• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 12
  • 4
  • 2
  • Tagged with
  • 36
  • 24
  • 17
  • 15
  • 15
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 10
  • 10
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The Organic Permeable Base Transistor:: Operation Principle and Optimizations

Kaschura, Felix 25 September 2017 (has links)
Organic transistors are a core component for basically all relevant types of fully organic circuits and consumer electronics. The Organic Permeable Base Transistor (OPBT) is a transistor with a sandwich geometry like in Organic Light Emitting Diodes (OLEDs) and has a vertical current transport. Therefore, it combines simple fabrication with high performance due its short transit paths and has a fairly good chance of being used in new organic electronics applications that have to fall back to silicon transistors up to now. A detailed understanding of the operation mechanism that allows a targeted engineering without trial-and-error is required and there is a need for universal optimization techniques which require as little effort as possible. Several mechanisms that explain certain aspects of the operation are proposed in literature, but a comprehensive study that covers all transistor regimes in detail is not found. High performances have been reported for organic transistors which are, however, usually limited to certain materials. E. g., n-type C60 OPBTs are presented with excellent performance, but an adequate p-type OPBT is missing. In this thesis, the OPBT is investigated under two aspects: Firstly, drift-diffusion simulations of the OPBT are evaluated. By comparing the results from different geometry parameters, conclusions about the detailed operation mechanism can be drawn. It is discussed where charge carriers flow in the device and which parameters affect the performance. In particular, the charge carrier transmission through the permeable base layer relies on small openings. Contrary to an intuitive view, however, the size of these openings does not limit the device performance. Secondly, p-type OPBTs using pentacene as the organic semiconductor are fabricated and characterized with the aim to catch up with the performance of the n-type OPBTs. It is shown how an additional seed-layer can improve the performance by changing the morphology, how leakage currents can be defeated, and how parameters like the layer thickness should be chosen. With the combination of all presented optimization strategies, pentacene OPBTs are built that show a current density above 1000 mA/cm^2 and a current gain of 100. This makes the OPBT useful for a variety of applications, and also complementary logic circuits are possible now. The discussed optimization strategies can be extended and used as a starting point for further enhancements. Together with the deep understanding obtained from the simulations, purposeful modifications can be studied that have a great potential.:1 Introduction and Motivation 2 Theory 2.1 Organic Semiconductors 2.1.1 Organic Molecules and Solids 2.1.2 Charge Carrier Transport 2.1.3 Charge Carrier Injection 2.1.4 Doping 2.2 Organic Permeable Base Transistors 2.2.1 Structure 2.2.2 Basic Operation Principle 3 Overview of Different Transistor Architectures 3.1 Organic Field Effect Transistors 3.2 Organic Permeable Base Transistors 3.2.1 Development of the Permeable Base Transistor 3.2.2 Optimization Strategies 3.3 Comparison to Inorganic Transistors 3.4 Other Emerging Transistor Concepts 3.4.1 OSBT 3.4.2 Step-Edge OFET 3.4.3 VOFET 3.4.4 IGZO Devices 4 Experimental 4.1 Materials and their Properties 4.1.1 Pentacene 4.1.2 F6TCNNQ 4.1.3 Aluminum Oxide 4.2 Fabrication 4.2.1 Thermal Vapor Deposition 4.2.2 Chamber Details and Processing Procedure 4.2.3 Sample Structure 4.3 Characterization Methods and Tools 4.3.1 Electrical Characterization 4.3.2 Morphology 4.3.3 XPS 5 Simulations and Working Mechanism 5.1 Simulation Setup 5.1.1 Overview 5.1.2 OPBT Model 5.1.3 Drift-Diffusion Solver 5.1.4 Post-Processing of Simulation Data 5.2 Basic Concept 5.2.1 Base Sweep Regions 5.2.2 Correlation with charge carrier density and potential 5.3 Charge Carrier Accumulation 5.3.1 Accumulation at Emitter and Collector 5.3.2 Current Flow 5.3.3 Area contributing to the current flow 5.4 Current Limitation Mechanisms 5.4.1 Varying Size of the Opening 5.4.2 Channel Potential 5.4.3 Limitation of Base-Emitter Transport 5.4.4 Intrinsic Layer Variation 5.5 Opening Shapes 5.5.1 Cylindrical Opening and Symmetry 5.5.2 Truncated Cone Setup 5.6 Base Leakage Currents 5.6.1 Description of the Insulator 5.6.2 Top and Bottom Contribution 5.6.3 Validity of Calculation 5.7 Analytical Description of the OPBT base sweep 5.7.1 Description of operation regions 5.7.2 Transition Voltages and Full Characteristics 5.7.3 Comparison to Experiment 5.8 Output Characteristics 5.8.1 Saturation region 5.8.2 Linear region 5.8.3 Intrinsic Gain 5.9 Summary of Operation Mechanism 6 Nin-Devices and Structuring 6.1 Effect of Accumulation and Scalability 6.1.1 Active Area and Electrode Overlap 6.1.2 Indirect Structuring 8 Contents 6.1.3 Four-Wire Measurement 6.1.4 Pulsed Measurements 6.2 Mobility Measurement 6.2.1 Mobility Extraction from a Single IV Curve 6.2.2 Verification of the SCLC using Thickness Variations 6.3 Geometric Diode 7 Optimization of p-type Permeable Base Transistors 7.1 Introduction to p-type Devices 7.2 Characteristics of OPBTs 7.2.1 Diode characteristics 7.2.2 Base sweep 7.2.3 Output characteristics 7.3 Seed-Layer 7.3.1 Process of Opening Formation 7.3.2 Performance using different Seed-Layers 7.4 Built-in field 7.4.1 Effect on Performance 7.4.2 Explanation for the Transmission Improvement 7.5 Base Insulation 7.5.1 Importance of Base Insulation 7.5.2 Additional Insulating Layers and Positioning 7.5.3 Enhancement of Native Aluminum Oxide 7.6 Complete Optimization 7.6.1 Indirect Structuring in OPBTs 7.6.2 Combination of different Optimization Techniques 7.7 Potential of the Technology 7.7.1 Future Improvements 7.7.2 Achievable Performance 7.8 Demonstration of the Organic Permeable Base Transistor 7.8.1 Simple OLED driver 7.8.2 An Astable Oscillator using p-type OPBTs 7.8.3 An OLED Driver using n-type OPBTs controlled by Organic Solar Cells 8 Conclusion / Organische Transistoren stellen eine Kernkomponente für praktisch jede Art von organischen Schaltungen und Elektronikgeräten dar. Der “Organic Permeable Base Transistor” (OPBT, dt.: Organischer Transistor mit durchlässiger Basis) ist ein Transistor mit einem Schichtaufbau wie in organischen Leuchtdioden (OLEDs) und weist einen vertikalen Stromfluss auf. Somit wird eine einfache Herstellung mit gutem Verhalten und Leistungsfähigkeit kombiniert, welche aus den kurzen Weglängen der Ladungsträger resultiert. Damit ist der OPBT bestens für neuartige organische Elektronik geeignet, wofür andernfalls auf Siliziumtransistoren zurückgegriffen werden müsste. Notwendig sind ein tiefgehendes Verständnis der Funktionsweise, welches ein zielgerichtetes Entwickeln der Technologie ohne zahlreiche Fehlversuche ermöglicht, sowie universell einsetzbare und leicht anwendbare Optimierungsstrategien. In der Literatur werden einige Mechanismen vorgeschlagen, die Teile der Funktionsweise betrachten, aber eine umfassende Untersuchung, die alle Arbeitsbereiche des Transistors abdeckt, findet sich derzeit noch nicht. Ebenso gibt es einige Veröffentlichungen, die Transistoren mit hervorragender Leistungsfähigkeit zeigen, aber meist nur mit Materialien für einen Ladungsträgertyp erzielt werden. So gibt es z.B. n-typ OPBTs auf Basis von C60, für die bisher vergleichbare p-typ OPBTs fehlen. In dieser Arbeit werden daher die folgenden beiden Aspekte des OPBT untersucht: Einerseits werden Drift-Diffusions-Simulationen von OPBTs untersucht und ausgewertet. Kennlinien und Ergebnisse von Transistoren aus verschiedenen Parametervariationen können verglichen werden und erlauben damit Rückschlüsse auf verschiedenste Aspekte der Funktionsweise. Der Fluss der Ladungsträger sowie für die Leistungsfähigkeit wichtige Parameter werden besprochen. Insbesondere sind für die Transmission von Ladungsträgern durch die Basisschicht kleine Öffnungen in dieser nötig. Die Größe dieser Öffnungen stellt jedoch entgegen einer intuitiven Vorstellung keine Begrenzung für die erreichbaren Ströme dar. Andererseits werden p-typ OPBTs auf Basis des organischen Halbleiters Pentacen hergestellt und charakterisiert. Das Ziel ist hierbei die Leistungsfähigkeit an die n-typ OPBTs anzugleichen. In dieser Arbeit wird gezeigt, wie durch eine zusätzliche Schicht die Morphologie und die Transmission verbessert werden kann, wie Leckströme reduziert werden können und welche Parameter bei der Optimierung besondere Beachtung finden sollten. Mit all den Optimierungen zusammen können Pentacen OPBTs hergestellt werden, die Stromdichten über 1000 mA/cm^2 und eine Stromverstärkung über 100 aufweisen. Damit kann der OPBT für eine Vielzahl von Anwendungen eingesetzt werden, unter anderem auch in Logik-Schaltungen zusammen mit n-typ OPBTs. Die besprochenen Optimierungen können weiterentwickelt werden und somit als Startpunkt für anschließende Verbesserungen dienen. In Verbindung mit erlangten Verständnis aus den Simulationsergebnissen können somit aussichtsreiche Veränderungen an der Struktur des OPBTs zielgerichtet eingeführt werden.:1 Introduction and Motivation 2 Theory 2.1 Organic Semiconductors 2.1.1 Organic Molecules and Solids 2.1.2 Charge Carrier Transport 2.1.3 Charge Carrier Injection 2.1.4 Doping 2.2 Organic Permeable Base Transistors 2.2.1 Structure 2.2.2 Basic Operation Principle 3 Overview of Different Transistor Architectures 3.1 Organic Field Effect Transistors 3.2 Organic Permeable Base Transistors 3.2.1 Development of the Permeable Base Transistor 3.2.2 Optimization Strategies 3.3 Comparison to Inorganic Transistors 3.4 Other Emerging Transistor Concepts 3.4.1 OSBT 3.4.2 Step-Edge OFET 3.4.3 VOFET 3.4.4 IGZO Devices 4 Experimental 4.1 Materials and their Properties 4.1.1 Pentacene 4.1.2 F6TCNNQ 4.1.3 Aluminum Oxide 4.2 Fabrication 4.2.1 Thermal Vapor Deposition 4.2.2 Chamber Details and Processing Procedure 4.2.3 Sample Structure 4.3 Characterization Methods and Tools 4.3.1 Electrical Characterization 4.3.2 Morphology 4.3.3 XPS 5 Simulations and Working Mechanism 5.1 Simulation Setup 5.1.1 Overview 5.1.2 OPBT Model 5.1.3 Drift-Diffusion Solver 5.1.4 Post-Processing of Simulation Data 5.2 Basic Concept 5.2.1 Base Sweep Regions 5.2.2 Correlation with charge carrier density and potential 5.3 Charge Carrier Accumulation 5.3.1 Accumulation at Emitter and Collector 5.3.2 Current Flow 5.3.3 Area contributing to the current flow 5.4 Current Limitation Mechanisms 5.4.1 Varying Size of the Opening 5.4.2 Channel Potential 5.4.3 Limitation of Base-Emitter Transport 5.4.4 Intrinsic Layer Variation 5.5 Opening Shapes 5.5.1 Cylindrical Opening and Symmetry 5.5.2 Truncated Cone Setup 5.6 Base Leakage Currents 5.6.1 Description of the Insulator 5.6.2 Top and Bottom Contribution 5.6.3 Validity of Calculation 5.7 Analytical Description of the OPBT base sweep 5.7.1 Description of operation regions 5.7.2 Transition Voltages and Full Characteristics 5.7.3 Comparison to Experiment 5.8 Output Characteristics 5.8.1 Saturation region 5.8.2 Linear region 5.8.3 Intrinsic Gain 5.9 Summary of Operation Mechanism 6 Nin-Devices and Structuring 6.1 Effect of Accumulation and Scalability 6.1.1 Active Area and Electrode Overlap 6.1.2 Indirect Structuring 8 Contents 6.1.3 Four-Wire Measurement 6.1.4 Pulsed Measurements 6.2 Mobility Measurement 6.2.1 Mobility Extraction from a Single IV Curve 6.2.2 Verification of the SCLC using Thickness Variations 6.3 Geometric Diode 7 Optimization of p-type Permeable Base Transistors 7.1 Introduction to p-type Devices 7.2 Characteristics of OPBTs 7.2.1 Diode characteristics 7.2.2 Base sweep 7.2.3 Output characteristics 7.3 Seed-Layer 7.3.1 Process of Opening Formation 7.3.2 Performance using different Seed-Layers 7.4 Built-in field 7.4.1 Effect on Performance 7.4.2 Explanation for the Transmission Improvement 7.5 Base Insulation 7.5.1 Importance of Base Insulation 7.5.2 Additional Insulating Layers and Positioning 7.5.3 Enhancement of Native Aluminum Oxide 7.6 Complete Optimization 7.6.1 Indirect Structuring in OPBTs 7.6.2 Combination of different Optimization Techniques 7.7 Potential of the Technology 7.7.1 Future Improvements 7.7.2 Achievable Performance 7.8 Demonstration of the Organic Permeable Base Transistor 7.8.1 Simple OLED driver 7.8.2 An Astable Oscillator using p-type OPBTs 7.8.3 An OLED Driver using n-type OPBTs controlled by Organic Solar Cells 8 Conclusion
32

Feldeffekttransistoren auf Basis von Kohlenstoffnanoröhrchen: Vergleich zwischen atomistischer Simulation und Bauelementesimulation

Fuchs, Florian 16 December 2014 (has links) (PDF)
Kohlenstoffnanoröhrchen (CNTs) sind vielversprechende Kandidaten für neuartige nanoelektronische Bauelemente, wie zum Beispiel Transistoren für Hochfrequenzanwendungen. Simulationen CNT-basierter Bauelemente sind dabei unverzichtbar, um deren Anwendungspotential und das Verhalten in Schaltungen zu untersuchen. Die vorliegende Arbeit konzentriert sich auf einen Methodenvergleich zwischen einem atomistischen Ansatz basierend auf dem Nichtgleichgewichts-Green-Funktionen-Formalismus und einem Modell zur numerischen Bauelementesimulation, welches auf der Schrödinger-Gleichung in effektiver-Massen-Näherung basiert. Ein Transistor mit zylindrischem Gate und dotierten Kontakten wird untersucht, wobei eine effektive Dotierung genutzt wird. Es wird gezeigt, dass die Beschränkungen des elektronischen Transports durch Quan- teneffekte im Kanal nur mit dem atomistischen Ansatz beschrieben werden können. Diese Effekte verhindern das Auftreten von Band-zu-Band-Tunnelströmen, die bei der numerischen Bauelementesimulation zu größeren Aus-Strömen und einem leicht ambipolaren Verhalten führen. Das Schaltverhalten wird hingegen von beiden Modellen vergleichbar beschrieben. Durch Variation der Kanallänge wird das Potential des untersuchten Transistors für zukünftige Anwendungen demonstriert. Dieser zeigt bis hinab zu Kanallängen von circa 8 nm einen Subthreshold-Swing von unter 80 mV/dec und ein An/Aus-Verhältnis von über 10⁶.
33

Organische Feldeffekt-Transistoren: Modellierung und Simulation

Lindner, Thomas 23 March 2005 (has links)
Die vorliegende Arbeit befasst sich mit der Simulation und Modellierung organischer Feldeffekt-Transistoren (OFETs). Mittels numerischer Simulationen wurden detaillierte Untersuchungen zu mehreren Problemstellungen durchgeführt. So wurde der Einfluss einer exponentiellen Verteilung von Trapzuständen, entsprechend dem sogenannten a-Si- oder TFT-Modell, auf die Transistorkennlinien untersucht. Dieses Modell dient der Beschreibung von Dünnschicht-Transistoren mit amorphen Silizium als aktiver Schicht und wird teils auch für organische Transistoren als zutreffend angesehen. Dieser Sachverhalt wird jedoch erstmals in dieser Arbeit detailliert untersucht und simulierte Kennlinien mit gemessenen Kennlinien von OFETs verglichen. Insbesondere aufgrund der Dominanz von Hysterese-Effekten in experimentellen Kennlinien ist jedoch eine endgültige Aussage über die Gültigkeit des a-Si-Modells schwierig. Neben dem a-Si-Modell werden auch noch andere Modelle diskutiert, z.B. Hopping-Transport zwischen exponentiell verteilten lokalisierten Zuständen (Vissenberg, Matters). Diese Modelle liefern, abhängig von den zu wählenden Modellparametern, zum Teil ähnliche Abhängigkeiten. Möglicherweise müssen die zu wählenden Modellparameter selbst separat gemessen werden, um eindeutige Schlussfolgerungen über den zugrundeliegenden Transportmechanismus ziehen zu können. Unerwünschte Hysterese-Effekte treten dabei sowohl in Transistorkennlinien als auch in Kapazitäts-Spannungs- (CV-) Kennlinien organischer MOS-Kondensatoren auf. Diese Effekte sind bisher weder hinreichend experimentell charakterisiert noch von ihren Ursachen her verstanden. In der Literatur findet man Annahmen, dass die Umladung von Trapzuständen oder bewegliche Ionen ursächlich sein könnten. In einer umfangreichen Studie wurde daher der Einfluß von Trapzuständen auf quasistatische CV-Kennlinien organischer MOS-Kondensatoren untersucht und daraus resultierende Hysterese-Formen vorgestellt. Aus den Ergebnissen läßt sich schlussfolgern, dass allein die Umladung von Trapzuständen nicht Ursache für die experimentell beobachteten Hysteresen in organischen Bauelementen sein kann. Eine mögliche Erklärung für diese Hysterese-Effekte wird vorgeschlagen und diskutiert. In einem weiteren Teil der Arbeit wird im Detail die Arbeitsweise des source-gated Dünnschicht-Transistors (SGT) aufgezeigt, ein Transistortyp, welcher erst kürzlich in der Literatur eingeführt wurde. Dies geschieht am Beispiel eines Transistors auf der Basis von a-Si als aktiver Schicht, die Ergebnisse lassen sich jedoch analog auch auf organische Transistoren übertragen. Es wird geschlussfolgert, dass der SGT ein gewöhnlich betriebener Dünnschicht-Transistor ist, limitiert durch das Sourcegebiet mit großem Widerstand. Die detaillierte Untersuchung des SGT führt somit auf eine Beschreibung, die im Gegensatz zur ursprünglich verbal diskutierten Arbeitsweise steht. Ambipolare organische Feldeffekt-Transistoren sind ein weiterer Gegenstand der Arbeit. Bei der Beschreibung ambipolarer Transistoren vernachlässigen bisherige Modelle sowohl die Kontakteigenschaften als auch die Rekombination von Ladungsträgern. Beides wird hingegen in den vorgestellten numerischen Simulationen erstmalig berücksichtigt. Anhand eines Einschicht-Modellsystems wurde die grundlegende Arbeitsweise von ambipolaren (double-injection) OFETs untersucht. Es wird der entscheidende Einfluß der Kontakte sowie die Abhängigkeit gegenüber Variationen von Materialparametern geklärt. Sowohl der Kontakteinfluß als auch Rekombination sind entscheidend für die Arbeitsweise. Zusätzlich werden Möglichkeiten und Einschränkungen für die Datenanalyse mittels einfacher analytischer Ausdrücke aufgezeigt. Es zeigte sich, dass diese nicht immer zur Auswertung von Kennlinien herangezogen werden dürfen. Weiterhin werden erste Simulationsergebnisse eines ambipolaren organischen Heterostruktur-TFTs mit experimentellen Daten verglichen.
34

Feldeffekttransistoren auf Basis von Kohlenstoffnanoröhrchen: Vergleich zwischen atomistischer Simulation und Bauelementesimulation

Fuchs, Florian 20 November 2014 (has links)
Kohlenstoffnanoröhrchen (CNTs) sind vielversprechende Kandidaten für neuartige nanoelektronische Bauelemente, wie zum Beispiel Transistoren für Hochfrequenzanwendungen. Simulationen CNT-basierter Bauelemente sind dabei unverzichtbar, um deren Anwendungspotential und das Verhalten in Schaltungen zu untersuchen. Die vorliegende Arbeit konzentriert sich auf einen Methodenvergleich zwischen einem atomistischen Ansatz basierend auf dem Nichtgleichgewichts-Green-Funktionen-Formalismus und einem Modell zur numerischen Bauelementesimulation, welches auf der Schrödinger-Gleichung in effektiver-Massen-Näherung basiert. Ein Transistor mit zylindrischem Gate und dotierten Kontakten wird untersucht, wobei eine effektive Dotierung genutzt wird. Es wird gezeigt, dass die Beschränkungen des elektronischen Transports durch Quan- teneffekte im Kanal nur mit dem atomistischen Ansatz beschrieben werden können. Diese Effekte verhindern das Auftreten von Band-zu-Band-Tunnelströmen, die bei der numerischen Bauelementesimulation zu größeren Aus-Strömen und einem leicht ambipolaren Verhalten führen. Das Schaltverhalten wird hingegen von beiden Modellen vergleichbar beschrieben. Durch Variation der Kanallänge wird das Potential des untersuchten Transistors für zukünftige Anwendungen demonstriert. Dieser zeigt bis hinab zu Kanallängen von circa 8 nm einen Subthreshold-Swing von unter 80 mV/dec und ein An/Aus-Verhältnis von über 10⁶.:Abkürzungsverzeichnis Symbolverzeichnis Konstanten Mathematische Notation 1. Einleitung 2. Feldeffekttransistoren auf Basis von Kohlenstoffnanoröhrchen 2.1. Geometrische Struktur von Kohlenstoffnanoröhrchen 2.2. Elektronische Eigenschaften von Kohlenstoffnanoröhrchen 2.3. Feldeffekttransistoren auf Basis von Kohlenstoffnanoröhrchen 2.3.1. Möglichkeiten der Kontaktierung 2.3.2. Geometrie des Gates 2.3.3. Kenngrößen zur Transistor-Charakterisierung 3. Simulationsmethoden 3.1. Grundlegende Begriffe 3.1.1. Schrödinger-Gleichung, Wellen- und Basisfunktion 3.1.2. Elektronendichte 3.1.3. Zustandsdichte 3.2. Atomistische Elektronenstrukturrechnung 3.2.1. Dichtefunktionaltheorie 3.2.2. Erweiterte Hückelmethode 3.3. Quantentransport 3.3.1. Streumechanismen und Transportregime 3.3.2. Landauer-Büttiker-Formalismus 3.3.3. Nichtgleichgewichts-Green-Funktionen-Formalismus 3.4. Numerische Bauelementesimulation 3.4.1. Schrödinger-Gleichung in effektiver-Massen-Näherung 3.4.2. Beschreibung der Kontakte 3.4.3. Lösung der Poisson-Gleichung 3.4.4. Selbstkonsistente Rechnung 4. Entwicklung des Modellsystems 4.1. Beschaffenheit des Kanals 4.2. Eigenschaften der Gate-Elektrode 4.3. Eigenschaften der Source- und Drain-Elektroden 5. Ergebnisse und Diskussion 5.1. Numerische Bauelementesimulation 5.1.1. Extraktion der Parameter 5.1.2. Einfluss verschiedener Faktoren auf das Kohlenstoffnanoröhrchen 5.1.3. Transistorverhalten und Transistorregime 5.2. Atomistische Simulation 5.2.1. Einfluss verschiedener Faktoren auf das Kohlenstoffnanoröhrchen 5.2.2. Transistorverhalten und Transistorregime 5.2.3. Einfluss der Dotierung 5.3. Variation der Kanallänge und Methodenvergleich 5.3.1. Diskussion der Transfercharakteristiken 5.3.2. Verhalten von An/Aus-Verhältnis und Subthreshold-Swing 5.4. Variation der Gate-Länge bei fester Kanallänge und Methodenvergleich 5.5. Abschließende Bemerkungen und Vergleich mit Literatur 6. Zusammenfassung der Ergebnisse und Ausblick A. Elektronische Struktur des (7,0)-Kohlenstoffnanoröhrchens B. Simulationsparameter B.1. Parameter für Rechnungen mit Dichtefunktionaltheorie B.2. Parameter für Rechnungen mit erweiterter Hückelmethode B.3. Verwendete Randbedingungen zur Lösung der Poisson-Gleichung C. Vergleich zwischen Dichtefunktionaltheorie und erweiterter Hückelmethode C.1. Physikalische Betrachtung C.2. Rechenzeit und Konvergenz Literaturverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Danksagung Selbstständigkeitserklärung
35

Charge transport and energy levels in organic semiconductors / Ladungstransport und Energieniveaus in organischen Halbleitern

Widmer, Johannes 25 November 2014 (has links) (PDF)
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design. In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor. For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary. The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES). These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices. / Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.
36

Charge transport and energy levels in organic semiconductors

Widmer, Johannes 02 October 2014 (has links)
Organic semiconductors are a new key technology for large-area and flexible thin-film electronics. They are deposited as thin films (sub-nanometer to micrometer) on large-area substrates. The technologically most advanced applications are organic light emitting diodes (OLEDs) and organic photovoltaics (OPV). For the improvement of performance and efficiency, correct modeling of the electronic processes in the devices is essential. Reliable characterization and validation of the electronic properties of the materials is simultaneously required for the successful optimization of devices. Furthermore, understanding the relations between material structures and their key characteristics opens the path for innovative material and device design. In this thesis, two material characterization methods are developed, respectively refined and applied: a novel technique for measuring the charge carrier mobility μ and a way to determine the ionization energy IE or the electron affinity EA of an organic semiconductor. For the mobility measurements, a new evaluation approach for space-charge limited current (SCLC) measurements in single carrier devices is developed. It is based on a layer thickness variation of the material under investigation. In the \"potential mapping\" (POEM) approach, the voltage as a function of the device thickness V(d) at a given current density is shown to coincide with the spatial distribution of the electric potential V(x) in the thickest device. On this basis, the mobility is directly obtained as function of the electric field F and the charge carrier density n. The evaluation is model-free, i.e. a model for μ(F, n) to fit the measurement data is not required, and the measurement is independent of a possible injection barrier or potential drop at non-optimal contacts. The obtained μ(F, n) function describes the effective average mobility of free and trapped charge carriers. This approach realistically describes charge transport in energetically disordered materials, where a clear differentiation between trapped and free charges is impossible or arbitrary. The measurement of IE and EA is performed by characterizing solar cells at varying temperature T. In suitably designed devices based on a bulk heterojunction (BHJ), the open-circuit voltage Voc is a linear function of T with negative slope in the whole measured range down to 180K. The extrapolation to temperature zero V0 = Voc(T → 0K) is confirmed to equal the effective gap Egeff, i.e. the difference between the EA of the acceptor and the IE of the donor. The successive variation of different components of the devices and testing their influence on V0 verifies the relation V0 = Egeff. On this basis, the IE or EA of a material can be determined in a BHJ with a material where the complementary value is known. The measurement is applied to a number of material combinations, confirming, refining, and complementing previously reported values from ultraviolet photo electron spectroscopy (UPS) and inverse photo electron spectroscopy (IPES). These measurements are applied to small molecule organic semiconductors, including mixed layers. In blends of zinc-phthalocyanine (ZnPc) and C60, the hole mobility is found to be thermally and field activated, as well as increasing with charge density. Varying the mixing ratio, the hole mobility is found to increase with increasing ZnPc content, while the effective gap stays unchanged. A number of further materials and material blends are characterized with respect to hole and electron mobility and the effective gap, including highly diluted donor blends, which have been little investigated before. In all materials, a pronounced field activation of the mobility is observed. The results enable an improved detailed description of the working principle of organic solar cells and support the future design of highly efficient and optimized devices.:1. Introduction 2. Organic semiconductors and devices 2.1. Organic semiconductors 2.1.1. Conjugated π system 2.1.2. Small molecules and polymers 2.1.3. Disorder in amorphous materials 2.1.4. Polarons 2.1.5. Polaron hopping 2.1.6. Fermi-Dirac distribution and Fermi level 2.1.7. Quasi-Fermi levels 2.1.8. Trap states 2.1.9. Doping 2.1.10. Excitons 2.2. Interfaces and blend layers 2.2.1. Interface dipoles 2.2.2. Energy level bending 2.2.3. Injection from metal into semiconductor, and extraction 2.2.4. Excitons at interfaces 2.3. Charge transport and recombination in organic semiconductors 2.3.1. Drift transport 2.3.2. Charge carrier mobility 2.3.3. Thermally activated transport 2.3.4. Diffusion transport 2.3.5. Drift-diffusion transport 2.3.6. Space-charge limited current 2.3.7. Recombination 2.4. Mobility measurement 2.4.1. SCLC and TCLC 2.4.2. Time of flight 2.4.3. Organic field effect transistors 2.4.4. CELIV 2.5. Organic solar cells 2.5.1. Exciton diffusion towards the interface 2.5.2. Dissociation of CT states 2.5.3. CT recombination 2.5.4. Flat and bulk heterojunction 2.5.5. Transport layers 2.5.6. Thin film optics 2.5.7. Current-voltage characteristics and equivalent circuit 2.5.8. Solar cell efficiency 2.5.9. Limits of efficiency 2.5.10. Correct solar cell characterization 2.5.11. The \"O-Factor\" 3. Materials and experimental methods 3.1. Materials 3.2. Device fabrication and layout 3.2.1. Layer deposition 3.2.2. Encapsulation 3.2.3. Homogeneity of layer thickness on a wafer 3.2.4. Device layout 3.3. Characterization 3.3.1. Electrical characterization 3.3.2. Sample illumination 3.3.3. Temperature dependent characterization 3.3.4. UPS 4. Simulations 5.1. Design of single carrier devices 5.1.1. General design requirements 5.1.2. Single carrier devices for space-charge limited current 5.1.3. Ohmic regime 5.1.4. Design of injection and extraction layers 5.2. Advanced evaluation of SCLC – potential mapping 5.2.1. Potential mapping by thickness variation 5.2.2. Further evaluation of the transport profile 5.2.3. Injection into and extraction from single carrier devices 5.2.4. Majority carrier approximation 5.3. Proof of principle: POEM on simulated data 5.3.1. Constant mobility 5.3.2. Field dependent mobility 5.3.3. Field and charge density activated mobility 5.3.4. Conclusion 5.4. Application: Transport characterization in organic semiconductors 5.4.1. Hole transport in ZnPc:C60 5.4.2. Hole transport in ZnPc:C60 – temperature variation 5.4.3. Hole transport in ZnPc:C60 – blend ratio variation 5.4.4. Hole transport in ZnPc:C70 5.4.5. Hole transport in neat ZnPc 5.4.6. Hole transport in F4-ZnPc:C60 5.4.7. Hole transport in DCV-5T-Me33:C60 5.4.8. Electron transport in ZnPc:C60 5.4.9. Electron transport in neat Bis-HFl-NTCDI 5.5. Summary and discussion of the results 5.5.1. Phthalocyanine:C60 blends 5.5.2. DCV-5T-Me33:C60 5.5.3. Conclusion 6. Organic solar cell characteristics: the influence of temperature 6.1. ZnPc:C60 solar cells 6.1.1. Temperature variation 6.1.2. Illumination intensity variation 6.2. Voc in flat and bulk heterojunction organic solar cells 6.2.1. Qualitative difference in Voc(I, T) 6.2.2. Interpretation of Voc(I, T) 6.3. BHJ stoichiometry variation 6.3.1. Voc upon variation of stoichiometry and contact layer 6.3.2. V0 upon stoichiometry variation 6.3.3. Low donor content stoichiometry 6.3.4. Conclusion from stoichiometry variation 6.4. Transport material variation 6.4.1. HTM variation 6.4.2. ETM variation 6.5. Donor:acceptor material variation 6.5.1. Donor variation 6.5.2. Acceptor variation 6.6. Conclusion 7. Summary and outlook 7.1. Summary 7.2. Outlook A. Appendix A.1. Energy pay-back of this thesis A.2. Tables and registers / Organische Halbleiter sind eine neue Schlüsseltechnologie für großflächige und flexible Dünnschichtelektronik. Sie werden als dünne Materialschichten (Sub-Nanometer bis Mikrometer) auf großflächige Substrate aufgebracht. Die technologisch am weitesten fortgeschrittenen Anwendungen sind organische Leuchtdioden (OLEDs) und organische Photovoltaik (OPV). Zur weiteren Steigerung von Leistungsfähigkeit und Effizienz ist die genaue Modellierung elektronischer Prozesse in den Bauteilen von grundlegender Bedeutung. Für die erfolgreiche Optimierung von Bauteilen ist eine zuverlässige Charakterisierung und Validierung der elektronischen Materialeigenschaften gleichermaßen erforderlich. Außerdem eröffnet das Verständnis der Zusammenhänge zwischen Materialstruktur und -eigenschaften einen Weg für innovative Material- und Bauteilentwicklung. Im Rahmen dieser Dissertation werden zwei Methoden für die Materialcharakterisierung entwickelt, verfeinert und angewandt: eine neuartige Methode zur Messung der Ladungsträgerbeweglichkeit μ und eine Möglichkeit zur Bestimmung der Ionisierungsenergie IE oder der Elektronenaffinität EA eines organischen Halbleiters. Für die Beweglichkeitsmessungen wird eine neue Auswertungsmethode für raumladungsbegrenzte Ströme (SCLC) in unipolaren Bauteilen entwickelt. Sie basiert auf einer Schichtdickenvariation des zu charakterisierenden Materials. In einem Ansatz zur räumlichen Abbildung des elektrischen Potentials (\"potential mapping\", POEM) wird gezeigt, dass das elektrische Potential als Funktion der Schichtdicke V(d) bei einer gegebenen Stromdichte dem räumlichen Verlauf des elektrischen Potentials V(x) im dicksten Bauteil entspricht. Daraus kann die Beweglichkeit als Funktion des elektrischen Felds F und der Ladungsträgerdichte n berechnet werden. Die Auswertung ist modellfrei, d.h. ein Modell zum Angleichen der Messdaten ist für die Berechnung von μ(F, n) nicht erforderlich. Die Messung ist außerdem unabhängig von einer möglichen Injektionsbarriere oder einer Potentialstufe an nicht-idealen Kontakten. Die gemessene Funktion μ(F, n) beschreibt die effektive durchschnittliche Beweglichkeit aller freien und in Fallenzuständen gefangenen Ladungsträger. Dieser Zugang beschreibt den Ladungstransport in energetisch ungeordneten Materialien realistisch, wo eine klare Unterscheidung zwischen freien und Fallenzuständen nicht möglich oder willkürlich ist. Die Messung von IE und EA wird mithilfe temperaturabhängiger Messungen an Solarzellen durchgeführt. In geeigneten Bauteilen mit einem Mischschicht-Heteroübergang (\"bulk heterojunction\" BHJ) ist die Leerlaufspannung Voc im gesamten Messbereich oberhalb 180K eine linear fallende Funktion der Temperatur T. Es kann bestätigt werden, dass die Extrapolation zum Temperaturnullpunkt V0 = Voc(T → 0K) mit der effektiven Energielücke Egeff , d.h. der Differenz zwischen EA des Akzeptor-Materials und IE des Donator-Materials, übereinstimmt. Die systematische schrittweise Variation einzelner Bestandteile der Solarzellen und die Überprüfung des Einflusses auf V0 bestätigen die Beziehung V0 = Egeff. Damit kann die IE oder EA eines Materials bestimmt werden, indem man es in einem BHJ mit einem Material kombiniert, dessen komplementärer Wert bekannt ist. Messungen per Ultraviolett-Photoelektronenspektroskopie (UPS) und inverser Photoelektronenspektroskopie (IPES) werden damit bestätigt, präzisiert und ergänzt. Die beiden entwickelten Messmethoden werden auf organische Halbleiter aus kleinen Molekülen einschließlich Mischschichten angewandt. In Mischschichten aus Zink-Phthalocyanin (ZnPc) und C60 wird eine Löcherbeweglichkeit gemessen, die sowohl thermisch als auch feld- und ladungsträgerdichteaktiviert ist. Wenn das Mischverhältnis variiert wird, steigt die Löcherbeweglichkeit mit zunehmendem ZnPc-Anteil, während die effektive Energielücke unverändert bleibt. Verschiedene weitere Materialien und Materialmischungen werden hinsichtlich Löcher- und Elektronenbeweglichkeit sowie ihrer Energielücke charakterisiert, einschließlich bisher wenig untersuchter hochverdünnter Donator-Systeme. In allen Materialien wird eine deutliche Feldaktivierung der Beweglichkeit beobachtet. Die Ergebnisse ermöglichen eine verbesserte Beschreibung der detaillierten Funktionsweise organischer Solarzellen und unterstützen die künftige Entwicklung hocheffizienter und optimierter Bauteile.:1. Introduction 2. Organic semiconductors and devices 2.1. Organic semiconductors 2.1.1. Conjugated π system 2.1.2. Small molecules and polymers 2.1.3. Disorder in amorphous materials 2.1.4. Polarons 2.1.5. Polaron hopping 2.1.6. Fermi-Dirac distribution and Fermi level 2.1.7. Quasi-Fermi levels 2.1.8. Trap states 2.1.9. Doping 2.1.10. Excitons 2.2. Interfaces and blend layers 2.2.1. Interface dipoles 2.2.2. Energy level bending 2.2.3. Injection from metal into semiconductor, and extraction 2.2.4. Excitons at interfaces 2.3. Charge transport and recombination in organic semiconductors 2.3.1. Drift transport 2.3.2. Charge carrier mobility 2.3.3. Thermally activated transport 2.3.4. Diffusion transport 2.3.5. Drift-diffusion transport 2.3.6. Space-charge limited current 2.3.7. Recombination 2.4. Mobility measurement 2.4.1. SCLC and TCLC 2.4.2. Time of flight 2.4.3. Organic field effect transistors 2.4.4. CELIV 2.5. Organic solar cells 2.5.1. Exciton diffusion towards the interface 2.5.2. Dissociation of CT states 2.5.3. CT recombination 2.5.4. Flat and bulk heterojunction 2.5.5. Transport layers 2.5.6. Thin film optics 2.5.7. Current-voltage characteristics and equivalent circuit 2.5.8. Solar cell efficiency 2.5.9. Limits of efficiency 2.5.10. Correct solar cell characterization 2.5.11. The \"O-Factor\" 3. Materials and experimental methods 3.1. Materials 3.2. Device fabrication and layout 3.2.1. Layer deposition 3.2.2. Encapsulation 3.2.3. Homogeneity of layer thickness on a wafer 3.2.4. Device layout 3.3. Characterization 3.3.1. Electrical characterization 3.3.2. Sample illumination 3.3.3. Temperature dependent characterization 3.3.4. UPS 4. Simulations 5.1. Design of single carrier devices 5.1.1. General design requirements 5.1.2. Single carrier devices for space-charge limited current 5.1.3. Ohmic regime 5.1.4. Design of injection and extraction layers 5.2. Advanced evaluation of SCLC – potential mapping 5.2.1. Potential mapping by thickness variation 5.2.2. Further evaluation of the transport profile 5.2.3. Injection into and extraction from single carrier devices 5.2.4. Majority carrier approximation 5.3. Proof of principle: POEM on simulated data 5.3.1. Constant mobility 5.3.2. Field dependent mobility 5.3.3. Field and charge density activated mobility 5.3.4. Conclusion 5.4. Application: Transport characterization in organic semiconductors 5.4.1. Hole transport in ZnPc:C60 5.4.2. Hole transport in ZnPc:C60 – temperature variation 5.4.3. Hole transport in ZnPc:C60 – blend ratio variation 5.4.4. Hole transport in ZnPc:C70 5.4.5. Hole transport in neat ZnPc 5.4.6. Hole transport in F4-ZnPc:C60 5.4.7. Hole transport in DCV-5T-Me33:C60 5.4.8. Electron transport in ZnPc:C60 5.4.9. Electron transport in neat Bis-HFl-NTCDI 5.5. Summary and discussion of the results 5.5.1. Phthalocyanine:C60 blends 5.5.2. DCV-5T-Me33:C60 5.5.3. Conclusion 6. Organic solar cell characteristics: the influence of temperature 6.1. ZnPc:C60 solar cells 6.1.1. Temperature variation 6.1.2. Illumination intensity variation 6.2. Voc in flat and bulk heterojunction organic solar cells 6.2.1. Qualitative difference in Voc(I, T) 6.2.2. Interpretation of Voc(I, T) 6.3. BHJ stoichiometry variation 6.3.1. Voc upon variation of stoichiometry and contact layer 6.3.2. V0 upon stoichiometry variation 6.3.3. Low donor content stoichiometry 6.3.4. Conclusion from stoichiometry variation 6.4. Transport material variation 6.4.1. HTM variation 6.4.2. ETM variation 6.5. Donor:acceptor material variation 6.5.1. Donor variation 6.5.2. Acceptor variation 6.6. Conclusion 7. Summary and outlook 7.1. Summary 7.2. Outlook A. Appendix A.1. Energy pay-back of this thesis A.2. Tables and registers

Page generated in 0.1154 seconds