsatzspannungsverschiebung und ein Maximum des Drain-Stroms im ausgeschaltetem Zustand über die Ermittlung der Barrierendicke für Elektronen erklärt werden. Für eine Passivierung mit TiO2 wurde ein um 2,5 Größenordnungen reduzierter Drain-Leckstrom bei gleichzeitig nur minimal verschobener Einsatzspannung gemessen.:Inhaltsverzeichnis
1 Einleitung 7
2 Grundlagen 9
2.1 Der III-V Halbleiter Galiumnitrid . . . . . . . . . . . . . . . . . . . . . 9
2.2 Der Hetero-Feldeffekttransisor . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Performance Einschränkungen am unpassivierten HFET . . . . . . . . 14
2.4 Gatedielektrika für MISHEMTs . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Verwendete Dielektrika . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Limitationen in MISHEMTs . . . . . . . . . . . . . . . . . . . . 23
2.5 Atomlagenabscheidung . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.1 Der ALD-Prozess . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.5.2 Abscheidung ternärer Verbindungen . . . . . . . . . . . . . . . . 27
3 Charakterisierungsmethoden 31
3.1 Kapazitäts-Spannungs-Messungen an MIS-Kondensatoren . . . . . . . . 31
3.2 Photo-assisted Kapazitäts-Spannungsmessungen . . . . . . . . . . . . . 34
3.3 Messungen am Transistor . . . . . . . . . . . . . . . . . . . . . . . . . 35
4 Probenherstellung 39
4.1 Atomlagenabscheidung . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Prozessoptimierung am HFET . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Mesa-Ätzung . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Formierung der ohmschen Kontakte . . . . . . . . . . . . . . . . 47
4.3 Strukturierung der Oxide . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5 Gadoliniumscandiumoxid 53
5.1 Strukturelle Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . 53
5.2 PhotoCV-Messungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 MISHEMT mit GdScO3 . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.4 Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6 Aluminium-Titanoxid Mischschichten 65
6.1 Voruntersuchungen am TiO2 . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 Strukturelle Charakterisierung an AlTiOx . . . . . . . . . . . . . . . . 67
6.2.1 Stöchiometrie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.2 Kristallisationsverhalten . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Bestimmung des Bandalignments . . . . . . . . . . . . . . . . . . . . . 72
6.3.1 UV/Vis Messungen . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.2 Röntgenphotoelektronenspektroskopie . . . . . . . . . . . . . . . 74
6.3.3 Bandalignment zum GaN . . . . . . . . . . . . . . . . . . . . . 77
6 Inhaltsverzeichnis
6.4 Elektrische Charakterisierung . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.1 CV-Messungen . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.2 IV-Messungen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.4.3 PhotoCV-Messungen . . . . . . . . . . . . . . . . . . . . . . . . 82
6.5 Zusammenfassung der AlTiOx Charakterisierung . . . . . . . . . . . . . 86
6.6 MISHEMTs mit AlTiOx . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.6.1 high-k first MISHEMTs . . . . . . . . . . . . . . . . . . . . . . . 88
6.6.2 High-k last MISHEMTs . . . . . . . . . . . . . . . . . . . . . . . 89
6.7 Einordnung der Transistorergebnisse . . . . . . . . . . . . . . . . . . . 94
7 Zusammenfassung 99
Anhang 103
Abkürzungsverzeichnis 111
Symbolverzeichnis 113
Abbildungsverzeichnis 115
Tabellenverzeichnis 121
Literatur 123
Publikationen 141
Danksagung 143
|
92 |
Energy and Charge Transfer at Hybrid Interfaces Probed by Optical SpectroscopyMutz, Niklas 30 April 2021 (has links)
Hybride anorganisch/organischen Systeme können die individuellen Vorteile, etwa eine hohe elektronische Mobilität in anorganischen und starke Licht-Materie-Wechselwirkung in organischen Halbleitern, kombinieren. Ein sinnvoller Nutzen dieser Heterostrukturen benötigt ein umfassendes Verständnis der Grenzfläche. Zwei Grenzflächenprozesse werden in dieser Arbeit behandelt.
Förster-Resonanzenergietransfer (FRET) wird zwischen einem InGaN/GaN Quantengraben und dem Polymer Cn-ether PPV untersucht. Trotz des hohen internen elektrischen Feldes im Quantengraben, ist effizienter Energietransfer möglich, solange andere nicht-strahlende Zerfallsprozesse unterdrückt werden. Dies wird mittels temperaturabhängiger PL und PLE Spektroskopie gezeigt. PLE demonstriert eine eindeutige Erhöhung der Emission des Akzeptors. Bei höheren Temperaturen dominieren nicht-strahlende Zerfallskanäle.
Ladungstransfer wird zwischen MoS2 und dem Molekül H2Pc untersucht. Die Kombination mit organischen Molekülen kann die Funktionalität von MoS2 erweitern. Photoelektronenspektroskopie (PES) zeigt einen Typ-II Heteroübergang an der MoS2/H2Pc Grenzfläche. Angeregte Elektronen gehen von den H2Pc Molekülen in die MoS2 Monolage über, wie mittels einer Verkürzung der PL Lebenszeit von H2Pc gezeigt wird. Photostrommessungen demonstrieren zudem, dass die transferierten Elektronen zu einer erhöhten Photoleitfähigkeit beitragen.
Zusätzlich werden auch einzelne 2D Übergangsmetall Dichalkogenide (TMDCs) untersucht. Um TMDCs von hoher Qualität herzustellen, wurde intern eine Wachstumsmethode entwickelt. Mittels PL Spektroskopie werden die so hergestellten Schichten charakterisiert. Die Vielseitigkeit der Methode wird anhand des Wachstums von Mischkristallen und Heterostrukturen gezeigt. Der Einfluss der dielektrischen Funktion des Substrates wird erforscht. Durch die Kombination von PES und Reflexionsmessungen kann eine gleichzeitige Abnahme sowohl der Bandlücke als auch der Exzitonen Bindungsenergie gezeigt werden. / Hybrid inorganic/organic systems can combine the advantages of both materials such as high carrier mobilities in inorganic semiconductors and large light-matter interaction in organic ones. In order to benefit from these heterostructures, a thorough understanding of the interface is needed. Two processes occurring at the interface are looked at in this thesis.
Förster resonance energy transfer (FRET) is studied between a single InGaN/GaN quantum well and the polymer Cn-ether PPV. Despite the large internal electric fields in the quantum well, efficient FRET is possible as long as other non-radiative decay channels are suppressed. This is shown by temperature dependent PL and PLE spectroscopy. PLE spectra clearly demonstrate an enhanced light emission from the acceptor. At elevated temperatures, non-radiative decay pathways become dominant.
Excited-state charge transfer is studied on MoS2 in combination with the molecule H2Pc. The combination with molecules can extend the functionality of MoS2. Photoelectron spectroscopy (PES) reveals a type II energy level alignment at the MoS2/H2Pc interface. Excited electrons are transferred from H2Pc to MoS2, deduced from a shortening of the H2Pc PL decay time. Photocurrent spectra further show that the transferred electrons contribute to an enhanced photoconductivity.
Additionally, bare 2D transition-metal dichalcogenides (TMDCs) are studied. In order to fabricate high-quality TMDC monolayers, a growth method was developed in-house. The grown monolayers are characterised by optical spectroscopy. The versatility of the method is demonstrated by the growth of alloys and heterostructures. The influence of the substrate dielectric function is investigated by comparing band-gaps measured by PES with the exciton transition energies obtained by reflectance measurements. An almost equal reduction in both energies with the substrate dielectric constant is seen.
|
93 |
Surface morphology of AlGaN/GaN heterostructures grown on bulk GaN by MBEHentschel, R., Gärtner, J., Wachowiak, A., Großer, A., Mikolajick, T., Schmult, S. 10 October 2022 (has links)
In this report the influence of the growth conditions on the surface morphology of AlGaN/GaN heterostructures grown on sapphire-based and bulk GaN substrates is nondestructively investigated with focus on the decoration of defects and the surface roughness. Under Ga-rich conditions specific types of dislocations are unintentionally decorated with shallow hillocks. In contrast, under Ga-lean conditions deep pits are inherently formed at these defect sites. The structural data show that the dislocation density of the substrate sets the limit for the density of dislocation-mediated surface structures after MBE overgrowth and no noticeable amount of surface defects is introduced during the MBE procedure. Moreover, the transfer of crystallographic information, e.g. the miscut of the substrate to the overgrown structure, is confirmed. The combination of our MBE overgrowth with the employed surface morphology analysis by atomic force microscopy (AFM) provides a unique possibility for a nondestructive, retrospective analysis of the original substrate defect density prior to device processing.
|
94 |
Extraction of the active acceptor concentration in (pseudo-) vertical GaN MOSFETs using the body-bias effectHentschel, R., Wachowiak, A., Großer, A., Kotzea, S., Debald, A., Kalisch, H., Vescan, A., Jahn, A., Schmult, S., Mikolajick, T. 10 October 2022 (has links)
We report and discuss the performance of an enhancement mode n-channel pseudo-vertical GaN metal oxide semiconductor field effect transistor (MOSFET). The trench gate structure of the MOSFET is uniformly covered with an Al₂O₃ dielectric and TiN electrode material, both deposited by atomic layer deposition (ALD). Normally-off device operation is demonstrated in the transfer characteristics. Special attention is given to the estimation of the active acceptor concentration in the Mg doped body layer of the device, which is crucial for the prediction of the threshold voltage in terms of device design. A method to estimate the electrically active dopant concentration by applying a body bias is presented. The method can be used for both pseudo-vertical and truly vertical devices. Since it does not depend on fixed charges near the channel region, this method is advantageous compared to the estimation of the active doping concentration from the absolute value of the threshold voltage.
|
95 |
Growth and characterization of M-plane GaN and (In,Ga)N/GaN multiple quantum wellsSun, Yue-Jun 06 July 2004 (has links)
Thema dieser Arbeit ist die Synthese von Wurtzit M-plane (In,Ga)N(1-100)-Heterostrukturen auf g-LiAlO2(100) mittels plasmaunterstützter Molekularstrahlepitaxie (MBE). Der Einfluß der Wachstumsbedingungen auf die strukturellen, morphologischen, und optischen Eigenschaften von M-plane GaN-Filmen werden untersucht. Ferner werden M-plane (In,Ga)N/GaN Multiquantenwells (MQWs) hergestellt und deren strukturelle und optische Eigenschaften untersucht. Schließlich wird der Einbau von Mg in M-plane GaN untersucht, um p-Typ-Leitfähigkeit zu erreichen. Die Arbeit beginnt mit einer Einführung bezüglich der Verspannung und der elektrostatischen Polarisation in Nitriden. Die Motivation fuer das Wachstum in [1-100]-Richtung anstatt in der konventionellen [0001]-Richtung ist, dass die GaN(1-100)-Flaeche nichtpolar ist, da sie aus einer gleichen Anzahl dreifach koordinierter Ga- und N-Atome aufgebaut ist. GaN ist überdies nicht piezoelektrisch in der [1-100]-Richtung. Das daraus folgende Fehlen elektrostatischer Felder in dieser Richtung stellt einen klaren Vorteil für die Leistung von GaN-basierenden hocheffizienten Leuchtdioden (LEDs) dar. Entsprechende [0001]-orientierte Strukturen, die auf konventionellen Substraten wie Al2O3 und SiC abgeschieden werden, leiden unter einer verringerten Effizienz durch die Präsenz der spontanen und piezoelektrischen Polarisation in dieser Wachstumsrichtung. Die Eigenschaften des Substrats LiAlO2 in Bezug auf das MBE-Wachstum werden anschliessend diskutiert. Es wird gezeigt, daß die thermische Stabilität von LiAlO2 fuer das MBE-Wachstum von Heterostrukturen geeignet ist. Die Polaritaet von LiAlO2 hat einen entscheidenden Einfluß auf die Phasenreinheit der GaN-Filme, und die Wahl der richtigen Polaritaet ist Voraussetzung fuer die Herstellung von einphasigen M-plane GaN-Schichten. In Kapitel 4 wird der Einfluß der Nukleationsbedingungen auf die strukturellen und morphologischen Eigenschaften von M-plane GaN-Filmen systematisch untersucht. Ferner wird die Ga-Adsorption und -Desorption ausführlich untersucht. Optimale Wachstumsbedingungen werden etabliert, die es ermoeglichen, M-plane-GaN-Schichten hoher Qualitaet reproduzierbar zu erhalten. Die Mikrostruktur der M-plane-GaN-Schichten, untersucht mittels Transmissionselektronenmikroskopie, ist durch eine hohe Dichte an Stapelfehlern als dominierenden Defekt gekennzeichnet. Vollstaendige Fadenversetzungen, die die dominanten Defekte in C-plane GaN sind, werden dagegen nicht beobachtet. Die Korrelation zwischen den Stapelfehlern und den optischen Eigenschaften der Films wird untersucht. Eine intensive Emissionslinie wird in Tieftemperatur-Photolumineszenzspektren beobachtet, die an Stapelfehlern gebundenen Exzitonen zugeordnet wird. In Kapitel 6 wird die erfolgreiche Synthese von M-plane-(In,Ga)N/GaN-MQWs beschrieben. Das Zusammensetzungsprofil dieser Strukturen wird mittels Roentgendiffraktometrie und Sekundaerionenmassenspektrometrie untersucht. Die Ergebnisse belegen eine betraechtliche Oberflaechensegregation von In, die zu einem erniedrigten In-Gehalt sowie stark verbreiterten Quantenwells führt. Der erhaltene In-Gehalt von 7% ist niedriger als derjenige (15%), der in entsprechenden C-plane-Strukturen gefunden wird, die unter identischen Bedingungen hergesellt wurden. Dieses Resultat deutet auf eine niedrigere Einbaueffizienz von In auf (1-100) verglichen mit (0001) hin. Die Abhaengigkeit der Übergangsenergien von der Quantenwellbreite dieser M-plane-MQWs belegt die Abwesenheit interner elektrostatischer Felder entlang der Wachstumsrichtung. Die Rekombinationsdynamik in diesen MQWs wird im Detail untersucht. Sie ist stark von lokalisierten Zuständen beeinflußt. Im Gegensatz zu C-plane-Strukturen, wird in diesen M-plane MQWs eine starke Polarisation der spontanen Emission in der Filmebene mit einem energieabhängigen Polarisationsgrad von bis zu 96% beobachtet. In Kapitel 7 wird der Einfluß der Wachstumstemperatur und der Stoechiometrie auf den Mg-Einbau in GaN(1-100) zur p-Dotierung untersucht. Eine Mg-Konzentration bis zu 8×1020 cm-3 kann in M-plane-GaN-Schichten ohne beobachtbare Degradation der Kristallqualität erreicht werden. Es wird sowohl eine Diffusion als auch eine Segregation von Mg in M-plane GaN beobachtet. Zusaetzlich wird eine ausgepraegte Abhaengigkeit des O-Einbaus von der Mg-Dotierung beobachtet, was auf die hohe Reaktivitaet von Mg mit O zurückgeführt wird. Sowohl optische als auch elektrische Messungen weisen darauf hin, daß Mg in diesen M-plane GaN-Schichten als Akzeptor eingebaut wird. / In this thesis, we investigate the synthesis of wurtzite M-plane (In,Ga)N(1-100) heterostructures on g-LiAlO2(100) by plasma-assisted molecular beam epitaxy (MBE). We examine the impact of growth conditions on the structural, morphological, and optical doping properties of M-plane GaN. Furthermore, we fabricate M-plane (In,Ga)N/GaN multiple quantum wells and investigate their structural and optical properties. Finally, the incorporation of Mg in $M$-plane GaN is studied to achieve p-type conductivity. We start by giving an introduction concerning strain and electrostatic polarization fields. The motivation of growth along the [1-100] direction, instead of along the conventional [0001] direction is presented. The GaN(1-100) plane is nonpolar since it is composed of equal numbers of three-fold coordinated Ga and N atoms. Furthermore, GaN is not piezoelectrically active along the [1-100] direction. The resulting absence of electrostatic fields in this direction constitutes a distinct advantage for fabricating high-efficiency light-emitting diodes(LEDs). Corresponding [0001]-oriented structures grown on conventional substrates such as Al2O3(0001) and SiC(0001), suffer from a degradation of luminescence efficiency by the presence of both spontaneous and piezoelectric polarization along the growth direction. The properties of the LiAlO2 substrate with respect to MBE growth are discussed next. The thermal stability of LiAlO2 is demonstrated to be suitable for MBE-growth of heterostructures. The polarity of LiAlO2 is found to have a crucial influence on the phase-purity of the GaN films. The synthesis of pure M-plane GaN is preferentially achieved on one face of the substrate. The impact of nucleation conditions on the structural and morphological properties of M-plane GaN films is systematically investigated. Furthermore, a comprehensive study of Ga adsorption and desorption on the M-plane is presented. Optimum growth conditions are established, and high quality M-plane GaN can be obtained reproducibly. Concerning the microstructure of our M-plane GaN layers, stacking faults are found by transmission electron microscopy (TEM) to be the dominant defects, while perfect threading dislocations, which are the dominant defects (108-1010 cm-2) in C-plane GaN, are not observed by TEM. The correlation between the stacking faults and the optical properties of the films is explored. A strong transition from excitons bound to stacking faults is observed by low temperature photoluminescence measurements. The successful synthesis of M-plane (In,Ga)N/GaN multiple quantum wells (MQWs) is demonstrated. The composition profiles of these structures are investigated by both x-ray diffractometry and secondary ion-mass spectrometry. The results reveal significant In surface segregation, resulting in a reduced In content and much wider wells than intended. The resulting In content of ~7% is lower than that obtained (~15%) for corresponding C-plane structures grown under identical conditions, suggesting a lower In incorporation efficiency on the (1-100) plane compared to the (0001) plane. The dependence of the transition energies on the well thickness of these M-plane quantum wells evidences the absence of internal electrostatic fields along this growth direction. The recombination dynamics in these MQWs is investigated in detail, and is found to be strongly influenced by localized states. Furthermore, in contrast to C-plane (0001) structures, a strong in-plane anisotropy of the spontaneous emission with an energy-dependent polarization degree of up to 96% is observed in the M-plane (In,Ga)N/GaN MQWs. Finally, the impact of the growth temperature and stoichiometry on the Mg incorporation in GaN(1-100) is investigated. Mg doping levels up to 8×1020 cm-3 can be obtained in M-plane GaN, with no observed degradation in crystal quality. Both Mg diffusion and surface segregation in M-plane GaN are observed. In addition, a pronounced dependence of the O incorporation on the Mg doping is observed, and attributed to the high reactivity of Mg with O. Both optical and electrical measurements indicate that Mg acts as an acceptor in the Mg-doped M-plane layers.
|
96 |
Transmission electron microscopy studies of GaN/gamma-LiAlO 2 heterostructuresLiu, Tian-Yu 15 June 2005 (has links)
Die vorliegende Arbeit beschaeftigt sich mit dem strukturellen Aufbau von (1-100) M-plane GaN, das mit plasmaunterstuetzter Molekularstrahlepitaxie auf gamma-LiAlO2(100) Substraten gewachsen wurde. Die heteroepitaktische Ausrichtung einerseits, sowie die Mikrostruktur und die Erzeugungsmechanismen der Defekte andererseits, wurde mit der Transmissionselektronenemikroskopie (TEM) systematisch untersucht. Das gamma-LiAlO2 Substrat reagiert heftig im Mikroskop unter Bestrahlung mit hochenergetischen Elektronen. Waehrend dieser Strahlenschaedigung verliert das Material seine urspruengliche kristalline Struktur und vollzieht eine Phasentransformation, die anhand einer Serie von Feinbereichsbeugungsdiagrammen nachgewiesen werden konnte. Die atomare Grenzflaechenstruktur zwischen epitaktisch gewachsenem alpha-GaN(1-100) und tetragonalem gamma-LiAlO2 Substrat ist mittels HRTEM untersucht worden. Die neuartige Epitaxiebeziehung ist mit Elektronenbeugung bestaetigt worden und lautet folgendermassen: (1-100)GaN liegt parallel zu (100)gamma-LiAlO2 und [11-20]GaN ist parallel zu [001]gamma-LiAlO2. Die Realstruktur der M-plane GaN Schichten, die auf (100)gamma-LiAlO2 gewachsen werden, unterscheidet sich erheblich von der in C-plane Orientierung hergestellten Epischichten. Ausfuehrliche TEM Untersuchungen zeigen, dass die M-plane Schichten vor allem intrinsische (I1 und I2) und extrinsische (E) Stapelfehler in der Basalebene enthalten. Der vorherrschende I2 Stapelfehler besitzt keine Komponente des Verschiebungsvektors senkrecht zur Ebene und ist damit nicht geeignet, epitaktische Dehnung entlang der [11-20] Richtung abzubauen. Darueberhinaus ist eine komplexe Grenze in der (10-10) Prismen- flaeche entdeckt worden, die zur Grenzflaeche geneigt verlaeuft. Die Defekte in den M-plane GaN Epischichten werden waehrend der anfaenglichen Keimbildungsphase erzeugt. Atomare Stufen entlang der [001] Richtung auf dem LiAlO2 Substrat fuehren zur Bildung von Stapelfehlern vom Typ I2. / In this work the structure of (1-100)M-plane GaN epitaxially grown on gamma-LiAlO2(100) by using plasmaassisted molecular beam epitaxy (PAMBE) is studied. The heteroepitaxial alignment and the microstructure of M-plane GaN as well as the defect formation in the layer are systematically investigated by using transmission electron microscopy (TEM). The gamma-LiALO2 substrate reacts under irradiation of high-energy electrons in the TEM (200-300 keV).The material looses its original crystalline structure during this process undergoing irradiation damage followed by a phase transformation as it is verified by a series of selected area diffraction patterns taken under constant electron dose. The result is a structural phase transformation from the tetragonal gamma to the trigonal alpha phase. The atomic interface structure of epitaxially grown hexagonal alpha-GaN(1-100) layers on tetragonal gamma-LiAlO2 (100) substrates is investigated by means of HRTEM. The novel epitaxial orientation relationship verified by electron diffraction is given by (1-100)GaN parallel to (100)gamma-LiAlO2 and [11-20]GaN parallel to [001]gamma-LiAlO2. The defect structure of M-plane GaN epilayers grown on gamma-LiAlO2(100) substrates is different to that of C-plane GaN. Our detailed TEM studies reveal that the M-plane layers mainly contain intrinsic I1 and I2 and extrinsic E basal plane stacking faults. The dominant I2 stacking fault has no out-of-plane displacement vector component and is thus not qualified for epitaxial strain relief along the [11-20] axis. Beyond this, a complex type of planar defect is detected in the (10-10) prism plane which is inclined with respect to the interface. The study of nucleation samples shows that the surface morphology is directly correlated to the generation of the dominant planar defects. Atomic steps along the [001] direction in the gamma-LiAlO2 substrate result in the formation of basal plane stacking faults I2.
|
97 |
Control of the emission wavelength of gallium nitride-based nanowire light-emitting diodesWölz, Martin 12 June 2013 (has links)
Halbleiter-Nanosäulen (auch -Nanodrähte) werden als Baustein für Leuchtdioden (LEDs) untersucht. Herkömmliche LEDs aus Galliumnitrid (GaN) bestehen aus mehreren Kristallschichten auf einkristallinen Substraten. Ihr Leistungsvermögen wird durch Gitterfehlpassung und dadurch hervorgerufene Verspannung, piezoelektrische Felder und Kristallfehler beschränkt. GaN-Nanosäulen können ohne Kristallfehler auf Fremdsubstraten gezüchtet werden. Verspannung wird in Nanosäulen elastisch an der Oberfläche abgebaut, dadurch werden Kristallfehler und piezoelektrische Felder reduziert. In dieser Arbeit wurden GaN-Nanosäulen durch Molukularstrahlepitaxie katalysatorfrei gezüchtet. Eine Machbarkeitsstudie über das Kristallwachstum von Halbleiter-Nanosäulen auf Metall zeigt, dass GaN-Nanosäulen in hoher Kristallqualität ohne einkristallines Substrat epitaktisch auf Titanschichten gezüchtet werden können. Für das Wachstum axialer (In,Ga)N/GaN Heterostrukturen in Nanosäulen wurden quantitative Modelle entwickelt. Die erfolgreiche Herstellung von Nanosäulen-LEDs auf Silizium-Wafern zeigt, dass dadurch eine Kontrolle der Emissionswellenlänge erreicht wird. Die Gitterverspannung der Heterostrukturen in Nanosäulen ist ungleichmäßig aufgrund des Spannungsabbaus an den Seitenwänden. Das katalysatorfreie Zuchtverfahren führt zu weiteren statistischen Schwankungen der Nanosäulendurchmesser und der Abschnittlängen. Die entstandene Zusammensetzung und Verspannung des (In,Ga)N-Mischkristalls wird durch Röntgenbeugung und resonant angeregte Ramanspektroskopie ermittelt. Infolge der Ungleichmäßigkeiten erfordert die Auswertung genaue Simulationsrechnungen. Eine einfache Näherung der mittleren Verspannung einzelner Abschnitte kann aus den genauen Rechnungen abgeleitet werden. Gezielte Verspannungseinstellung erfolgt durch die Wahl der Abschnittlängen. Die Wirksamkeit dieses allgemeingültigen Verfahrens wird durch die Bestimmung der Verspannung von (In,Ga)N-Abschnitten in GaN-Nanosäulen gezeigt. / Semiconductor nanowires are investigated as a building block for light-emitting diodes (LEDs). Conventional gallium nitride (GaN) LEDs contain several crystal films grown on single crystal substrates, and their performance is limited by strain-induced piezoelectric fields and defects arising from lattice mismatch. GaN nanowires can be obtained free of defects on foreign substrates. In nanowire heterostructures, the strain arising from lattice mismatch can relax elastically at the free surface. Crystal defects and piezoelectric fields can thus be reduced. In this thesis, GaN nanowires are synthesized in the self-induced way by molecular beam epitaxy. A proof-of-concept study for the growth of semiconductor nanowires on metal shows that GaN nanowires grow epitaxially on titanium films. GaN of high crystal quality is obtained without a single crystal substrate. Quantitative models for the growth of axial (In,Ga)N/GaN nanowire heterostructures are developed. The successful fabrication of nanowire LED devices on silicon wafers proves that these models provide control over the emission wavelength. In the (In,Ga)N/GaN nanowire heterostructures, strain is non-uniform due to elastic relaxation at the sidewalls. Additionally, the self-induced growth leads to statistical fluctuations in the diameter and length of the GaN nanowires, and in the thickness of the axial (In,Ga)N segments. The (In,Ga)N crystal composition and lattice strain are analyzed by x-ray diffraction and resonant Raman spectroscopy. Due to the non-uniformity in strain, detailed numerical simulations are required to interpret these measurements. A simple approximation for the average strain in the nanowire segments is derived from the detailed numerical calculation. Strain engineering is possible by defining the nanowire segment lengths. Simulations of resonant Raman spectra deliver the experimental strain of (In,Ga)N segments in GaN nanowires, and give a proof of this universal concept.
|
98 |
Growth, fabrication, and investigation of light-emitting diodes based on GaN nanowiresMusolino, Mattia 04 January 2016 (has links)
Diese Arbeit gibt einen tiefgehenden Einblick in verschiedene Aspekte von auf (In,Ga)N/GaN Heterostrukturen basierenden Leuchtdioden (LEDs), mittels Molekularstrahlepitaxie entlang der Achse von Nanodrähten (NWs) auf Si Substraten gewachsen. Insbesondere wurden die Wachstumsparameter angepasst, um eine Koaleszierung der Nanodrähte zu vermindern. Auf diese Weise konnte die durch die NW-LEDs emittierte Intensität der Photolumineszenz (PL) um einen Faktor zehn erhöht werden. Die opto-elektronischen Eigenschaften von NW-LEDs konnten durch die Verwendung von Indiumzinoxid, anstatt von Ni/Au als Frontkontakt, verbessert werden. Zudem wurde demonstriert, dass auch selektives Wachstum (SAG) von GaN NWs auf AlN gepufferten Si Substraten mit einer guten Leistungsfähigkeit von Geräte vereinbar ist und somit als Wegbereiter für eine neue Generation von NW-LEDs auf Si dienen kann. Weiterhin war es möglich, strukturierte Felder von ultradünnen NWs durch SAG und thermische in situ Dekomposition herzustellen. In den durch die NW-LEDs emittierten Elektrolumineszenzspektren (EL) wurde eine Doppellinenstruktur beobachtet, die höchstwahrscheinlich von den kompressiven Verspannungen im benachbarten Quantentopf, durch die Elektronensperrschicht verursachten, herrührt. Die Analyse von temperaturabhängigen PL- und EL-Messungen zeigt, dass Ladungsträgerlokalisierungen nicht ausschlaggebend für die EL-Emission von NW-LEDs sind. Die Strom-Spannungs-Charakteristiken (I-V) von NW-LEDs unter Vorwärtsspannung wurden mittels eines Modells beschrieben, in das die vielkomponentige Natur der LEDs berücksichtigt wird. Die unter Rückwärtsspannung aktiven Transportmechanismen wurden anhand von Kapazitätstransientenmessungen und temperaturabhänigigen I-V-Messungen untersucht. Dann wurde ein physikalisches Modell zur quantitativen Beschreibung der besonderen I-V-T Charakteristik der untersuchten NW-LEDs entwickelt. / This PhD thesis provides an in-depth insight on various crucial aspects of light-emitting diodes (LEDs) based on (In,Ga)N/GaN heterostructures grown along the axis of nanowires (NWs) by molecular beam epitaxy on Si substrates. In particular, the growth parameters are adjusted so as to suppress the coalescence of NWs; in this way the photoluminescence (PL) intensity emitted from the NW-LEDs can be increased by about ten times. The opto-electronic properties of the NW-LEDs can be further improved by exclusively employing indium tin oxide instead of Ni/Au as top contact. Furthermore, the compatibility of selective-area growth (SAG) of GaN NWs on AlN-buffered Si substrates with device operation is demonstrated, thus paving the way for a new generation of LEDs based on homogeneous NW ensembles on Si. Ordered arrays of ultrathin NWs are also successfully obtained by combining SAG and in situ post-growth thermal decomposition. A double-line structure is observed in the electroluminescence (EL) spectra emitted by the NW-LEDs; it is likely caused by compressive strain introduced by the (Al,Ga)N electron blocking layer in the neighbouring (In,Ga)N quantum well. An in-depth analysis of temperature dependent PL and EL measurements indicates that carrier localization phenomena do not dominate the EL emission properties of the NW-LEDs. The forward bias current-voltage (I-V) characteristics of different NW-LEDs are analysed by means of an original model that takes into account the multi-element nature of LEDs based on NW ensembles by assuming a linear dependence of the ideality factor on applied bias. The transport mechanisms in reverse bias regime are carefully studied by means of deep level transient spectroscopy (DLTS) and temperature dependent I-V measurements. The physical origin of the detected deep states is discussed. Then, a physical model able to describe quantitatively the peculiar I-V-T characteristics of NW-LEDs is developed.
|
99 |
Reaktive Molekularstrahlepitaxie und Charakterisierung von GaN/(Al,Ga)N-Heterostrukturen auf SiC(0001)Thamm, Andreas 17 September 2001 (has links)
Thema dieser Arbeit ist die Synthese von hexagonalen GaN/(Al,Ga)N-Heterostrukturen mittels reaktiver Molekularstrahlepitaxie (MBE) auf SiC(0001)-Substraten. Der Einfluß der Wachstumsbedingungen auf die strukturellen, morphologischen, optischen und elektrischen Eigenschaften der Proben wird untersucht. Die reaktive MBE von Gruppe-III-Nitriden nutzt die katalytische Dekomposition von NH3 als Stickstoff-Precursor. Im Vergleich zur plasma-unterstützten MBE und metall-organischen Gasphasenepitaxie (MOCVD) ist dieses Abscheideverfahren eine noch wenig etablierte Methode, um kristalline (Al,Ga)N-basierende Heterostrukturen herzustellen. Es wird eine Einführung in das Verfahren und die Oberflächenchemie der reaktiven MBE gegeben. Die Synthese von (Al,Ga)N-Pufferschichten auf SiC(0001) wird diskutiert. Eine Prozedur zur Präparation der SiC-Substrate wird vorgestellt. Eine Methode zur in situ-Kontrolle der Wachstumsparameter wird erarbeitet, die auf der Beugung von hochenergetischen Elektronen (RHEED) beruht und ein reproduzierbares (Al,Ga)N-Wachstum ermöglicht. Die Pufferschichten haben atomar glatte Oberflächen, die sich für eine weitere Abscheidung von GaN/(Al,Ga)N-Heterostrukturen eignen. Es werden die strukturellen und optischen Eigenschaften solcher Strukturen studiert und mit Proben verglichen, die mittels plasma-unterstützter MBE und MOCVD hergestellt werden. Im Vergleich zu den übrigen III-V-Halbleitern zeichnen sich die hexagonalen Nitride besonders durch die Größe ihrer elektrischen Polarisationsfelder aus. GaN/(Al,Ga)N-Multiquantenwell-Strukturen (MQWs) mit unterschiedlichen Well-Dicken werden auf GaN- und (Al,Ga)N-Pufferschichten gewachsen. Es werden die Auswirkungen der spontanen Polarisation und Piezopolarisation auf die optischen Eigenschaften der MQWs studiert. Im speziellen wird - experimentell und theoretisch - gezeigt, daß die polarisationsbedingten elektrischen Felder in GaN/(Al,Ga)N-MQWs nicht durch hohe Dichten von freien Ladungsträgern abgeschirmt werden können. Ferner wird der Einfluß der GaN/(Al,Ga)N-Grenzflächenmorphologie auf die optischen Eigenschaften studiert. Das Wachstum von (Al,Ga)N/GaN-Heterostruktur-Feldeffekt-Transistoren (HFETs) auf semiisolierenden (Al,Ga)N-Puffern wird untersucht. Diese Heterostrukturen zeichnen sich durch eine geringe Dichte an Fadenversetzungen (1-2 x 108 cm-2) und durch das Fehlen jeglicher Parallelleitfähigkeit aus. Für diese Strukturen, die Beweglichkeiten von bis zu 750 cm2/Vs bei Raumtemperatur zeigen, werden Simulationen der temperaturabhängigen Beweglichkeiten unter Beachtung aller wichtigen Streumechanismen durchgeführt. In Übereinstimmung mit der Sekundärionenspektrometrie an diesen Proben wird belegt, daß die Transistoreigenschaften dominant durch tiefe Störstellen - sehr wahrscheinlich As - begrenzt werden. Es wird die Synthese von spannungskompensierten GaN/(Al,Ga)N-Bragg-Reflektoren mit Reflektivitäten von über 90% im blauen Spektralbereich vorgestellt. Die experimentelle Realisierung basiert auf der exakten Bestimmung der individuellen Schichtdicken durch die Simulation der gemessenen Röntgenbeugungsprofile und Reflektivitätsspektren. Die mittels Laserstreuung abgeschätzten Reflektivitätsverluste können durch NH3-reiche Synthesebedingungen reduziert werden. / In this thesis, we investigate the synthesis of wurtzite (Al,Ga)N heterostructures on SiC(0001) by reactive molecular beam epitaxy (MBE). We examine the impact of growth conditions on the structural, morphological, optical and electrical properties of the films. MBE of group-III nitrides is almost entirely based on the use of an N2 plasma discharge for providing reactive N. However, an alternative and attractive candidate for producing N radicals is NH3, which decomposes on the growth front by a catalytic reaction even at comparatively low temperatures. The basic growth technique and surface chemistry of reactive MBE is introduced. The deposition of (Al,Ga)N buffer layers on SiC(0001) substrates is discussed. An ex-situ cleaning procedure for the SiC substrates is presented. An in-situ method for the reproducible growth of these buffers layers is developed based on reflection high-energy electron diffraction (RHEED). The layers have atomically smooth surfaces well suited for the growth of GaN/(Al,Ga)N heterostructures. The structural and optical properties of these buffers are compared to such layers grown by plasma-assisted MBE and metal organic vapor phase deposition (MOCVD), respectively. Compared to other III-V semiconductors hexagonal nitrides exhibit huge electrical polarization fields. GaN/(Al,Ga)N multiple quantum wells (MQWs) with different well thicknesses are deposited on GaN and (Al,Ga)N buffer layers, respectively. It is demonstrated that the electric field in the quantum wells (QWs) leads to a quantum-confined Stark shift of the QW emission, which thus can fall well below the bulk GaN band-gap energy. In the opposite, it is proved that the strain state of the QWs alone has little impact on the electric fields in MQWs. The optical properties of these heterostructures are studied by stationary and time-resolved photoluminescence and compared with the results of self-consistent Schrödinger-Poisson calculations. It is shown that the recombination dynamics in heavily doped MQWs (7 x 1018 cm-3) is still controlled by residual fields, contrary to the common assumption that flat-band conditions are achieved at this doping level. Furthermore, the influence of the interface roughness on the QW emission widths is analyzed. The growth of (Al,Ga)N/GaN heterostructure field effect transistors (HFETs) on semi-insulating (Al,Ga)N buffers is studied. Temperature dependent Hall measurements show a mobility of up to 750 cm2/Vs and 1400 cm2/Vs at 300 K and 77 K, respectively. Transmission electron microscopy reveals the (Al,Ga)N/GaN interface to be abrupt and the dislocation density to be too low to limit the HFET mobility. However, secondary ion mass spectroscopy detects a significant concentration of As in the channel region. Indeed, an excellent fit to the temperature dependence of the mobility is obtained by including scattering with As. The synthesis and analysis of highly reflective and conductive GaN/(Al,Ga)N Bragg reflectors is examined. The realization of these Bragg mirrors is based on the exact determination of the structural parameters by simulating x-ray diffraction profiles and corresponding reflectivity spectra. To prevent cracking from these thick stacks, a concept of strain-balanced multilayer structure is employed. It is demonstrated that the difference between the theoretical and the measured maximum reflectivity can be minimized by growing the Bragg mirrors under NH3 stable growth conditions.
|
100 |
GaN:Gd - Ein verdünnter magnetischer Halbleiter? / GaN:Gd - A dilute magnetic semiconductor?Röver, Martin 18 October 2010 (has links)
No description available.
|
Page generated in 0.0353 seconds