• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 37
  • 29
  • 19
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 268
  • 52
  • 50
  • 49
  • 44
  • 36
  • 27
  • 26
  • 26
  • 25
  • 25
  • 24
  • 24
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

Fundamental Understanding of Two-dimensional organic semiconductor-incorporated perovskites and heterostructures

Jee Yung Park (18310663) 04 April 2024 (has links)
<p dir="ltr">Two-dimensional (2D) perovskite semiconductors are an emerging family of hybrid materials featuring a built-in quantum well architecture which has gained much interest due to its potential as a promising candidate for next-generation photovoltaic and optoelectronic applications. To successfully integrate 2D perovskites as efficient devices, it is imperative that a thorough understanding of the fundamental properties these materials possess and how their complex heterostructures behave is established. However, to date, the synthetic challenges regarding high-quality crystals of these materials due to the structural complexity and the hybrid nature have impeded further progress in this area. Thus, we demonstrate a general method to construct tunable 2D organic semiconductor-incorporated perovskites (OSiP) by simultaneously manipulating slab thickness of the inorganic layers and conjugation length of the organic substituents. The energy band offsets and exciton dynamics at the organic-inorganic interfaces were elucidated using computational means and ultrafast spectroscopy, while lattice dynamics were quantified via temperature-dependent spectroscopy and X-ray diffraction studies. Results show that longer and more planar π-conjugated organic ligands induce a more rigid inorganic crystal lattice, which leads to suppressed exciton-phonon interactions and superior optoelectronic properties such as efficient lasing.</p><p dir="ltr">Furthermore, understanding ion migration in two-dimensional (2D) perovskite materials is key to enhancing device performance and stability as well. However, prior studies have been primarily limited to heat and light-induced ion migration. To investigate electrically induced ion migration in 2D perovskites, we construct a high-quality single crystal 2D perovskite heterostructure device platform with near defect-free van der Waals contact. While achieving real-time visualization of directional ion migration, we also uncover the unique behavior of halide anions inter-diffusing towards the opposite direction under prolonged bias. Confocal microscopy imaging reveals a halide migration channel that aligns with the crystal and heterojunction edges. After sustained ion migration, stable junction diodes exhibiting up to ~1000-fold forward to reverse current ratio are realized. Unraveling the fundamental properties of 2D OSiPs as well as ion migration in 2D perovskite heterostructures paves the way towards stable and efficient devices.</p>
222

Mixed As/Sb and tensile strained Ge/InGaAs heterostructures for low-power tunnel field effect transistors

Zhu, Yan 02 May 2014 (has links)
Reducing supply voltage is a promising way to address the power dissipation in nano-electronic circuits. However, the fundamental lower limit of subthreshold slope (SS) within metal-oxide-semiconductor field-effect transistors (MOSFETs) is a major obstacle to further scaling the operation voltage without degrading ON/OFF-ratio in today's integrated circuits. Tunnel field-effect transistors (TFETs) benefit from steep switching characteristics due to the quantum-mechanical tunneling injection of carriers from source to channel, rather than by conventional thermionic emission in MOSFETs. TFETs based on group III-V compound semiconductor and Ge heterostructures further improve the ON-state current and reduce SS due to the low bandgap energies and smaller carrier tunneling mass. The mixed arsenide/antimonide (As/Sb) InxGa1-xAs/GaAsySb1-y and Ge/InxGa1-xAs heterostructures allow a wide range of bandgap energies and various band alignments depending on the alloy compositions in the source and channel materials. Band alignments at source/channel heterointerface can be well modulated by carefully controlling the compositions of the InxGa1-xAs or GaAsySb1-y. In particular, this research systematically investigate the development and optimization of low-power TFETs using mixed As/Sb and Ge/InxGa1-xAs based heterostructures including: basic working principles, design considerations, material growth, interface engineering, material characterization, band alignment determination, device fabrication, device performance investigation, and high-temperature reliability. A comprehensive study of TFETs using mixed As/Sb and Ge/InxGa1-xAs based heterostructures shows superior structural properties and distinguished device performances, both of which indicate the mixed As/Sb and Ge/InxGa1-xAs based TFET as a promising option for high performance, low standby power and energy efficient logic circuit application. / Ph. D.
223

Growth and investigation of AlN/GaN and (Al,In)N/GaN based Bragg reflectors

Ive, Tommy 06 January 2006 (has links)
Die Synthese von AlN/GaN- und (Al,In)N/GaN-Braggreflektoren wird untersucht. Die Strukturen wurden mittels plasmaunterstützter Molekularstrahlepitaxie auf 6H-SiC(0001)-Substraten abgeschieden. Ferner wurde der Einfluß der Si-Dotierung auf die Oberflächenmorphologie sowie die strukturellen und elektrischen Eigenschaften der AlN/GaN-Braggreflektoren untersucht. Es wurden rißfreie Braggreflektoren mit einer hohen Reflektivität (R>99%) und einem bei 450 nm zentrierten Stopband erhalten. Die Si-dotierten Strukturen weisen eine ohmsche I-V-Charakteristik im gesamten Meßbereich sowie einen spezifischen Widerstand von 2-4 mOhmcm2 auf. Die Ergebnisse der (Al,In)N-Wachstumsversuche wurden in einem Phasendiagramm zusammengefaßt, welches den optimalen Parameterraum für (Al,In)N klar aufzeigt. / We study the synthesis of AlN/GaN and (Al,In)N/GaN Bragg reflectors. The structures were grown by plasma-assisted molecular beam epitaxy (MBE) on 6H-SiC(0001) substrates. In addition, we study the impact of Si-doping on the surface morphology and the structural and electrical properties of the AlN/GaN Bragg reflectors. Crack-free and high-reflectance (R>99%) Bragg reflectors were achieved with a stopband centered at 450 nm. The Si-doped structures exhibit ohmic I-V behavior in the entire measurement range. The specific series resistance is 2-4 mOhmcm2. The results of the (Al,In)N growth experiments are summarized in a phase diagram which clearly shows the optimum growth window for (Al,In)N.
224

Light Matter Interactions in Two-Dimensional Semiconducting Tungsten Diselenide for Next Generation Quantum-Based Optoelectronic Devices

Bandyopadhyay, Avra Sankar 12 1900 (has links)
In this work, we explored one material from the broad family of 2D semiconductors, namely WSe2 to serve as an enabler for advanced, low-power, high-performance nanoelectronics and optoelectronic devices. A 2D WSe2 based field-effect-transistor (FET) was designed and fabricated using electron-beam lithography, that revealed an ultra-high mobility of ~ 625 cm2/V-s, with tunable charge transport behavior in the WSe2 channel, making it a promising candidate for high speed Si-based complimentary-metal-oxide-semiconductor (CMOS) technology. Furthermore, optoelectronic properties in 2D WSe2 based photodetectors and 2D WSe2/2D MoS2 based p-n junction diodes were also analyzed, where the photoresponsivity R and external quantum efficiency were exceptional. The monolayer WSe2 based photodetector, fabricated with Al metal contacts, showed a high R ~502 AW-1 under white light illumination. The EQE was also found to vary from 2.74×101 % - 4.02×103 % within the 400 nm -1100 nm spectral range of the tunable laser source. The interfacial metal-2D WSe2 junction characteristics, which promotes the use of such devices for end-use optoelectronics and quantum scale systems, were also studied and the interfacial stated density Dit in Al/2D WSe2 junction was computed to be the lowest reported to date ~ 3.45×1012 cm-2 eV-1. We also examined the large exciton binding energy present in WSe2 through temperature-dependent Raman and photoluminescence spectroscopy, where localized exciton states perpetuated at 78 K that are gaining increasing attention for single photon emitters for quantum information processing. The exciton and phonon dynamics in 2D WSe2 were further analyzed to unveil other multi-body states besides localized excitons, such as trions whose population densities also evolved with temperature. The phonon lifetime, which is another interesting aspect of phonon dynamics, is calculated in 2D layered WSe2 using Raman spectroscopy for the first time and the influence of external stimuli such as temperature and laser power on the phonon behavior was also studied. Furthermore, we investigated the thermal properties in 2D WSe2 in a suspended architecture platform, and the thermal conductivity in suspended WSe2 was found to be ~ 1940 W/mK which was enhanced by ~ 4X when compared with substrate supported regions. We also studied the use of halide-assisted low-pressure chemical vapor deposition (CVD) with NaCl to help to reduce the growth temperature to ∼750 °C, which is lower than the typical temperatures needed with conventional CVD for realizing 1L WSe2. The synthesis of monolayer WSe2 with high crystalline and optical quality using a halide assisted CVD method was successfully demonstrated where the role of substrate was deemed to play an important role to control the optical quality of the as-grown 2D WSe2. For example, the crystalline, optical and optoelectronics quality in CVD-grown monolayer WSe2 found to improve when sapphire was used as the substrate. Our work provides fundamental insights into the electronic, optoelectronic and quantum properties of WSe2 to pave the way for high-performance electronic, optoelectronic, and quantum-optoelectronic devices using scalable synthesis routes.
225

Contribuições á física das propriedades eletrônicas das heteroestruturas semicondutoras / Contributions to the physics of the electronic properties of the semiconductor heterostructures

Silva, Erasmo Assumpção de Andrada e 13 December 1990 (has links)
Esta tese compõe-se de contribuições à física das propriedades eletrônicas das heteroestruturas semicondutoras. São investigadas propriedades eletrônicas das duas hetero­estruturas básicas: o poço quântico e a super-rede. Considera-se o poço quântico dopado com impurezas rasas e estudam-se as suas propriedades eletrônicas nos regimes de poço fraca e altamente dopado. No caso de baixa densidade de impurezas é feita uma simulação Monte Carlo. É utilizado um modelo semi-clássico de band de impureza. A interação elétron-elétron é incluída de forma exata e são calculadas as seguintes propriedades do estado fundamental à temperatura zero: densidade de estados de uma partícula, distribuição de carga, energia de Fermi e distribuição do campo elétrico sobre os doadores neutros, todas em função do grau de compensação, da densidade de impurezas e da largura do poço. É observada uma. grande dependência com a compensação. Os resultados são explicados à luz da competição entre os efeitos de desordem e confinamento. É observada a ocorrência de Coulomb Gap característico de sistemas bidimensionais. Mostra-se que a. distribuição de carga possui largura e constante de decaimento determinados independentemente pela compensação e pela concentração de impurezas, respectivamente. Tais resultados são importantes para a caracterização de poços quânticos puros. No limite altamente dopado parte-se de um modelo light-binding desordenado e calcula­se a densidade de estados de uma partícula formada devido ao overlapping entre os estados localizados; utiliza-se o método de Matsubara e Toyosawa. para a obtenção da média sobre configurações. Discutem-se os efeitos da desordem diagonal introduzida pelo potencial de confinamento os quais são comparados com os da. desordem não-diagonal. São apresentados resultados para a densidade de estados em função do grau de confinamento e concentração de impurezas para poços e fios quânticos. Sâo estudadas as propriedades eletrônicas das super-redes sob campo magnético transversal à direção de crescimento. Mostra-se que esta configuração é ideal para o estudo das características básicas das super-redes: a estrutura de mini bandas e o tunelamento. Calculam-se as sub-bandas de condução utilizando a teoria de massa efetiva de muitas bandas. Introduz-se a idéia de massa efetiva renormalizada para barreiras semicondutoras. Comparam-se os resultados com dados experimentais de ressonância ciclotrônica. A ótima concordância obtida demonstra a grande importância e a utilidade do conceito de massa efetiva renormalizada para barreiras semicondutoras, que é uma maneira nova e simples de lidar com as soluções evanescentes. / This thesis is composed of contributions to the theory of electronic properties of semicon­ ductor heterostructures. Electronic properties of the basic two heterostructures (quantum well and superlattice) are investigated. A quantum well doped with shallow impurities is considered and its electronic properties are studied in both limits: lightly and heavily doped. In the first case a Monte Carlo simula­ tion technique is used. A semiclassical impurity band model is used . The electron-electron interaction is included exactly and properties of the ground state such as the density of single particle states, the charge distribution, the Fermi energy and the electric field di tribution on the neutra/ donors are calculated, all of them as a function of the degree of compensation, the impurity concentration and the width of the well. A great dependency with the compensation is observed. The results are explained by the competition between the effects of disorder and confinement. The existence of a Coulomb Gap is verified . The charge distribution is shown to have a width and decay rate given by the degree of compensation and impurity concentration, in this order. Such results are important to characterize pure quantum wells. On the heavily doped limit, a disordered tight-binding model is used and the density of states that is formed by the overlapping of localized states is calculated by using the method of Matsubara and Toyosawa for the configuration average. The diagonal disord er effect introduced by the confinement potential is considered and compared to that of the non­ diagonal disorder. Results of the density of states as a function of the degree of confinement and impurity concentration for quantum wells and wires are presented. The electronic propertie s of a superlattice under a magnetic field which is transversal to the growth direction are studied. Jt is shown that this configuration is id eal for the study of the basic characteristics of the superlattices: the subband structure and the tunneling. The conduction subbands are calculated by using the theory of many bands effective mass. The idea of renormalized effective mass for barriers is introduced. The obtained level spacings are compared with cyclotron resonance experimental data (infrared absorption). The good agreement obtained demonstrates the importance and usefulness of the renormalized effective mass, which is a new and simple way to handle evanescent waves.
226

Micro-hall devices based on high-electron-velocity semiconductors

Kunets, Vasyl 03 November 2004 (has links)
AlGaAs/GaAs- und AlGaAs/GaAs/InGaAs-Quantengraben-Strukturen mit dotiertem Kanal sowie modulationsdotierte AlGaAs/InGaAs/GaAs- Heterostrukturen auf Halbleitermaterialien mit hoher Elektronendriftgeschwindigkeit werden erfolgreich zur Herstellung von Mikro-Hall-Bauelementen eingesetzt. Mit Blick auf ihre Eignung als Magnetfeldsensoren werden die Signal-Linearität, die Sensitivität und das Rauschen bei schwachen und starken elektrischen Feldern untersucht. Auch bei höheren elektrischen Feldern von mehr als 1.8 kV/cm zeigen die Bauelemente mit dotiertem Kanal eine ausgezeichnete Linearität des Signals. Magnetische Empfindlichkeiten von bis zu 600 V/A/T werden im Konstantstrombetrieb gemessen. Unter Verwendung eines Si-δ-dotierten pseudomorphen InGaAs-Quantengrabens wird sowohl eine bessere Sensitivität als auch ein besseres Rauschverhalten erzielt als bei homogen dotiertem GaAs-Kanal. Als beste Signal-Rausch-Empfindlichkeit wird ein Wert von 138 dB/T erreicht für ein Bauelement von 10·10 µm Fläche (bei 300 K, 100 kHz Messfrequenz und 1 Hz Bandbreite). Da das elektrische Verhalten dieser Strukturen besonders durch die hohen Elektronendriftgeschwindigkeiten bestimmt wird, tritt auch bei hohen elektrischen Feldern bis zu 2.4 kV/cm keine Degradation des Bauelementes auf. Als niedrigste Nachweisgrenze für Magnetfelder wird ein Wert von 127 nT/√Hz bestimmt. Verglichen damit, zeigen die modulationsdotierten Bauelemente von 20·20 µm Größe zwar eine höhere Signal-Rausch-Empfindlichkeit von 141 dB/T bei geringen elektrischen Feldern, die sich aber bei höheren Feldstärken stark verschlechtert. Daher haben die Bauelemente mit dotiertem Kanal und pseudomorph verspanntem InGaAs-Quantengraben unter Ausnutzung hoher Elektronendriftgeschwindigkeit bei hohen elektrischen Feldern einige Vorteile gegenüber den modulationsdotierten Strukturen mit hoher Elektronenbeweglichkeit. Untersuchungen der thermischen Stabilität von Bauelementen mit modulationsdotiertem Quantengraben zeigen, dass eine dicke InGaAs-Schicht (innerhalb fixierter Gesamtdicke des GaAs/InGaAs-Kanals) erforderlich ist, um die parasitäre Parallel-Leitfähigkeit des GaAs-Kanals zu vermeiden. Unter Berücksichtigung dieser Erkenntnis und bei Verwendung eines hohen Dotierungsgrades werden ausgezeichnete Temperaturstabilitäten von 90 ppm/K im Konstantstrombetrieb und 192 ppm/K im Konstantspannungsbetrieb erzielt. Unabhängig davon zeigen optische Untersuchungen mit Photolumineszenz-Spektroskopie und Raman-Streuung einen hohen Fehlordnungsgrad in dünnen InGaAs-Quantengräben, der dagegen für dicke pseudomorphe InGaAs-Schichten vernachlässigbar ist. Daher resultiert eine dickere InGaAs-Schicht nicht nur in einer höheren absoluten magnetischen Sensitivität und besseren thermischen Stabilität, sondern auch in geringerem 1/f-Rauschen als Ergebnis von Leitfähigkeitsfluktuationen. Besondere Anstrengungen werden unternommen zum Einsatz der Rauschspektroskopie tiefer Zentren zur Untersuchung der Qualität von Halbleitervolumina bzw. -schichten. In Kombination mit den Untersuchungen der betriebsstromabhängigen Sensitivität erweist sich diese Methode als am Besten geeignet für die Optimierung von Mikro-Hall-Bauelementen. Der Einfluss der Skalierung des Bauelementes auf seine Charakteristika wie Rauschen und magnetische Empfindlichkeit wird untersucht. Sowohl die Signal-Rausch-Empfindlichkeit als auch die Grenzempfindlichkeit sind größenabhängig. Der Einfluss der Geometrie auf die Verteilung des elektrischen Feldes wird für die Form eines Griechischen Kreuzes durch numerische Rechnungen simuliert und diskutiert. Abgerundete Ecken erweisen sich als am Besten geeignet für die Herstellung hochsensitiver und rauscharmer Mikro-Hall-Bauelemente. / Doped-channel quantum well (QW) AlGaAs/GaAs and AlGaAs/GaAs/InGaAs as well as modulation-doped AlGaAs/InGaAs/GaAs heterostructures based on high electron drift velocity semiconductors are successfully applied to the fabrication of micro-Hall devices. Considering these devices as magnetic sensors, their properties were characterized in terms of signal linearity, sensitivity and noise at low and high electric fields. Even at electric fields higher than 1.8 kV/cm, the doped-channel devices exhibit an excellent signal linearity. Magnetic sensitivities up to 600 V/T/A in current drive mode are measured. The usage of a Si-δ-doped pseudomorphic InGaAs QW results in better sensitivity and noise performance than does uniformly doped GaAs. A maximal signal-to-noise sensitivity (SNS) of 138 dB/T is achieved in 10 μm square size device at 300 K, 100 kHz frequency and 1 Hz bandwidth. Because the performance in these structures is driven in part by the high electron drift velocity, it does not degrade even at high electric fields up to 2.4 kV/cm and corresponds to a lowest detection limit of 127 nT/√Hz. Comparatively, the modulation-doped devices of 20 μm square size exhibit a higher SNS of 141 dB/T at low electric fields, but degrade at higher fields. Thus, the doped-channel pseudomorphically strained InGaAs QW high-velocity devices have several advantages over modulation-doped high-mobility structures at high electric fields. Thermal stability studies of doped-channel QW devices reveal a thick InGaAs layer (within a fixed total thickness of the GaAs/InGaAs channel) necessary to avoid the parasitic parallel conductivity in GaAs channel. Using this result and a high doping level, superior temperature stabilities of 90 ppm/K in the current drive mode and 192 ppm/K in the voltage drive mode are attained. Independently, optical studies like photoluminescence and Raman scattering reveal a high degree of disorder in thin InGaAs QWs, being negligible for thick pseudomorphic InGaAs layers. Hence, a thick InGaAs layer causes not only a higher absolute magnetic sensitivity and a better thermal stability, but also lower 1/f noise being a result of conductivity fluctuations. Special effort is devoted to the application of deep level noise spectroscopy as a very sensitive probe for semiconductor bulk and layer quality. Combined with supply-current-related sensitivity studies, this method is most suitable for micro-Hall device optimization. The effect of device scaling on device characteristics like noise and absolute magnetic sensitivity is studied. Both the SNS and detection limit are shown as size-dependent. Additionally, geometry effects on the electric field distribution for Greek cross shapes are simulated by numerical calculations and discussed. Rounded corners appear as most appropriate for the fabrication of highly sensitive low-noise micro-Hall devices.
227

Spontane und stimulierte Emission von (Al, In, Ga)N-Halbleitern

Rau, Björn 19 February 2003 (has links)
Die vorliegende Arbeit beschäftigt sich mit optischen Untersuchungen von MBE-gewachsenen hexagonalen Gruppe-III-Nitridheterostrukturen. Dafür wird die Photolumineszenz von InGaN/GaN- und GaN/AlGaN-Mehrfachquantengrabenstrukturen umfangreich zeitintegriert und zeitaufgelöst studiert. Die Proben unterscheiden sich in den Dicken der Quantengräben und Barrieren (InGaN) bzw. in der kristallografischen Orientierung (AlGaN). Als Ergebnis der großen, für das Materialsystem charakteristischen, elektrostatischen Felder zeigen die konventionell [0001]-orientierten Heterostrukturen eine verringerte Übergangsenergie und längere Lebensdauern mit zunehmender Quantengrabenbreite und höherem Indiumgehalt in den Gräben. Der beobachtete Einfluss des Quantumconfined Stark-Effektes (QCSE) auf diese Größen kann auch durch Modellrechnungen quantitativ gezeigt werden. In der Arbeit wird erstmals eine umfangreiche optische Charakterisierung einer neuartigen [1-100]-orientierten GaN-Heterostruktur auf Gamma-LiAlO2 geboten. Zum Vergleich wird das Verhalten einer identisch aufgebauten, [0001]-orientierten Struktur auf SiC ebenfalls diskutiert. Die (1-100)-Probe ist in Wachstumsrichtung frei von elektrostatischen Feldern und unterscheidet sich damit deutlich von den herkömmlichen Nitridstrukturen mit [0001]-Orientierung, deren interne Felder im MV/cm-Bereich liegen. Die spektrale Lage der Photolumineszenz bei geringen Anregungsdichten bestätigt die Flachbandsituation in der Probe. Aufgrund des bei dieser Probe nicht auftretenden QCSE ist hier eine deutlich verkürzte Lebensdauer festzustellen. Entsprechend der Auswahlregeln für hexagonales GaN weist die [1-100]-orientierte Probe eine sehr starke Polarisation der Photolumineszenz bezogen auf die Lage der [0001]-Achse auf. Die geringe Abweichung des ermittelten Polarisationsgrades von der, für A-Exzitonen in Volumen-GaN zu erwartenden, totalen Polarisation kann durch das Konfinement in den Quantengräben erklärt werden. Ein Schwerpunkt der Arbeit ist die Untersuchung der Rekombinationsmechanismen der Proben in Abhängigkeit von der induzierten Ladungsträgerdichte. Diese wird in einem Bereich von sehr geringer Dichte bis über die Mottdichte variiert. Eine Abschirmung der elektrostatischen Felder mit zunehmender Ladungsträgerdichte wird festgestellt. Dabei kann bei einer InGaN/GaN-Probe mit 3.1 nm breiten Gräben gezeigt werden, dass neben den internen piezoelektrischen Feldern die in der Literatur diskutierte Lokalisation von Exzitonen an Stöchiometrieschwankungen des Quantengrabens entscheidend die Rekombinationsdynamik in der Probe beeinflusst. Dies spiegelt sich in einer Abhängigkeit der Quantengrabeneigenschaften von den Anfangsbedingungen des Abklingprozesses und damit einem nicht existierenden allgemein gültigen Zusammenhang zwischen der Lebensdauer und der Ladungsträgerdichte wider. Die zeitaufgelösten Lumineszenzspektren der InGaN/GaN-Strukturen zeigen als Folge der mit höheren Ladungsträgerdichten zunehmenden Abschirmung eine verringerte Lebensdauer durch die vergrößerte Überlappung von Elektron- und Lochwellenfunktionen. Aufgrund der wieder abnehmenden Abschirmung während des Rekombinationsprozesses verändert sich die Lebensdauer im Laufe der Zeit. Gleichzeitig kommt es zu einer Verringerung der Übergangsenergie des Lumineszenzmaximums durch den weniger abgeschirmten QCSE. Die zeitintegrierten Photolumineszenzspektren zeigen ebenfalls eine deutliche Abhängigkeit von der Anregungsdichte. Während bei der feldfreien (1-100)-Probe keine Kompensationseffekte erwartet werden, weisen die Resultate für die konventionellen Proben auf einen, die Ladungsträgerdichte wesentlich beeinflussenden Effekt hin. Die Abhängigkeit der Intensität der Photolumineszenz von der Ladungsträgerdichte deutet ab einer bestimmten Anregungsdichte auf einen zusätzlichen Prozess, welcher die Ladungsträgerdichte reduziert, sich aber nicht im Lumineszenzspektrum widerspiegelt. Als Erklärung dafür wird die Absorption von stimulierter Emission im Substrat oder in der Pufferschicht angenommen. Bei den InGaN-Proben schiebt die Übergangsenergie mit höheren Dichten zu größeren Energien und nähert sich bis 10e5 W/cm2 einem Sättigungswert an. Dieser Wert entspricht trotz Dichten oberhalb der Mottdichte noch nicht der Flachbandsituation bei vollständig kompensierten internen Feldern. Als Ursache dafür wird der genannte, bei hohen Ladungsträgerdichten einsetzende Konkurrenzprozess gesehen. Bei den GaN/AlGaN-Proben kann im untersuchten Bereich der Anregungsdichte keine spektrale Verschiebung im Photolumineszenzspektrum festgestellt werden. Zum ersten Mal werden experimentelle Untersuchungen zur stimulierten Emission einer [1-100]-orientierten GaN-Probe durchgeführt und das optische Gewinnspektrum analysiert. Die Messungen zeigen einen maximalen Nettogewinn von ca. 50 1/cm. Aus der rechnerischen Analyse der Modenausbreitung lässt sich dafür ein Materialgewinn für GaN(1-100) von 1.1x10e4 1/cm ableiten. Die Ergebnisse zeigen außerdem, dass die Rekombination eines Elektron-Loch-Plasmas der Mechanismus für die stimulierte Emission ist. Dies entspricht dem überwiegenden Teil der in der Literatur veröffentlichten Beobachtungen für [0001]-orientierte Nitridstrukturen. Ein direkter Vergleich mit der parallel untersuchten GaN/AlGaN(0001)-Probe ist aufgrund der starken Substratabsorption nicht möglich. Es zeigt sich, dass für [1-100]-orientierte GaN-Heterostrukturen gute Ausgangsbedingungen für die Realisierung von Laserdioden gegeben sind. Zu den untersuchten Heterostrukturen wird die Wellenführung in den Proben simuliert. Bei den auf SiC gewachsenen Schichten werden die sich ausbreitenden Moden wegen des deutlich höheren Brechungsindexes des Substrates vornehmlich dort geführt. Die Überlappung der Moden mit dem aktiven Schichtpaket ist äußerst gering. Es ist für die Proben auf SiC kein optischer Gewinn zu erwarten. Die [1-100]-orientierte GaN/AlGaN-Probe besitzt eine deutlich bessere Wellenführung, da das LiAlO2 einen vergleichsweise kleinen Brechungsindex besitzt. Es wird ein Zusammenhang zwischen experimentell ermitteltem optischen Gewinn und dem Materialgewinn gebildet und das Ergebnis mit Rechnungen aus der Literatur verglichen. Ein Vorschlag für eine optimierte Wellenführung in allen untersuchten Proben wird gegeben. / In this thesis, the optical properties of molecular beam epitaxy grown hexagonal group-III nitride heterostructures are studied. The photoluminescence (PL) characteristics of InGaN/GaN and GaN/AlGAN multiple quantum well structures are investigated by time-integrated and time-resolved measurements. The analyzed specimens differ in the width of the quantum wells and barriers (InGaN) and in the crystallographic orientation (AlGaN), respectively. As a result of the large characteristic electrostatic fields, conventional [0001]-oriented heterostructures show a reduced transistion energy and longer lifetimes with increasing well width and higher Indium content in the wells. The observed impact of the Quantum Confined Stark Effect (QCSE) on these quantities is quantitatively shown in model calculations. In this work, a first extensive optical characterization of a novel [1-100]-oriented GaN heterostructure grown on Gamma-LiAlO2 is presented. For comparison, an identically designed [0001]-oriented structure on SiC is discussed. The (1-100)-grown specimen is free of electrostatic fields along the growth direction and shows a significant different behavior than conventional [0001]-oriented nitrides with internal fields of several MV/cm. The existing flat band conditions are confirmed by the spectral position of the PL at low excitation densities. Due to the non-existing QCSE at this specimen an significantly reduced lifetime is observed. A strong polarization of the PL is observed for the [1-100]-oriented sample, following the selection rules for hexagonal GaN. The small deviation of the degree of polarization from unity, which is expected in bulk GaN, is attributed to the quantum confinement in the heterostructures. One main topic of this thesis is the analysis of the recombination mechanisms of the specimens depending on the induced carrier density. The carrier density is varied from very low upto densities above the mott density. A screening of the electrostatic fields is observed with increasing carrier density. It is shown, that an InGaN/GaN heterostructure with a well width of 3.1 nm not only is influenced by internal piezoelectric fields but also the localization of excitons at stoichiometric inhomogenities in the quantum well is playing an important role for the recombination dynamics of the structure. This can be seen in the dependence of the decay process on the starting conditions. No general correlation is existing between lifetime and carrier density. Time-resolved PL measurements on InGaN/GaN heterostructures show a reduced lifetime due to an increased overlap of the electron and hole wave functions as a result of the increased screening at increasing carrier densities. During the recombination process the screening decreases again and the lifetime is changed with time. Simultaneously the transistion energy of the PL maximum is reduced by the less screened QCSE. A distinct dependence of the time-integrated PL spectra on the excitation density was also found. While there are no compensation effects expected at the (1-100) structure, which is free of electrostatic fields, the results for the conventional specimens point to an effect which influences the carrier density essentially. The dependence of the PL intensity on the carrier density points to an additional process, which comes into play at a special excitation density. This process reduces the carrier density but is invisible in the PL spectra. As an explanation we assume, that light of stimulated emission is absorbed either in the substrate or in the buffer layer. The transistion energy of the InGaN structures increases with increasing excitation density and reaches a saturation energy at a density of 10e5 W/cm2. Although this density is larger than the mott density, the transistion energy is not equivalent with a transition energy at flat band conditions. The origin of the observed effect is assumed to be the rival process, mentioned above, which comes into play at high carrier densities. For the GaN/AlGaN heterostructures no spectral shift of the PL was observed within the variation of excitation density. For the very first time, the stimulated emission of an [1-100]-oriented GaN structure was analyzed. A maximum netto gain of 50 1/cm was observed. From calculations of the mode propagation, a material gain of 1.1x10e4 1/cm is derived for GaN(1-100). Additionally from the results follows that the recombination of an electron-hole-plasma is the mechanism of the stimulated emission. This is in accordance with most of the published observations for [0001]-oriented GaN heterostructures. A direct comparison of both, the [1-100]-oriented specimen and the GaN/AlGaN(0001) structure, which was investigated parallel, was not possible. The reason for that is the strong absorption of the SiC substrate of the latter mentioned structure. It is generally shown, that [1-100]-oriented GaN heterostructures offers good starting conditions to realize laser diodes. The wave guiding was simulated for all of the used specimens. At structures grown on SiC the propagating modes are mainly guided in the substrate due to the larger refractive index of SiC with respect to GaN. The overlap of the amplified mode and the active layer is very small. No optical gain is expected for these structures. The [1-100]-oriented GaN/AlGaN structure shows a significantly improved wave guiding, due to the small refractive index of LiAlO2 in comparison with GaN. A correlation between the experimentally observed optical gain and the material gain is formed and the results are compared with the literature. A suggestion for an optimized wave guiding in all investigated specimens is given.
228

Growth of graphene/hexagonal boron nitride heterostructures using molecular beam epitaxy

Nakhaie, Siamak 24 May 2018 (has links)
Zweidimensionale (2D) Materialien bieten eine Vielzahl von neuartigen Eigenschaften und sind aussichtsreich Kandidaten für ein breites Spektrum an Anwendungen. Da hexagonales Bornitrid (h-BN) für eine Integration in Heterostrukturen mit anderen 2D Materialien geeignet ist, erweckte dieses in letzter Zeit großes Interesse. Insbesondere van-der-Waals-Heterostrukturen, welche h-BN und Graphen verbinden, weisen viele potenzielle Vorteile auf, verbleiben in ihrer großflächigen Herstellung von kontinuierlichen Filmen allerdings problematisch. Diese Dissertation stellt eine Untersuchung betreffend des Wachstums von h-BN und vertikalen Heterostrukturen von Graphen und h-BN auf Ni-Substraten durch Molekularstrahlepitaxie (MBE) vor. Zuerst wurde das Wachstum von h-BN mittels elementarer B- und N-Quellen auf Ni als Wachstumssubstrat untersucht. Kristalline h-BN-Schichten konnten durch Raman-spektroskopie nachgewiesen werden. Wachstumsparameter für kontinuierliche und atomar dünne Schichten wurden erlangt. Das Keimbildungs- und Wachstumsverhalten so wie die strukturelle Güte von h-BN wurden mittels einer systemischen Veränderung der Wachstumstemperatur und -dauer untersucht. Die entsprechenden Beobachtungen wie der Änderungen der bevorzugten Keimbildungszentren, der Kristallgröße und der Bedeckung des h-BN wurden diskutiert. Ein Wachstum von großflächigen vertikalen h-BN/Graphen Heterostrukturen (h-BN auf Graphen) konnte mittels einem neuartigen, MBE-basierenden Verfahren demonstriert werden, welche es h-BN und Graphen jeweils erlaubt sich in der vorteilhaften Wachstumsumgebung, welche von Ni bereitgestellt wird, zu formen. In diesem Verfahren formt sich Graphen an der Schnittstelle von h-BN und Ni durch Präzipitation von zuvor in der Ni-Schicht eingebrachten C-Atomen. Schließlich konnte noch ein großflächiges Wachstum von Graphen/h-BN-Heterostrukturen (Graphen auf h-BN) durch das direkte abscheiden von C auf MBE-gewachsenen h-BN gezeigt werden. / Two-dimensional (2D) materials offer a variety of novel properties and have shown great promise to be used in a wide range of applications. Recently, hexagonal boron nitride (h-BN) has attracted significant attention due to its suitability for integration into heterostructures with other 2D materials. In particular, van der Waals heterostructures combining h-BN and graphene offer many potential advantages, but remain difficult to produce as continuous films over large areas. This thesis presents an investigation regarding the growth of h-BN and vertical heterostructures of graphene and h-BN on Ni substrates using molecular beam epitaxy (MBE). The growth of h-BN from elemental sources of B and N was investigated initially by using Ni as the growth substrate. The presence of crystalline h-BN was confirmed using Raman spectroscopy. Growth parameters resulting in continuous and atomically thin h-BN films were obtained. By systematically varying the growth temperature and time the structural quality as well as the nucleation and growth behavior of h-BN was studied. Corresponding observations such as changes in preferred nucleation site, crystallite size, and coverage of h-BN were discussed. Growth of h-BN/graphene vertical heterostructures (h-BN on graphene) over large areas was demonstrated by employing a novel MBE-based technique, which allows both h-BN and graphene to form in the favorable growth environment provided by Ni. In this technique, graphene forms at the interface of h-BN/Ni via the precipitation of C atoms previously dissolved in the thin Ni film. No evidence for the formation of BCN alloy could be found. Additionally, the suitability of ultraviolet Raman spectroscopy for characterization of h-BN/graphene heterostructures was demonstrated. Finally, growth of large-area graphene/h-BN heterostructures (graphene on h-BN) was demonstrated via the direct deposition of C on top of MBE-grown h-BN.
229

Korrelation elektronischer und struktureller Eigenschaften selbstorganisierter InAs-Nanostrukturen der Dimensionen 0 und 1 auf Verbindungshalbleitern

Walther, Carsten 20 December 2000 (has links)
Das gitterfehlangepaßte Kristallwachstum führt unter bestimmten Bedingungen zu einem 3-D Wachstumsmodus, der oft Stranski-Krastanow-Wachstum genannt wird. Resultierende Strukturgrößen liegen in der Größenordnung 10 nm und die Halbleiterstrukturen besitzen daher Quanteneigenschaften. Sie stehen im Fokus grundlagenwissenschaftlichen Interesses, da künstliche Atome und Dimensionalitätseffekte an ihnen untersucht werden können. Auch von der Anwendungsseite wächst das Interesse, da niederdimensionale Strukturen hoher Kristallqualität und mit hoher gestalterischer Freiheit geschaffen werden können. In dieser Arbeit wurden Mischhalbleiter-Heterostrukturen der Dimensionalität d= 0,1 und 2 mittels Gasphasen-MBE hergestellt. Ziel war eine Korrelation der strukturellen mit den elektronischen und optischen Eigenschaften. Selbstformierende Quantendrähte und Quantenpunkte in leitfähigen Kanälen wurden in ihrem Einfluß auf den lateralen Transport untersucht. Weiterhin wird dargestellt, wie zusätzliche, durch Quantenpunkte induzierte Oberflächenzustände eine deutliche Verschiebung der Energie des Oberflächen-Ferminiveau-Pinning einer (100)-GaAs-Oberfläche verursachen. Der senkrechte Elektronentransport durch Quantenpunkte dient der Untersuchung von Dot-induzierten, tiefen elektronischen Zuständen und der Erklärung eines eindimensionalen Modells elektronischer Kopplung zwischen denselben. Zusätzlich führen uns die Ergebnisse optischer Messungen zu einem besseren Verständnis des Vorgangs der Dotformierung und der elektronischen Kopplung zwischen zufällig verteilten Quantenpunkten. / The lattice-mismatched epitaxial growth is known to induce a three-dimensional growth mode often referred to as Stranski-Krastanov growth. The resulting structures have typical sizes of 10 nm and possess quantum properties, which are of fundamental physical interest, since artificial atoms and dimensionality effects can be studied. There is a growing interest from an applicational point of view also, since low dimensional structures of a high crystal quality and of a high degree of designerabillity can be created. In this work such structures of a dimensionality d=0,1 and 2 based on compound semiconductors have been designed and prepared by molecular beam epitaxy to perform comparative studies with respect to their electronic, structural and optical properties. Self assembled quantum wires and dots in conductive channels have been examined according to their influence on lateral electrical transport. It is demonstrated how additional surface states from quantum dots cause a distinct shift in the Surface Fermi-level of a GaAs (100) surface. Vertical transport through dots is used to support a model of one-dimensional coupling between deep states induced by the dots. Additionally, optical investigations let us attain a better understanding of the process of dot formation and the electronic coupling between the randomly distributed dots.
230

Fabricação de novas heteroestruturas a partir de estruturas SOI obtidas pela técnica \'smart-cut\'. / New semiconductor heterostructures based on SOI structures obtained by \"smart-cut\" process.

Neisy Amparo Escobar Forhan 17 March 2006 (has links)
Esta pesquisa engloba o estudo e desenvolvimento de novas heteroestruturas semicondutoras, tomando como base as estruturas SOI (Silicon-On-Insulator - silício sobre isolante) obtidas pela técnica Smart Cut, estudadas nestes últimos anos no Departamento de Engenharia de Sistemas Eletrônicos da Escola Politécnica da Universidade de São Paulo (EPUSP). Esta técnica combina a solda direta para a união de lâminas e a implantação iônica (I/I) de íons leves para a separação de camadas especificadas. São essenciais na preparação destas estruturas SOI, processos de I/I, limpeza e ativação das superfícies das lâminas e recozimentos em fornos a temperaturas moderadas. Estudamos também, diferentes métodos para a obtenção de novas heteroestruturas, basicamente combinando as técnicas de fabricação da estrutura SOI e os métodos de formação do carbeto de silício (SiC), que chamaremos de heteroestruturas SiCOI (Silicon Carbide-On-Insulator). O método usado para a formação do SiC depende, em cada caso, das características desejadas para o filme que, ao mesmo tempo, estão relacionadas com a aplicação à qual estará destinado. Analisamos três métodos de obtenção do material SiC com características específicas diferentes. A metodologia proposta aborda as seguintes tarefas: Tarefa 1: Obtenção de estruturas SOI pelo método convencional utilizado em trabalhos anteriores e melhoramento das características superficiais da estrutura resultante. Tarefa 2: partindo de uma lâmina de Si previamente coberta por uma camada isolante, fabricar a heteroestrutura SiC/isolante/Si, onde a camada de SiC é crescida pelo método de deposição química de vapor assistida por plasma (PECVD). O filme obtido por deposição PECVD é amorfo e portanto são necessárias etapas de cristalização posteriores ao crescimento. Tarefa 3: partindo de uma estrutura SOI, fabricar a heteroestrutura SiC/SiO2/Si, onde a camada de SiC é obtida por implantação de íons de carbono (C+) na camada ativa de Si da estrutura SOI para sua transformação em SiC. Tarefa 4: partindo de uma estrutura SOI, fabricar a heteroestrutura SiC/SiO2/Si, onde a camada de SiC é obtida por conversão direta da camada ativa de Si da estrutura SOI em SiC como resultado da carbonização do Si usando exposição a ambiente de hidrocarbonetos. Como resultado deste trabalho foram obtidas estruturas SOI Smart Cut com valor médio de rugosidade superficial dentro dos valores esperados segundo a bibliografia consultada. Durante o desenvolvimento de heteroestruturas SiC/isolante/Si obtidas utilizando a técnica de PECVD obtivemos filmes com boas características estruturais. Os recozimentos feitos em ambiente de N2 aparentemente trazem resultados satisfatórios, conduzindo à completa cristalização dos filmes. Nas análises feitas para a fabricação de heteroestruturas SiC/isolante/Si utilizando I/I de carbono confirma-se a formação de c-SiC depois de realizado o recozimento térmico. / In this work we study new semiconductors heterostructures, based on SOI (Silicon-On- Insulator) structures obtained by \"Smart-Cut\" process, that were studied in the last years at Departamento de Engenharia de Sistemas Eletrônicos da Escola Politécnica da Universidade de São Paulo (EPUSP). This technique combines high-dose hydrogen ion implantation (I/I) and direct wafer bonding. To produce SOI structures some processes are essential: I/I process, cleaning and activation of the surfaces, and conventional thermal treatments at moderated temperatures. We also investigate different methods to obtain new heterostructures, basically combining SOI technologies and silicon carbide (SiC) growth processes, which will be called as SiCOI (Silicon Carbide-On-Insulator) heterostructures. The utilized methods to obtain the SiC are related, in each case, with the desired film\'s characteristics, which at the same time are associated with the final application. We analyze three methods to obtain SiC material with specific different characteristics. The proposed methodology approaches the following tasks: Task 1: Fabrication of SOI structures by the conventional technology previously used by us, and the improvement of superficial characteristic of the final structure. Task 2: Fabrication of SiC/insulator/Si heterostructures from Si substrate previously covered with an insulator capping layer, where the SiC layer is deposited by plasma enhanced chemical vapor deposition (PECVD). The PECVD film is amorphous and therefore, a thermal annealing step is necessary for crystallization. Task 3: Fabrication of SiC/SiO2/Si heterostructures from SOI structure, where the SiC layer is synthesized through a high dose carbon implantation into the thin silicon overlayer of a SOI wafer. Task 4: Fabrication of SiC/SiO2/Si heterostructures from SOI structure, where the SiC layer is achieved by direct carbonization conversion of the silicon overlayer of a SOI wafer In this work we have obtained Smart Cut SOI structures with surface roughness similar to the previous reported. We also obtained SiC/insulator/Si heterostructures with good structural characteristics using PECVD technique. The investigated N2 thermal annealing appears to be suitable for the crystallization of all the amorphous films deposited by PECVD. We have shown the possibility of using carbon ion implantation and subsequent thermal annealing to form c-SiC for SiC/insulator/Si heterostructures.

Page generated in 0.1062 seconds