• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 9
  • 8
  • 1
  • 1
  • 1
  • Tagged with
  • 20
  • 20
  • 12
  • 8
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

組合式投資商品之分析

楊正鴻 Unknown Date (has links)
本篇論文主要以台灣兩個商品,第一銀行所發行的「"澳幣真有利"投資型定存」及華南銀行所發行的「"利滾利58"新台幣3.5年期每日計息式組合式投資商品」為主題進行其評價與避險分析。希望藉由這兩個商品的分析,讓投資人再投資這兩類新金融商品時,可以更了解可能面臨的風險及所能得到的真實報酬率,也可以讓發行商了解其設計商品時所應注意的地方。 隨著近年利率走勢偏低,投資人已無法再從定存或一般權證獲得投資人預期的報酬率,因此新金融商品已漸漸得到投資人的青睞。新金融商品大多標榜著保本、固定配息收益的特性,以此吸引投資大眾,更有許多新金融商品針對投資人量身訂做,然而對於投資人而言,面對這麼多采多姿的金融商品中,投資人如何選擇、如何考量就顯得更為重要,因此懂得利用財務工程所學的理論去分析、了解各金融商品的損益、可能風險,可以使得在投資策略上更可以靈活運用。
12

利率浮動與路徑相依型信用連結債券之評價與分析

謝曉薇 Unknown Date (has links)
自1992年首次公開「信用風險的衍生性商品」之後,信用衍生性商品市場從此展開,本國財政部也於民國91年底開放信用衍生性商品的交易;然而,目前信用衍生性商品仍是以英、美為主要的市場,信用違約交換為最大宗,其餘依序是擔保債券憑證(Collateralized Debt Obligations,CDO)、總收益交換協議(Total Return Swap)、信用連結債券及信用價差商品,然而,從市場接受度、法令配合度及券商的競爭優勢等方面來看,卻以信用連結債券較高。 目前已有部分券商及銀行發行信用衍生性商品,其條款報酬對投資人是否合理,發行價格對券商是否有利可尋,都將是對財務工程及商品條款設計一項考驗。本文藉由兩個市場上信用連結商品的實例:「台幣二年期錸德信用連動組合式商品」及「滙豐四年期和記黃埔信用連結組合式債券」,利用Hull-White(1994)利率三元樹與David Li(1998)信用曲線的建構來分析商品與評價,希望能將所學應用於實務,對台灣將來可能造成熱潮的信用衍生性商品,做一完整的說明與分析,使投資人了解到商品本身的風險及獲利,發行人也可注意其避險方法,造成雙贏的局面。
13

海外可轉換公司債的評價-考慮平均重設條款、信用風險及利率期間結構

張世東, CHANG SHIH TUNG Unknown Date (has links)
影響海外可轉換公司債的因素有許多,包括股價、國內利率、國外利率、匯率,若將時間變數也加入計算,其變動因子高達5階,這種「高維度」的問題已非有限差分法或樹狀方法能處理;且海外可轉債常附有平均式條款、回顧式條款等「路徑相依」性質的選擇權,更是格狀結構數值法(Lattice)難以處理的問題。若使用蒙地卡羅模擬,雖然可以處理高維度及路徑相依的問題,但遇到美式契約時,則會有無法判斷轉換時點的問題,更遑論還必須處理的重設條款或界限型契約。 本論文研究海外可轉換公司債的評價,特點是可以處理其契約中各種可能的複雜條款,本文所使用的最小平方蒙地卡羅模擬,由Longstaff and Schwartz [2000]提出,對於美式契約、路徑相依及高維度問題皆可處理。本文並以Hull and White利率三元樹配適公司債利率符合市場利率期間結構。此外本研究加入海外可轉換公司債評價中最重要的信用風險因素,過去可轉債文獻理論價格大都高於實際市價,這是由於忽略了公司的信用風險溢酬,本文所使用的信用風險模型是由Lando [1998]所提出,特點是不以信用等級作為考量,探討公司特性與所屬產業,並考慮總體因素對違約機率的影響,從市場價格中估計違約密度參數,進而求得信用價差。 本研究對仁寶電腦在2002年所發的ECB做實證研究,比較LSM理論價格與實際市價之誤差,及對Takahashi[2001]所提出之歐式模型做比較,發現本文提出模型之評價結果相當不錯,誤差僅有0.83%;此外並對建華金控2002所發之ECB,探討各種複雜新奇條款對ECB價格的影響,發現市場上嚴重低估了重設條款所提高的價值,而實際市價卻十分接近僅含賣回條款的理論價格。
14

可轉換公司債存續期間之分析 / Anatomy of the convertible bond duration

陳嘉霖, Cheb, Chia-Lin Unknown Date (has links)
論文名稱:可轉換公司債存續期間之分析 校所組別:國立政治大學金融研究所 畢業時間:九十年度第二學期 提要別:碩士學位論文提要 研究生:陳嘉霖 指導教授:陳松男博士 論文提要及內容: 本研究在分析可轉債的存續期間,在存續期間的衡量上是採用有效存續期間法;而在可轉換公司債的評價上,假設股票價格服從幾何布朗寧運動,無風險利率的變動符合Hu1I-white利率模型,並且考量利率與股票報酬之間的相關性,建立可轉換公司債評價六元樹形圖。 本研究分別針對到期期限長短、價內外程度、股價波動度、利率波動度、股價與利率相關係數及票面利率等六項參數,作可轉換公司債存續期間的敏感度分析,研究結果為:1 加入贖回條款後,可轉債的存續期間高於未加任何條款下的可轉債存續期間。2 加入賣回條款後,可轉債的存續期間低於未加任何條款下的可轉債存續期間。3 加入贖回及賣回候款後,可轉債的存續期間會介於僅含贖回條款與僅含賣回條款的存續期間之中。4 距到期日愈長可轉債的存續期間愈高。5 愈價外的可轉債其存續期間愈高。6 股票波動度愈高,可轉債的存續期間愈低。7 利率波動度增加則可轉債的存續期間上升。8 股票價格與利率相關係數由正至負,可轉債的存續期間上升。9 若贖回權愈小,則票息上升會增加可轉債的存續期間。 關鍵字:可轉換公司債、存續期間、有效存續期間、六元樹、Hull-white、利率模型 / Title of Thesis: Anatomy of the Convertible Bond Duration Name of Institute: Graduate Institute of Money and Banking, NCCU Graduate Date: June, 2002 Name of Student: Chen, Chia-Lin Advisor: Dr. Chen, Son-Nan Abstract: This thesis uses effective duration method to anatomize the convertible bond duration. With the assumptions that stock price follows Geometric Brownian Motion and risk-free interest rate follows Hull and White model, we built a hexanomial tree to value the convertible bond. This thesis analyses the effects of the six parameters . They are maturity date, the ratio of the stock price versus the strike price, the correlation between stock return and interest rate, stock return volatility, interest rate volatility, and coupons. The conclusions include nine points. First, the value of convertible bond duration including call clauses is higher then pure convertible bond duration. Second, the value of convertible bond duration including put clauses is lower than pure convertible bond duration. Third, the value of convertible bond duration including both call and put clauses is between only including call or put clauses ones. Fourth, the longer the time to maturity is, the higher the convertible bond duration is. Fifth, the higher the ratio of the strike price versus the stock price is , the higher the convertible bond duration is. Sixth, the higher the stock volatility is , the lower the convertible bond duration is. Seventh, the higher the interest rate volatility is , the higher the convertible bond duration is. Eighth, the value of the correlation between stock return and interest rate increases from a negative value to a positive one, then the convertible bond duration increases. Ninth, if the value of call right is very small , the convertible bond duration will increase by the increasing of the coupon . Keywords: Convertible Bond, Duration, Effective Duration, Hexanomial Tree, Hull and White Interest Rate Model
15

連動式債券設計個案研究-固定期限交換利率利差連動與信用連結債券

莊筑豐 Unknown Date (has links)
連動式債券已成為目前市場上最熱門的投資工具,標榜著高受益的條款下,常隱含著投資人所不瞭解的風險,利用理論的模型套用在實務商品上,可以令人更清楚認識複雜化的金融衍生性商品。本文在Libor市場模型與Hull-White利率模型的架構下,利用數值方法評價分析最常見的兩種連動式債券-固定期限利率交換利差連動債券與信用連結債券。 Libor市場模型直接拿取市場上可觀察到的遠期Libor利率做為模型的標的,有良好配適目前利率期間結構的優點。利用此模型為出發,校準出波動度期間結構,以蒙地卡羅模擬法來評價固定期限利率交換利差連動債券。由評價結果可量化分析出連動式債券內含的選擇權與零息債券價值為何,探討發行商的發行策略與投資人的風險來源。 繼股權、利率連動式商品之後,未來金融商品的連動標的將進入信用風險的階段。以公司債的市場資料建立出一條信用風險曲線(Credit Curve),最能夠反映出當時市場上大多數人對於未來發生違約事件的預期。在假設利率市場風險和標的公司信用風險是獨立的前提下,將這條曲線和以Hull-White利率模型為基礎建立的利率三元樹與路徑函數結合,便可以適當地評價信用連結債券的價值。最後,求算債券內含的信用違約交換價值,對發行機構的策略與投資人的風險作分析。
16

Pricing European and American bond options under the Hull-White extended Vasicek Model

Mpanda, Marc Mukendi 01 1900 (has links)
In this dissertation, we consider the Hull-White term structure problem with the boundary value condition given as the payoff of a European bond option. We restrict ourselves to the case where the parameters of the Hull-White model are strictly positive constants and from the risk neutral valuation formula, we first derive simple closed–form expression for pricing European bond option in the Hull-White extended Vasicek model framework. As the European option can be exercised only on the maturity date, we then examine the case of early exercise opportunity commonly called American option. With the analytic representation of American bond option being very hard to handle, we are forced to resort to numerical experiments. To do it excellently, we transform the Hull-White term structure equation into the diffusion equation and we first solve it through implicit, explicit and Crank-Nicolson (CN) difference methods. As these standard finite difference methods (FDMs) require truncation of the domain from infinite to finite one, which may deteriorate the computational efficiency for American bond option, we try to build a CN method over an unbounded domain. We introduce an exact artificial boundary condition in the pricing boundary value problem to reduce the original to an initial boundary problem. Then, the CN method is used to solve the reduced problem. We compare our performance with standard FDMs and the results through illustration show that our method is more efficient and accurate than standard FDMs when we price American bond option. / Mathematical Sciences / (M.Sc. (Mathematics))
17

利率交換選擇權及固定期限交換利率利差連動債券之設計及分析

陳俐芊, Li-Chien Chen Unknown Date (has links)
本文的研究目的在於探討百慕達利率交換選擇權以及CMS結構型債券的評價與分析。在利率風險管理的工具中,利率交換(IRS)可說是最重要的一項,由於利率交換契約提供了很有效率的資產負債管理方式,自1980年代出現利率交換以來,利率交換的交易量與日遽增。在國內利率市場發展上,本國證券商在86年核准證券自營商、承銷商得因業務需要,可以進行避險性的新台幣利率交換交易。主管機關已在90年10月開放證券商經營利率交換業務。91年6月財政部又開放證券商可進一步承作更多樣化的利率商品,包括利率選擇權、利率交換選擇權、遠期利率協定及上述商品之組合。故本文提出之百慕達式利率交換選擇權個案分析,期能探討利率交換選擇權的評價方式及其避險方式。 對於市場上的個體投資戶而言,要如何利用自身對利率走勢的判斷來獲取利潤? 除了衍生性利率商品的操作外,目前還可以投資利率連結型債券,本文以CBA發行之六年期固定期限交換利率連動債券為例,進行個案的評價與避險分析,期能提供券商在未來設計與發行此類型利率連動債券時的一個參考。
18

信用及利率衍生性商品之評價與分析--以信用連結票券及利率交換為例

林淳瑜 Unknown Date (has links)
近年來由於金融自由化的發展,台灣已陸續開放新金融商品,除了股權相關的新金融商品之外,也陸續開放利率相關的新金融商品,如新台幣利率交換、新台幣利率選擇權、債券遠期交易、債券選擇權等。在信用衍生性商品市場方面,我國銀行從2002年底開放承做信用衍生性商品,目前正準備開放證券商承做。隨著金融國際化及自由化,未來將會從國外引進更新穎的金融商品,使金融市場更為完備。 本文以Hull – White利率模型及LIBOR市場模型為架構,藉由數值方法評價分析兩個衍生性商品──信用連結票券及利率交換。首先在信用連結票券方面,運用Li(1998)建立信用價差曲線(Credit Curve),將之應用至Hull – White三元樹,評價信用連結票券之價值,並作敏感度分析與避險參數分析。其次在利率交換方面,由於投資人端連結「雪球型」的支付型態,為路徑相依商品,故使用LIBOR市場模型以蒙地卡羅模擬法(Monte Carlo)進行評價與分析,再進行發行者損益兩平分析及情境分析。最後針對兩個商品的評價結果作結論,分析發行者及投資人的利潤及避險,並給予後續研究者模型改進之建議與方向。
19

Pricing European and American bond options under the Hull-White extended Vasicek Model

Mpanda, Marc Mukendi 01 1900 (has links)
In this dissertation, we consider the Hull-White term structure problem with the boundary value condition given as the payoff of a European bond option. We restrict ourselves to the case where the parameters of the Hull-White model are strictly positive constants and from the risk neutral valuation formula, we first derive simple closed–form expression for pricing European bond option in the Hull-White extended Vasicek model framework. As the European option can be exercised only on the maturity date, we then examine the case of early exercise opportunity commonly called American option. With the analytic representation of American bond option being very hard to handle, we are forced to resort to numerical experiments. To do it excellently, we transform the Hull-White term structure equation into the diffusion equation and we first solve it through implicit, explicit and Crank-Nicolson (CN) difference methods. As these standard finite difference methods (FDMs) require truncation of the domain from infinite to finite one, which may deteriorate the computational efficiency for American bond option, we try to build a CN method over an unbounded domain. We introduce an exact artificial boundary condition in the pricing boundary value problem to reduce the original to an initial boundary problem. Then, the CN method is used to solve the reduced problem. We compare our performance with standard FDMs and the results through illustration show that our method is more efficient and accurate than standard FDMs when we price American bond option. / Mathematical Sciences / (M.Sc. (Mathematics))
20

Modely úrokových měr - praktické aspekty / Interest Rate Models - Practical Aspects

Hakala, Michal January 2017 (has links)
Topic of the master thesis is practice of interest rate models. Literature dedicated to the interest rate models usually presents theory in very general form. Theory presented in general form leads to a gap between theory and practice. Author tries to fill this gap. Thesis describes basic theory and presents practical computations, which are relevant to generating interest rate scenarios. Contribution is given by derivation of formulas and computational methods in form directly applicable for implementation of presented models. It is common practice to validate quality of interest rate scenarios. Author presents several tests and implements them in programming language Python. Tests are implemented as application with graphical user interface.

Page generated in 0.0312 seconds