Spelling suggestions: "subject:"IR mikrospektroskopie"" "subject:"IR bodenspektroskopie""
81 |
Optical characterization of semiconductor nanostructures with high spatial resolutionMilekhin, Ilya 04 October 2022 (has links)
Ein grundlegender Trend der modernen Mikro- und Optoelektronik ist die sinkende Größe der aktiven Elemente der Bauteile. Mit typischen Dimensionen im Bereich 1-10 nm werden Effekte des sogenannten quantenmechanischen Confinements bemerkbar, die die elektronischen und phononischen Eigenschaften der Materialien stark beeinflussen. Der aktuelle Entwicklungsstand von Nanotechnologie macht es möglich, Halbleiternanokristalle mit verschiedenen Strukturparametern wie Größe, Form und chemischer Zusammensetzung herzustellen, welche neue fundamentaleтhysikalische Eigenschaften zeigen. Gleichzeitig ist die Herausforderung, die Zusammenhänge von Struktur der Nanokristalle mit deren optischen, elektronischen und phononischen Eigenschaften zu erkunden, weiterhin relevant. Der Grund dafür besteht darin, dass klassische optische Methoden zur Untersuchung von makroskopischen Materialien und dünnen Schichten – Raman-, Infrarot- und Photolumineszenz-Spektroskopie, bei Anwendung auf Nanostrukturen nicht einzelne, sondern gleich eine Vielzahl von Nanoobjekten mit unterschiedlichen Größen, Formen, Zusammensetzungen etc. messen. Als Resultat davon sind die gemessenen Werte nicht sehr aussagekräftig, da effektiv über eine große Anzahl von Nanokristallen gemittelt wird, während der Beitrag von einzelnen Nanokristallen unter dem Detektionslimit liegen.
Aus diesem Grund wurden die Methoden der plasmonverstärkten optischen Spektroskopie, inklusive oberflächenverstärkter Ramanstreuung (SERS, Surface Enhanced Raman Spectroscopy), Photolumineszenz (SEPL, Surface Enhanced Photoluminescence) und Infrarotabsorption (SEIRA, Surface Enhanced IR Absorption) in den letzten Jahren mit dem Ziel, das erreichbare Signal einzelner Halbleiternanostrukturen zu verbessern, stark vorangetrieben. Diese Methoden basieren auf der lokalen Verstärkung des elektromagnetischen Feldes nahe metallischer Nanostrukturen durch das Anregen lokalisierter Oberflächenplasmonenresonanz (LSPR, Localized Surface Plasmon Resonance) mittels Licht im sichtbaren oder infraroten Spektralbereich. Diese oberflächenverstärkten Methoden erlauben das Untersuchen des Phononenspektrum aus SERS-, SEPL- und SEIRA-Daten mit einer Sensitivität weit über der von konventionellen Methoden. Daher wurden in dieser Arbeit SERS- und SEPL-Experimente an CdSe/CdS Nanoplättchen, die auf Gold Nanoscheiben abgeschieden wurden, durchgeführt. Resonantes und nichtresonantes SERS sowie der Einfluss von Energietransfer und Purcell-Effekt in SEPL-Experimenten werden hier gezeigt. Mittels numerischer Simulation wurde die Struktur der Mikro- und Nanoantennen optimiert, um die Übereinstimmung ihrer LSPR- und der Phononenenergien der Halbleiternanokristall-Monolagen in SEIRA-Experimenten zu erreichen. Damit wurden die phononischen Eigenschaften dieser Halbleiternanokristall-Monolagen untersucht, was vorher mit konventioneller IR-Spektroskopie nicht möglich war. Ebenso wurde gezeigt, dass die Plasmonen der Nanoantennen effektiv mit darunterliegenden Materialien, z.B. SiO2, gekoppelt werden können. Die Eindringtiefe dieser Kopplung wurde durch Messung an Nanoantennen auf verschieden dicken SiO2-Lagen bestimmt und die Plasmon-Phonon-Wechselwirkung, die zur Renormalisierung von Phononen- und Plasmonenspektren führt, gefunden. Teile der Arbeit sind in J. Chem. Phys., 153, 16, 2020, Beilstein J. Nanotechnol., 9, 2646–2656, 2018, J. Phys. Chem. C, 121, 10, 5779–5786, 2017, und Beilstein J. Nanotechnol. 7, 1519–1526, 2016 veröffentlicht.
Es ist zu beachten, dass die Grenze des Auflösungsvermögens für Optik auch für die oberflächenverstärkte Spektroskopie gilt. Um diese Grenze zu umgehen wurde spitzenverstärkte Ramanspektroskopie (TERS, Tip Enhanced Raman Spectroscopy) verwendet. TERS kombiniert die hohe räumliche Auflösung von AFM (Rasterkraftmikroskopie, Atomic Force Microscopy) mit den analytischen Fähigkeiten der Ramanspektroskopie. Eine Möglichkeit, das lokale elektromagnetische Feld und damit auch das gemessene TERS-Signal zu verstärken, besteht darin, plasmonische Substrate zu verwenden, wobei das zu untersuchende Objekt zwischen diesem Substrat und der Spitze des TERS-Spektrometers platziert wird, da dort die Verstärkung des elektromagnetischen Feldes am größten ist (sogenanntes gap-mode TERS). Daher haben wir in dieser Arbeit den Einfluss eines solchen plasmonischen Substrates auf die TERS-Messungen von phononischen Eigenschaften extrem dünner Lagen (Submonolage) von Nanokristallen untersucht. Vorteile verschiedener TERS-Methoden werden demonstriert: konventionelles TERS, gap-mode TERS und resonantes gap-mode TERS. TERS-Mapping wurde auf den gleichen Nanoscheiben mit CdSe-Nanokristallen durchgeführt und der Unterschied dieser Mappings für zwei verschiedene, für die Ramanspektroskopie genutzte Wellenlängen mit elektrodynamischer Modellierung erklärt. Mit gap-mode TERS war es möglich, einzelne CdSe/CdS Nanoplättchen sichtbar zu machen und ihre Phononenmoden zu erforschen. Teile dieser Arbeit sind in Nanoscale Adv., 2, 11, 5441–5449, 2020 veröffentlicht.
Eine weitere neue und intensiv vorangetriebene Methode zur Nanoanalyse ist die nano-FTIR (Fourier Transformed Infrared Spectroscopy, Fouriertransformierte Infrarotspektroskopie) genannte Kombination von IR-Spektroskopie mit Rasterkraftmikrokopie. Im Gegensatz zu TERS, bei dem Licht von einer einzelnen, schmalen Laserlinie inelastisch gestreut wird, verwendet nano-FTIR eine breitbandige Infrarotquelle. Daher wird in nano-FTIR das gesuchte Nahfeld-Signal durch Demodulation des Detektorsignals extrahiert. Durch nano-FTIR-Spektroskopie wurde in dieser Arbeit der Oxidgehalt x in SiOx-Nanodrähten auf der Nanometerskala bestimmt. Weiterhin wurden Plasmon-Phonon-Wechselwirkungen einer einzelnen Nanoantenne auf Si/SiO2 Substrat ebenfalls auf der Nanometerskala untersucht. Teile dieser Arbeit sind in Appl. Surf. Sci., 152583, 2022 veröffentlicht.
Zuletzt demonstriert diese Arbeit auch die Kombination von polarisiertem TERS und nano-FTIR für die Untersuchung von hexagonalen AlN-Nanoclustern. Es wird gezeigt, dass die polarisierten TERS-Experimente sensitiv sind für Oberflächenplasmonenmoden mit unterschiedlichen Symmetrien, wie sie charakteristisch für AlN-Nanocluster sind. Der Einfluss der Polarisierung auf die TERS-Mappings eines einzelnen AlN-Clusters und Nanodrahts wird experimentell gezeigt und erklärt. Weiterhin konnte festgestellt werden, dass die nano-FTIR-Spektren, ähnlich den TERS-Daten, eine Sensitivität für Oberflächenmoden zeigen und neue Informationen über die Winkelverteilung dieser AlN-Oberflächenphononen im Nanokristall auf der Nanometerskala liefern.:Table of Contents
1. Elementary excitations in hybrid semiconductor/metal nanostructures 10
1.1. Phonons and excitons in semiconductor nanocrystals: Raman, IR and PL spectroscopies 11
1.2. Raman scattering 15
1.3. Plasmons in metal nanoclusters 17
1.4. Photoluminescence 20
1.5. Surface-enhanced Raman spectroscopy (SERS), IR absorption (SEIRA), and Photoluminescence (SEPL) in hybrid semiconductor/metal nanostructures: Principles and enhancement mechanisms 22
1.6. Tip-enhanced Raman spectroscopy (TERS) and Photoluminescence (TEPL) of semiconductor nanostructures 24
1.7. From conventional Fourier transform infrared (FTIR) to nano-FTIR spectroscopy 26
1.8. Summary 27
2. Experimental Methods 28
2.1. Fabrication of metal nanostructures 28
2.1.1. Metal evaporation 28
2.1.2. Fabrication of TERS cantilevers 28
2.1.3. Photo- and Nanolithography of metal micro-and nanostructures 28
2.2. Fabrication of semiconductor nanocrystals by Langmuir-Blodgett technology and their TEM characterization 32
2.3. Fabrication and TEM characterization of CdSe/CdS nanoplatelets 35
2.4. Fabrication of SiOx lines by local anodic oxidation 36
2.5. Molecule beam epitaxy (MBE) of AlN nanoclucters on Si(111) 37
2.6. Microscopy and spectroscopy characterization methods of semiconductor and metal nanostructures at micro- and nanoscale 38
2.6.1. Micro- and nano-Raman, and Photoluminescence spectroscopies 38
2.6.2. Fourier transform infrared (FTIR) spectroscopy 39
2.6.3. Atomic Force Microscopy (AFM) 41
2.6.4. NeaSNOM platform for Nano-FTIR spectroscopy 43
2.7. Summary 45
3. Surface- enhanced Raman, PL and IR spectroscopies of hybrid semiconductor/metal nanostructures 46
3.1. SERS and SEPL of CdSe/CdS nanoplatelets on Au nanodisks 46
3.2. IR spectroscopy of hybrid semiconductor/metal nanostructures 52
3.2.1. Plasmon modes in gold nanoantennas on Si/SiO2 52
3.2.1.1. Plasmon modes in micro- and nanoantennas of various morphologies 57
3.2.1.2. Activation of even modes of localized surface plasmon in antennas 61
3.2.2. SEIRA of optical phonons in CdS, CdSe, PbS nanocrystals on Au micro- and nanoantennas 64
3.3. Summary 67
4. Nanoscopy of hybrid semiconductor/metal nanostructures 69
4.1. TERS of CdSe NCs on different plasmonic substrates 69
4.2. Gap-mode TERS imaging of CdSe NCs for different excitation energies 76
4.3. Gap-mode TERS imaging of CdSe/CdS nanoplatelets 79
4.4. Nano-FTIR Spectroscopy of SiOx nanowires 81
4.5. Plasmon-phonon nanoscale interaction in an Au nanoantenna on a thin SiO2 layer 85
4.6. Summary 87
5. Comparative nanoscale analysis of surface optical modes in AlN nanostructures 89
5.1. TERS mapping of a single AlN hexagonal nanocluster 89
5.2. Hyperspectral Nano-FTIR imaging of a single AlN hexagonal nanocluster 91
5.3. Polarized TERS mapping and Hyperspectral Nano-FTIR imaging of a single AlN nanowire 95
5.4. Summary 98
6. Summary 99
7. Appendix 101
8. Acknowledgements 104
9. Lebenslauf 105
10. Publications 106
11. Erklärung 108
12. Bibliography 109
13. List of Figures 125
|
82 |
Unsicherheitsbilanzen in der quantitativen FT-IR-SpektroskopieYozgatli, Hakan Peter 22 May 2002 (has links)
Die Unsicherheit analytischer Ergebnisse lässt Rückschlüsse auf die Zuverlässigkeit der angewandten Analyseverfahren zu. Entsprechend den Qualitätsanforderungen an akkreditierte Prüf- und Kalibrierlaboratorien (siehe u.a. Norm ISO/IEC 17025) ist daher die Angabe der Messunsicherheit erforderlich. Zur Ermittlung der Messunsicherheit typischer FT-IR-spektroskopischer Analysen von Feststoffen und Flüssigkeiten wurde eine systematische Untersuchung des Einflusses zahlreicher FT-, proben- und gerätespezifischer Parameter auf den Messwert durchgeführt. Die Überprüfung der Ordinatenrichtigkeit bei FT-IR-spektroskopischen Messungen an Gläsern erfolgte mit Hilfe eines Transmissionsstandards des National Physical Laboratory (NPL), der aus einem Schott NG11 Neutralglasfilter besteht, und bei Messungen an Flüssigkeiten durch Vergleich der nach einem Absolutverfahren bestimmten Extinktionskoeffizienten des Dichlormethans mit von der IUPAC publizierten Standardwerten. Nach Optimierung der Messbedingungen stimmen die Transmissionswerte des NPL-Standards und die Extinktionskoeffizienten des Dichlormethans mit den entsprechenden Standardwerten überein. Die für die Bestimmung dieser Messgrößen aufgestellten Unsicherheitsbilanzen gestatten die quantitative Abschätzung des Einflusses einzelner Parameter auf die Gesamtunsicherheit. Bei Anwendung der KBr-Presstechnik für die quantitative Analyse von unlöslichen Feststoffen haben die Partikelgröße des Analyten und die Homogenität der Presslinge einen dominierenden Einfluss auf die Qualität der Spektren. Um die Unsicherheit zu minimieren, die auf dem Einfluss der Partikelgröße beruht, muss es ein Ziel der Probenvorbereitung sein, dass die Partikeldurchmesser der Kalibriersubstanz und des Analyten einen Wert von ca. 2 µm nicht überschreiten und möglichst gleich groß sind. Bei Untersuchungen mit Calciumcarbonat-Proben unterschiedlicher Partikeldurchmesser hat sich die Halbwertsbreite der auszuwertenden Bande, die mit der Partikelgröße korreliert, als ein geeignetes Maß für die Beurteilung erwiesen, wie gut letztere Bedingung erfüllt ist. Eine inhomogene Verteilung der absorbierenden Partikel im Pressling kann durch Durchstrahlen der gesamten Oberfläche des Presslings oder durch Mitteln der an verschiedenen Positionen des Presslings gemessenen Spektren berücksichtigt werden. Diese Arbeiten zeigen, dass die Anwendung der KBr-Presstechnik bei sorgfältiger Probenvorbereitung und Einhaltung optimaler Messbedingungen im Rahmen der Messunsicherheit zu richtigen Ergebnissen führt. / The uncertainty of analytical results allows to assess the reliability of the applied analytical methods. According to quality requirements for accredited laboratories (see e.g. ISO/IEC 17025) it is necessary to report the uncertainty of measurement. In order to evaluate the uncertainty of typical quantitative FT-IR spectroscopic analysis of solids and liquids a detailed study of the influence of numerous FT-, sample- and instrument-specific parameters on the measurand was performed. The trueness of FT-IR spectroscopic measurements on glasses was tested with a transmittance standard of the National Physical Laboratory (NPL) that consists of a Schott NG11 neutral density filter. The trueness of FT-IR spectroscopic measurements on liquids was checked by the comparison of the molar absorptivities of dichloromethane determined by transmission measurements with the standard values published by IUPAC. After optimisation of the measurement conditions the transmittance values of the NPL standard and the molar absorptivities of dichloromethane are in accordance with the corresponding standard values. The uncertainty budgets evaluated for these measurends makes it possible to assess the contribution of a single parameter on the combined uncertainty. By using the KBr pressed pellet technique for the quantitative analysis of insoluble solids the particle size of the analyte and the homogeneity of the pellets are the major contributions to the quality of spectra. In order to minimize the uncertainty due to the particle size a purpose of the sample preparation must be to reduce the particle sizes of the calibration sample and the analyte to a maximum size of 2 µm and both particle sizes should agree. A detailed study with calcium carbonate samples with different mean particle sizes has shown that the half-width of the analysed band depends on the particle size and is suitable to test how far the last mentioned condition is fulfilled. In order to minimize the uncertainty due to an inhomogeneous distribution of the absorbing particles in the pellets the infrared beam must pass through the whole surface area of a pellet or the mean value of the spectra measured at different positions on the surface area has to be evaluated. This work proves that the use of the pressed pellet technique can lead to correct results within the limits of the uncertainty if the sample preparation is carried out carefully and optimal measurement conditions are kept.
|
83 |
Ultrafast two-dimensional infrared spectroscopy of hydrogen-bonded base pairs and hydrated DNAYang, Ming 06 August 2012 (has links)
Die Struktur von DNS Molekülen und ihre Wechselwirkung mit Wasser werden seit langer Zeit heiß diskutiert. In der vorliegenden Arbeit wird nichtlineare Spektroskopie zur Untersuchung dieser Systeme angewendet. Oligomere, die aus 23 alternierenden Adenin-Thymin-Basenpaaren bestehen und eine Doppelhelix bilden, wurden mit Hilfe von 2D IR Spektroskopie für verschiedene Hydratisierungsgrade untersucht. Für DNS-Filme bei 0% relativer Feuchte (r.F.) erlauben die transienten Spektren eine Unterscheidung der NH Streckschwingung von Thymin ((NH)), der symmetrischen und asymmetrischen NH2 Streckschwingung von Adenin (s(NH2) and a(NH2)) sowie die Bestimmung der jeweiligen Linienprofile. Die Spektren zeigen eine homogene Verbreiterung für die (NHT) wohingegen die s(NH2) and a(NH2) eine ausgeprägte und zeitunabhängige inhomogene Verbreiterung zeigen, welche auf Unordnungen in der DNS-Struktur hinweisen. Außerdem kann Energietransfer von der a(NH2) zur (NH) beobachtet werden. Bei Erhöhung der r.F. hat die erhöhte Anzahl von Wassermolekülen nur einen geringen Einfluss auf die Positionen und Linienprofile der NH Streckschwingungen. Dadurch wird nahegelegt, dass die spektrale Dynamik vom DNS Molekül selbst und nicht vom umgebenen Wasser bestimmt ist. Im Gegensatz dazu zeigt die OH Streckmode der Wasserhülle um die DNS spektrale Diffusion auf einer 500 fs Zeitskala. Guanosin-Cytidin(GC)-Basenpaare wurden in Chloroformlösung untersucht, um die Wechselwirkung zwischen Basenpaaren zu verstehen. Dabei wurden die NH Schwingungen in einer local mode Darstellung betrachtet, die zwei freie NH Gruppen von G und C und drei wasserstoffverbrückte NH Gruppen beeinhaltet. Die Kopplungen und Relaxationsdynamik der NH Streckanregungen wurden mit Femtosekunden-Pump-Probe und 2D IR Experimenten studiert. Die Ergebnisse zeigen eine Verringerung der Lebensdauer mit der Bildung von Wasserstoffbrücken sowie Energietransfer zwischen zwei wasserstoffverbrückten NH Streckschwingungen. / The structure of DNA molecule and the interactions with its surrounding water is a hot topic for long time. In this thesis, we employ the nonlinear spectroscopy, including femtosecond pump-probe and two-dimensional infrared (2D IR) experiment, to study the vibrational dynamics of the systems. Double-stranded DNA short oligomers containing 23 alternating adenine-thymine base pairs were studied at different hydration levels by femtosecond 2D IR spectroscopy. For a DNA film at 0% relative humidity, the transient spectra enable a separation of the NH stretching mode of thymine from the symmetric and asymmetric NH2 stretching modes of adenine and determine the individual line shapes. For the NH stretch of thymine, the spectra demonstrate an essential homogeneous broadening, whereas for the symmetric and asymmetric NH2 stretches a pronounced and time-independent inhomogeneous broadening suggests a disorder in DNA structure. An energy transfer from the asymmetric NH2 stretch of adenine to the NH stretch of thymine is also observed. When the relative humidity increases, the increased water molecules have limited influence on the positions and line shapes of NH stretching frequencies, suggesting the spectral dynamics governed by DNA rather than water fluctuations. In contrast, the OH stretching mode of water shell around hydrated DNA undergoes a spectral diffusion on a 500 fs time scale, which is slower than the neat water. The guanosine-cytidine (GC) base pairs in chloroform solution were investigated to understand the interactions within base pairs. A local mode representationof NH stretching mode is adopted, consisting two free NH groups of G and C and three hydrogen bonded NH groups. The coupling and relaxation dynamics of the NH stretching excitations are studied by femtosecond pump-probe and 2D IR experiments. The results demonstrate a lifetime shortening upon the formation of hydrogen bonds, and an energy transfer between two hydrogen-bonded NH stretches.
|
84 |
Oberflächenfunktionalisierung von Poly(dimethyl)siloxanUllmann, Robert 12 December 2012 (has links)
Im Rahmen der vorliegenden Arbeit werden die Synthese und Charakterisierung eines thermisch-kontrollierten und eines photochemisch-kontrollierten reversiblen Polymersystems vorgestellt. Weiterhin werden Poly(dimethyl)siloxan-Oberflächen mit Amino-, Isocyanat-, Furan-, Maleimid- und Cumarin-Gruppen funktionalisiert. Hierbei werden sowohl bekannte als auch neuartige Wege der Oberflächenmodifizierung vergleichend untersucht und bewertet.
Ausgehend von den hergestellten Cumarin-funktionalisierten Poly(dimethyl)siloxan-Oberflächen wird eine Anbindung des synthetisierten photochemisch-kontrollierten reversiblen Polymersystems an diese Oberflächen untersucht.
Des Weiteren wird die Anbindung des synthetisierten thermisch kontrollierten reversiblen Polymersystems sowohl an den hergestellten Maleimid- als auch an den Furan-funktionalisierten Poly(dimethyl)siloxan-Oberflächen analysiert.
Basierend auf den vorgestellten Cumarin-Funktionalisierungen werden photoaktive Oberflächen beschrieben und mittels ATR-IR-spektroskopischer und UV/Vis-spektroskopischer Methoden analysiert.:Inhaltsverzeichnis 6
Abkürzungsverzeichnis 10
Kapitel I Einleitung und Zielstellung 13
I.I Poly(dimethyl)siloxan 13
I.II Funktionalisierung von Oberflächen 15
I.III Reversible Polymere an Oberflächen 18
I.IV Photoaktive Oberflächen 20
Kapitel II Sauerstoffplasma-Modifizierung 21
II.I Vorbetrachtung 21
II.I. a) Plasmen – Definition und Charakterisierung 21
II.I. b) Technisch angewandte Plasmaprozesse 24
II.II Hintergrund und Motivation Sauerstoffplasma-modifizierter PDMS-Oberflächen 27
II.II. a) ATR-IR-spektroskopische Charakterisierung von Sauerstoffplasma-modifizierten PDMS-Oberflächen 28
II.II. b) Rasterkraftmikroskopische Charakterisierung von Sauerstoffplasma-modifizierten PDMS-Oberflächen 34
II.II. c) Untersuchungen zum Quellverhalten von PDMS 35
II.III Zusammenfassung 38
II.IV Experimenteller Teil 39
II.IV. a) Herstellung von Substraten aus Poly(dimethyl)siloxan 39
II.IV. b) Sauerstoffplasma-Modifikation von Poly(dimethyl)siloxan 39
Kapitel III Amino-funktionalisierte Oberflächen 40
III.I Hintergrund und Motivation Amino-funktionalisierter Oberflächen 40
III.I. a) Amino-Funktionalisierung mittels 3 Aminopropyltriethoxysilan (APTES) 41
III.I. b) Amino-Funktionalisierung nach Balachander & Sukenik 43
III.I. c) Amino-Funktionalisierung mittels Phenylendiisocyanat (PDI) 45
III.II Kontaktwinkelanalyse von unterschiedlichen Amino-Beschichtungen 48
III.III Zusammenfassung 49
III.IV Experimenteller Teil 50
III.IV. a) Amino-Funktionalisierung von PDMS-Substraten mittels APTES 50
III.IV. b) Amino-Funktionalisierung von PDMS-Substraten nach Balachander & Sukenik 50
III.IV. c) Amino-Funktionalisierung von PDMS-Substraten mittels PDI 51
Kapitel IV Maleimid-funktionalisierte Oberflächen 52
IV.I Hintergrund und Motivation Maleimid-funktionalisierter Oberflächen 52
IV.II Synthese Maleimid-funktionalisierter PDMS-Oberflächen 53
IV.II. a) Syntheseroute via Maleinsäureanhydrid (MSA-Route) 53
IV.II. b) Trichlorosilyl-funktionalisierte Maleimid-Derivate 56
IV.III Experimenteller Teil 59
IV.III. a) Synthese eines furangeschützten Maleimids 59
IV.III. b) Synthese eines furangeschützten Undec-10-enyl-1-maleimids (13) 59
IV.III. c) Synthese eines furangeschützten 11-Trichlorosilyl-undecyl-1-maleimids (14) 60
IV.III. d) Maleimid-Funktionalisierung von PDMS-Substraten mittels MSA 61
IV.III. e) Maleimid-Funktionalisierung von PDMS-Substraten mittels trichlorosilyl-funktionalisierter Maleimid-Derivate 62
Kapitel V Furan-funktionalisierte Oberflächen 63
V.I Hintergrund und Motivation Furan-funktionalisierter Oberflächen 63
V.II Herstellung Furan-funktionalisierter PDMS-Oberflächen 65
V.II. a) Trichlorosilyl-funktionalisierte Furan-Derivate an Hydroxyl-Oberflächen 65
V.II. b) Furfural an Amino-Oberflächen 67
V.II. c) Furfurylalkohol an Isocyanat-Oberflächen 69
V.III Zusammenfassung 71
V.IV Experimenteller Teil 72
V.IV. a) Synthese von Undec-10-enyl-furan-2-carboxylat (15) vgl. 72
V.IV. b) Synthese von 11-(Trichlorosilyl)undecyl- furan-2-carboxylat (16) vgl. 72
V.IV. c) Furan-Funktionalisierung mittels 11 (Trichlorosilyl)undecyl furan 2 carboxylat (16) 73
V.IV. d) Furan-Funktionalisierung mittels Furfural nach 74
V.IV. e) Furan-Funktionalisierung mittels Furfurylalkohol vgl. 74
Kapitel VI Reversible Polymere 75
VI.I Hintergrund und Motivation reversibler Polymere 75
VI.II Thermisch-kontrollierte reversible Polymerisation (DIELS-ALDER-Reaktion) 77
VI.II. a) Hintergrund thermisch-kontrollierter reversibler Polymerisationen 77
VI.II. b) DIELS-ALDER-AB-Monomer mit flexiblem Spacer 80
VI.II. c) Charakterisierung der thermisch-kontrollierten Polymerisation 83
VI.III Zusammenfassung 96
VI.IV Photochemisch-kontrollierte reversible Polymerisation 97
VI.IV. a) Hintergrund photochemisch-kontrollierter reversibler Polymerisationen 97
VI.IV. b) Synthese geeigneter Biscumarine 101
VI.V Experimenteller Teil 108
VI.V. a) Thermisch-kontrollierte reversible Polymerisationen 108
VI.V. b) Photochemisch-kontrollierte reversible Polymerisationen 114
Kapitel VII Reversible Polymere an Oberflächen 117
VII.I Anbinden von DIELS-ALDER-AB-Polymeren an Maleimid- und Furan-Oberflächen 117
VII.I. a) ATR-IR-spektroskopische Charakterisierung 119
VII.II Zusammenfassung 121
VII.III Anbinden von Biscumarinen an Cumarin-Oberflächen 122
VII.III. a) ATR-IR-spektroskopische Charakterisierung 123
VII.IV Zusammenfassung 125
VII.V Experimenteller Teil 126
VII.V. a) Anbinden von DIELS-ALDER-AB-Polymeren an Maleimid-Oberflächen 126
VII.V. b) Anbinden von DIELS-ALDER-AB-Polymeren an Furan-Oberflächen 126
VII.V. c) Anbinden von Biscumarin an Cumarin-Oberflächen 126
Kapitel VIII Photoaktive Oberflächen 127
VIII.I Hintergrund und Motivation Cumarin-funktionalisierter Oberflächen 127
VIII.II Synthese Cumarin-funktionalisierter PDMS-Oberflächen 129
VIII.II. a) Funktionalisierung von PDMS-Oberflächen mit Cumarin-Gruppen 129
VIII.II. b) Allgemeine Bemerkung zur Wahl des Lösungsmittels 130
VIII.II. c) Photochemie von Cumarin-funktionalisierten PDMS-Oberflächen 131
VIII.II. d) ATR-IR-spektroskopische Charakterisierung photoaktiver Cumarin-Beschichtungen 132
VIII.III UV/Vis-spektroskopische Charakterisierung photoaktiver Cumarin-Beschichtungen 137
VIII.III. a) Belichtung mit UVA-Strahlung 137
VIII.III. b) Belichtung mit UVC-Strahlung 140
VIII.IV Zusammenfassung 142
VIII.V Experimenteller Teil 144
VIII.V. a) Funktionalisierung von PDMS-Substraten mit Isocyanat 144
VIII.V. b) Funktionalisierung von PDMS-Substraten mit Cumarin 144
VIII.V. c) Photochemisch-kontrollierte Modifikation von PDMS-Substraten mit Cumarin-Beschichtung 144
Kapitel IX Zusammenfassung und Ausblick 145
Kapitel X Anhang 150
X.I Messmethoden 150
X.I. a) ATR-IR-Spektroskopie 150
X.I. b) UV/Vis-Spektroskopie 150
X.I. c) Kontaktwinkelanalyse 151
X.I. d) Rasterkraftmikroskopie (AFM) 151
X.I. e) NMR-Spektroskopie 152
X.I. f) Größenausschluss-Chromatographie (SEC) 152
X.I. g) Thermoanalyse (TA) 152
X.I. h) Thermogravimetrie (TGA) 153
X.I. i) Dynamische Differenzkalorimetrie (DSC) 153
X.II Trocknen von Lösungsmitteln , 153
Kapitel XI Literatur 154
Selbstständigkeitserklärung 161
Lebenslauf 162
Danksagung 163
|
85 |
Neuartige Radikalische Polymerisation von Vinylmonomeren über eine Iminbase / Isocyanat-vermittelte InitiierungPolenz, Ingmar 24 February 2012 (has links) (PDF)
Gegenstand dieser Arbeit ist die Entwicklung einer neuartigen Initiierungsmethode zur Polymerisation von Vinylmonomeren über die Kombination von gewöhnlichen organischen Isocyanaten und Iminbasen. Der radikalische Charakter dieses Polymerisationstyps wurde durch Copolymerisationsexperimente verifiziert. Mit verschiedenen Iminbase / Isocyanat-Kombinationen als Initiatoren wurde die Homopolymerisation von diversen (Meth)-Acrylaten, Styrol, Acrylnitril und Methacrylnitril untersucht. Parameter, wie die Brutto-Polymerisationsgeschwindigkeitskonstante und die Aktivierungsenergie wurden ermittelt und Aussagen zur Polymerisation getroffen. Über die Auswertung von Massenspektren niedermolekularer Polymer-Proben wurden Vermutungen zum ablaufenden Initiierungsmechanismus abgeleitet. Das Anwendungspotential dieser Methode wurde in Hinblick auf die Synthese diverser Polymerarchitekturen untersucht. Neben der Oberflächenpolymerisation an funktionalisierten Kieselgel-Partikeln mittels „grafting-from“ wurden neuartige Block- und Kammpolymer-Strukturen hergestellt und analysiert. Zudem wurde die durch reine Iminbasen vermittelte Polymerisation von (Meth-)Acrylaten untersucht. Ferner wird der positive Einfluss der Zugabe katalytischer Mengen Ionischer Flüssigkeiten auf beide Systeme gezeigt und diskutiert.
|
86 |
Über basische Chloride des Nickel(II) und Magnesiums : Strukturen, Phasenbildung und LöslichkeitBette, Sebastian 19 August 2016 (has links) (PDF)
In der vorliegenden Arbeit wurde die Phasenbildung im ternären System Ni(OH)2-NiCl2-H2O systematisch untersucht. Die basischen Nickel(II)-chlorid Phasen NiCl(OH), Ni2Cl(OH)3, NiClx(OH)2-x, Ni3Cl2+x(OH)4-x ∙ 2 H2O mit x = 0,26; 0,48; 0,82 und Ni3Cl2+x(OH)4-x ∙ 4 H2O mit x = 0,10 konnten phasenrein hergestellt und deren Kristallstrukturen mittels hochauflösender Röntgenpulverdiffraktometrie aufgeklärt werden. Die so erhaltenen strukturellen Daten wurden durch Anwendung von IR-und Spektroskopie, UV/VIS-Spektroskopie, SQUID-Messungen, Thermoanalysen und temperaturaufgelöster in-situ Röntgenpulverdiffraktometrie als komplementäre Methoden bestätigt. Weiterhin konnte eine allgemein anwendbare Routine zur Beschreibung der Diffraktionseffekte stapelfehlerbehafteter Schichtverbindungen für das Programm TOPAS entwickelt werden. Die Bildung und Stabilität der basischen Nickel(II)-chlorid Phasen in wässriger Nickel(II)-chlorid Lösung wurde systematisch bei 200°C und 25°C über Zeiträume von zwei Jahren untersucht und Löslichkeitsdaten ermittelt.
Des Weiteren erfolgte die Untersuchung der Wechselwirkung von Magnesium Oxid und basischen Magnesiumchlorid Phasen mit wässrigen nickelhaltigen Magnesiumchlorid Lösungen. Hierbei konnte die Mischkristallbildung zwischen analogen basischen Magnesium- und Nickel(II)-chloridphasen beobachtet werden. Es wurde festgestellt, dass basische Magnesiumchloride und Magnesiumoxid ein gutes Rückhaltevermögen für gelöstes Nickel aufweisen und dass ein Zutritt von gelöstem Nickel weder die Pufferwirkung noch die Beständigkeit der basischen Magnesiumchlorid Phasen beeinträchtigt.
|
87 |
On Ternary Phases of the Systems RE–B–Q (RE = La – Nd, Sm, Gd – Lu, Y; Q = S, Se)Borna, Marija 15 October 2012 (has links) (PDF)
It is known that boron containing compounds exhibit interesting chemical and physical properties. In the past 50 years modern preparative methods have led to an overwhelming number of different structures of novel and often unexpected boron–sulfur and boron–selenium compounds. Among all these new compounds, there was only one which comprises rare earth metal (RE), boron and heavier chalcogen, namely sulfur, the europium thioborate Eu[B2S4] [1]. Selenoborates of rare earth metals are hitherto unknown. On the other hand, rare earth oxoborates represent a well-known class of compounds [2] with a wide range of applications, especially in the field of optical materials. In addition, well-defined boron compounds containing the heavier group 16 elements are fairly difficult to prepare due to the high reactivity of in situ formed boron chalcogenides towards most container materials at elevated temperatures. The chalcogenoborates of the heavier chalcogens are sensitive against oxidation and hydrolysis and therefore have to be handled in an inert environment. Therefore, developing and optimization of preparative routes for the syntheses of pure and crystalline RE thio- and selenoborates was needed.
In the course of this study, the application of different preparation routes, such as optimized high-temperature routes (HT), metathesis reactions and high-pressure high-temperature routes (Hp – HT), led to sixteen new rare earth thioborates. Their crystal structures were solved and/or refined from powder and single crystal X-ray diffraction data, while the local structure around rare earth metal was confirmed from the results of the EXAFS analyses. Quantum mechanical calculations were used within this work in order to investigate the arrangement of intrinsic vacancies on the boron sites in the crystal structures of rare earth thioborates. Thermal, magnetic and optical properties of these compounds are also discussed.
The rare earth thioborates discovered during this work are the first examples of ternary thioborates containing trivalent cations. These compounds can be divided into two groups of isotypic compounds: the rare earth orthothioborates with general formula REIII[BS3] (RE = La – Nd, Sm, Gd and Tb) [3] and the rare earth thioborate sulfides with general formula REIII¦9B5S21, (RE = Gd – Lu, and Y) [4].
In the crystal structure of RE[BS3] (orthorhombic, space group Pna21, Z = 4), the sulfur atoms form the vertices of corrugated kagome nets, within which every second triangle is occupied by boron and the large hexagons are centered by RE cations. The structural features of the isotypic RE[BS3] phases show great similarities to those of rare earth oxoborates RE[BO3] and orthothioborates of alkali and alkaline earth metals as well as to thallium orthothioborate, yet pronounced differences are also observed: the [BS3]3– groups in the crystal structures of RE[BS3] are more distorted, where the distortion decreases with the decreasing size of the RE element, and the coordination environments of the [BS3]3– groups in the crystal structures of RE[BS3] are different in comparison with the coordination environments of the [BO3]3– groups in the crystal structures of λ-Nd[BO3] [5] and of o-Ce[BO3] [6].
The results of the IR and Raman investigations are in agreement with the presence of [BS3]3– anions in the crystal structure of RE[BS3]. Thermal analyses revealed the thermal stability of these compounds under inert conditions up to ~ 1200 K. Analyses of the magnetic properties of the Sm, Gd and Tb thioborates showed that both Gd and Tb phases order antiferromagnetically. The magnetic susceptibility for Sm orthothioborate approximately follows the Van-Vleck theory for Sm3+. Between 50 K and 62 K a transition appears which is independent of the magnetic field: the magnetic susceptibility becomes lower. This effect might indicate a discontinuous valence transition of Sm which was further investigated by means of XANES and X-ray diffraction using synchrotron radiation, both at low temperatures.
The series of isotypic RE thioborate sulfides with composition RE9B5S21, was obtained by the application of Hp – HT conditions to starting mixtures with the initial chemical composition “REB3S6“, after careful optimization of the pressure, temperature and treatment time, as well as the composition of the starting mixtures. Their crystal structures adopt the Ce6Al3.33S14 [7] structure type (hexagonal, space group P63, Z = 2/3). The special features of the RE9B5S21 crystal structures, concerning boron site occupancies and different coordination environments of the two crystallographically independent boron sites, were investigated in more detail by means of quantum chemical calculations, electron diffraction methods, optical and X-ray absorption spectroscopy as well as by 11B NMR spectroscopy. The results obtained from these different experimental and computational methods are in good mutual agreement. The crystal structures of the RE9B5S21 compounds are characterized by two types of anions: tetrahedral [BS4]5– and trigonal planar [BS3]3– as well as [(S2–)3] units. Isolated [BS4]5– tetrahedra (all pointing with one of their apices along the polar [001] direction) represent a unique feature of the crystal structure which is observed for the first time in a thioborate compound. These tetrahedra are stacked along the three-fold rotation axes. Vacancies are located at the trigonal-planar coordinated boron site with preferred ordering –B–B––B–B–– along [001]. No superstructure is observed by means of electron diffraction methods as adjacent columns are shuffled along the c axis, giving rise to a randomly distributed vacancy pattern. Positions of the sulfur atoms within the [(S2–)3] substructure as well as planarity of the [BS3]3– units were investigated in more detail by means of quantum mechanical calculations.
Results of the IR and Raman spectroscopy, as well as of the 11B NMR spectroscopy are in agreement with the presence of the boron atoms in two different coordination environments. Thermal analyses showed that compounds RE9B5S21 are stable under inert conditions up to ~ 1200 K. In accordance with the combined results of experimental and computational investigations, the chemical formula of the RE9B5S21 compounds is consistent with RE3[BS3]2[BS4]3S3.
A short overview of investigations towards rare earth selenoborates, where in most of the cases only known binary rare earth selenides could be identified, is presented as well in this work. Investigations in the RE–B–Se systems were conducted by the application of different preparation routes by varying the experimental parameters and the initial compositions of the starting mixtures. Although no crystal structure of a ternary phase in these systems could be solved, there are indications that such phases exist, but further investigations are needed.
[1] M. Döch, A. Hammerschmidt, B. Krebs, Z. Anorg. Allg. Chem., 2004, 630, 519.
[2] H. Huppertz, Chem. Commun., 2011, 47, 131; and references therein.
[3] J. Hunger, M. Borna, R. Kniep, J. Solid State Chem., 2010, 182, 702; J. Hunger, M. Borna, R. Kniep, Z. Kristallogr. NCS, 2010, 225, 217; M. Borna, J. Hunger, R. Kniep, Z. Kristallogr. NCS, 2010, 225, 223; M. Borna, J. Hunger, R. Kniep, Z. Kristallogr. NCS, 2010, 225, 225.
[4] M. Borna, J. Hunger, A. Ormeci, D. Zahn, U. Burkhardt, W. Carrillo-Cabrera, R. Cardoso-Gil, R. Kniep, J. Solid State Chem., 2011, 184, 296;
[5] H. Müller-Bunz, T. Nikelski, Th. Schleid, Z. Naturforsch. B, 2003, 58, 375.
[6] H. U. Bambauer, J. Weidelt, J.-St. Ysker, Z. Kristallogr., 1969, 130, 207.
[7] D. de Saint-Giniez, P. Laruelle, J. Flahaut, C. R. Séances, Acad. Sci. Ser. C, 1968, 267, 1029.
|
88 |
Untersuchungen zur Tensidverteilung in Reinigungsbädern in der Metall verarbeitenden IndustrieSteiner-Ander, Andrea 02 April 2001 (has links)
In dieser Arbeit wird ein industriell genutzter Metallreiniger auf Basis nichtionischer Tenside untersucht. Dabei werden ausschließlich Messmethoden verwendet, die sich auch für eine industrielle Fertigung eignen.
Zu Anfang enthält die Arbeit kurze Abrisse zum gegenwärtigen Kenntnisstand bezüglich der Inhaltstoffe industriell genutzten Reiniger, der Analytik von Tensiden in Reinigern und der Adsorption der Tenside auf Feststoffoberflächen. Im Mittelpunkt der Arbeit steht neben der Charakterisierung und Analyse des Reinigers die quantitative Bestimmung der im Reiniger enthaltenen Tenside in industriellen Reinigungsbädern. Mit Hilfe der Hochleistungsflüssigkeitschromatografie mit einem Verdampfungs - Lichtstreudetektor wird die quantitative Verteilung der Tenside in Reinigungsbädern unter verschiedenen der industriellen Fertigung entsprechenden Bedingungen untersucht. Die Adsorption der im Reiniger enthaltenen Tenside auf der Metalloberfläche unter Fertigungsbedingungen wird mit Fluoreszenzspektroskopie und IR-Spektroskopie quantitativ bestimmt. Im letzten Kapitel wird auf die Umsetzung der gefundenen Ergebnisse in die industrielle Praxis eingegangen.
|
89 |
Über basische Chloride des Nickel(II) und Magnesiums : Strukturen, Phasenbildung und LöslichkeitBette, Sebastian 01 July 2016 (has links)
In der vorliegenden Arbeit wurde die Phasenbildung im ternären System Ni(OH)2-NiCl2-H2O systematisch untersucht. Die basischen Nickel(II)-chlorid Phasen NiCl(OH), Ni2Cl(OH)3, NiClx(OH)2-x, Ni3Cl2+x(OH)4-x ∙ 2 H2O mit x = 0,26; 0,48; 0,82 und Ni3Cl2+x(OH)4-x ∙ 4 H2O mit x = 0,10 konnten phasenrein hergestellt und deren Kristallstrukturen mittels hochauflösender Röntgenpulverdiffraktometrie aufgeklärt werden. Die so erhaltenen strukturellen Daten wurden durch Anwendung von IR-und Spektroskopie, UV/VIS-Spektroskopie, SQUID-Messungen, Thermoanalysen und temperaturaufgelöster in-situ Röntgenpulverdiffraktometrie als komplementäre Methoden bestätigt. Weiterhin konnte eine allgemein anwendbare Routine zur Beschreibung der Diffraktionseffekte stapelfehlerbehafteter Schichtverbindungen für das Programm TOPAS entwickelt werden. Die Bildung und Stabilität der basischen Nickel(II)-chlorid Phasen in wässriger Nickel(II)-chlorid Lösung wurde systematisch bei 200°C und 25°C über Zeiträume von zwei Jahren untersucht und Löslichkeitsdaten ermittelt.
Des Weiteren erfolgte die Untersuchung der Wechselwirkung von Magnesium Oxid und basischen Magnesiumchlorid Phasen mit wässrigen nickelhaltigen Magnesiumchlorid Lösungen. Hierbei konnte die Mischkristallbildung zwischen analogen basischen Magnesium- und Nickel(II)-chloridphasen beobachtet werden. Es wurde festgestellt, dass basische Magnesiumchloride und Magnesiumoxid ein gutes Rückhaltevermögen für gelöstes Nickel aufweisen und dass ein Zutritt von gelöstem Nickel weder die Pufferwirkung noch die Beständigkeit der basischen Magnesiumchlorid Phasen beeinträchtigt.
|
90 |
On Ternary Phases of the Systems RE–B–Q (RE = La – Nd, Sm, Gd – Lu, Y; Q = S, Se)Borna, Marija 13 August 2012 (has links)
It is known that boron containing compounds exhibit interesting chemical and physical properties. In the past 50 years modern preparative methods have led to an overwhelming number of different structures of novel and often unexpected boron–sulfur and boron–selenium compounds. Among all these new compounds, there was only one which comprises rare earth metal (RE), boron and heavier chalcogen, namely sulfur, the europium thioborate Eu[B2S4] [1]. Selenoborates of rare earth metals are hitherto unknown. On the other hand, rare earth oxoborates represent a well-known class of compounds [2] with a wide range of applications, especially in the field of optical materials. In addition, well-defined boron compounds containing the heavier group 16 elements are fairly difficult to prepare due to the high reactivity of in situ formed boron chalcogenides towards most container materials at elevated temperatures. The chalcogenoborates of the heavier chalcogens are sensitive against oxidation and hydrolysis and therefore have to be handled in an inert environment. Therefore, developing and optimization of preparative routes for the syntheses of pure and crystalline RE thio- and selenoborates was needed.
In the course of this study, the application of different preparation routes, such as optimized high-temperature routes (HT), metathesis reactions and high-pressure high-temperature routes (Hp – HT), led to sixteen new rare earth thioborates. Their crystal structures were solved and/or refined from powder and single crystal X-ray diffraction data, while the local structure around rare earth metal was confirmed from the results of the EXAFS analyses. Quantum mechanical calculations were used within this work in order to investigate the arrangement of intrinsic vacancies on the boron sites in the crystal structures of rare earth thioborates. Thermal, magnetic and optical properties of these compounds are also discussed.
The rare earth thioborates discovered during this work are the first examples of ternary thioborates containing trivalent cations. These compounds can be divided into two groups of isotypic compounds: the rare earth orthothioborates with general formula REIII[BS3] (RE = La – Nd, Sm, Gd and Tb) [3] and the rare earth thioborate sulfides with general formula REIII¦9B5S21, (RE = Gd – Lu, and Y) [4].
In the crystal structure of RE[BS3] (orthorhombic, space group Pna21, Z = 4), the sulfur atoms form the vertices of corrugated kagome nets, within which every second triangle is occupied by boron and the large hexagons are centered by RE cations. The structural features of the isotypic RE[BS3] phases show great similarities to those of rare earth oxoborates RE[BO3] and orthothioborates of alkali and alkaline earth metals as well as to thallium orthothioborate, yet pronounced differences are also observed: the [BS3]3– groups in the crystal structures of RE[BS3] are more distorted, where the distortion decreases with the decreasing size of the RE element, and the coordination environments of the [BS3]3– groups in the crystal structures of RE[BS3] are different in comparison with the coordination environments of the [BO3]3– groups in the crystal structures of λ-Nd[BO3] [5] and of o-Ce[BO3] [6].
The results of the IR and Raman investigations are in agreement with the presence of [BS3]3– anions in the crystal structure of RE[BS3]. Thermal analyses revealed the thermal stability of these compounds under inert conditions up to ~ 1200 K. Analyses of the magnetic properties of the Sm, Gd and Tb thioborates showed that both Gd and Tb phases order antiferromagnetically. The magnetic susceptibility for Sm orthothioborate approximately follows the Van-Vleck theory for Sm3+. Between 50 K and 62 K a transition appears which is independent of the magnetic field: the magnetic susceptibility becomes lower. This effect might indicate a discontinuous valence transition of Sm which was further investigated by means of XANES and X-ray diffraction using synchrotron radiation, both at low temperatures.
The series of isotypic RE thioborate sulfides with composition RE9B5S21, was obtained by the application of Hp – HT conditions to starting mixtures with the initial chemical composition “REB3S6“, after careful optimization of the pressure, temperature and treatment time, as well as the composition of the starting mixtures. Their crystal structures adopt the Ce6Al3.33S14 [7] structure type (hexagonal, space group P63, Z = 2/3). The special features of the RE9B5S21 crystal structures, concerning boron site occupancies and different coordination environments of the two crystallographically independent boron sites, were investigated in more detail by means of quantum chemical calculations, electron diffraction methods, optical and X-ray absorption spectroscopy as well as by 11B NMR spectroscopy. The results obtained from these different experimental and computational methods are in good mutual agreement. The crystal structures of the RE9B5S21 compounds are characterized by two types of anions: tetrahedral [BS4]5– and trigonal planar [BS3]3– as well as [(S2–)3] units. Isolated [BS4]5– tetrahedra (all pointing with one of their apices along the polar [001] direction) represent a unique feature of the crystal structure which is observed for the first time in a thioborate compound. These tetrahedra are stacked along the three-fold rotation axes. Vacancies are located at the trigonal-planar coordinated boron site with preferred ordering –B–B––B–B–– along [001]. No superstructure is observed by means of electron diffraction methods as adjacent columns are shuffled along the c axis, giving rise to a randomly distributed vacancy pattern. Positions of the sulfur atoms within the [(S2–)3] substructure as well as planarity of the [BS3]3– units were investigated in more detail by means of quantum mechanical calculations.
Results of the IR and Raman spectroscopy, as well as of the 11B NMR spectroscopy are in agreement with the presence of the boron atoms in two different coordination environments. Thermal analyses showed that compounds RE9B5S21 are stable under inert conditions up to ~ 1200 K. In accordance with the combined results of experimental and computational investigations, the chemical formula of the RE9B5S21 compounds is consistent with RE3[BS3]2[BS4]3S3.
A short overview of investigations towards rare earth selenoborates, where in most of the cases only known binary rare earth selenides could be identified, is presented as well in this work. Investigations in the RE–B–Se systems were conducted by the application of different preparation routes by varying the experimental parameters and the initial compositions of the starting mixtures. Although no crystal structure of a ternary phase in these systems could be solved, there are indications that such phases exist, but further investigations are needed.
[1] M. Döch, A. Hammerschmidt, B. Krebs, Z. Anorg. Allg. Chem., 2004, 630, 519.
[2] H. Huppertz, Chem. Commun., 2011, 47, 131; and references therein.
[3] J. Hunger, M. Borna, R. Kniep, J. Solid State Chem., 2010, 182, 702; J. Hunger, M. Borna, R. Kniep, Z. Kristallogr. NCS, 2010, 225, 217; M. Borna, J. Hunger, R. Kniep, Z. Kristallogr. NCS, 2010, 225, 223; M. Borna, J. Hunger, R. Kniep, Z. Kristallogr. NCS, 2010, 225, 225.
[4] M. Borna, J. Hunger, A. Ormeci, D. Zahn, U. Burkhardt, W. Carrillo-Cabrera, R. Cardoso-Gil, R. Kniep, J. Solid State Chem., 2011, 184, 296;
[5] H. Müller-Bunz, T. Nikelski, Th. Schleid, Z. Naturforsch. B, 2003, 58, 375.
[6] H. U. Bambauer, J. Weidelt, J.-St. Ysker, Z. Kristallogr., 1969, 130, 207.
[7] D. de Saint-Giniez, P. Laruelle, J. Flahaut, C. R. Séances, Acad. Sci. Ser. C, 1968, 267, 1029.:I INTRODUCTION ......................................................................... 7
1. Motivation and scope of the work .............................................. 9
2. Literature overview .................................................................. 11
2.1. The binary subsystems of the ternary systems RE–B–Q (RE = rare earth metals, Y; Q = S, Se) ......................................................... 12
2.1.1. RE–Q ............................................................................... 12
2.1.2. RE–B ............................................................................... 19
2.1.3. B–Q ................................................................................. 22
2.2. Related ternary compounds ................................................... 25
2.2.1. RE oxoborates .................................................................. 25
2.2.2. Thio- and selenoborates of alkaline, alkaline earth, transition and post
transition metals ......................................................................... 33
2.2.3. The RE thioborate Eu[B2S4]................................................ 45
II PREPARATIVE METHODS AND EXPERIMENTAL TECHNIQUES .......... 47
1. Starting materials and their characterization ............................... 49
2. Synthetic approaches and optimizations .................................... 51
2.1. High-temperature routes ...................................................... 52
2.2. Metathesis reactions ............................................................ 53
2.3. Spark Plasma Sintering (SPS) ............................................... 54
2.4. High-Pressure High-Temperature (Hp – HT) Syntheses ........... 55
3. Analytical methods and samples characterization ....................... 55
3.1. Powder X-ray diffraction ...................................................... 55
3.2. Crystal structure investigations using synchrotron radiation .... 57
3.3. Single crystal X-ray diffraction analysis .................................. 57
3.4. Metallographic investigations ................................................ 58
3.5. Electron microscopy ............................................................ 58
3.5.1. Scanning electron microscopy and energy dispersive X-ray spectroscopy ............................................................................ 58
3.5.2. Transmission electron microscopy ...................................... 59
3.6. Optical spectroscopy ........................................................... 59
3.6.1. Infra-Red spectroscopy .................................................... 59
3.6.2. Raman spectroscopy ........................................................ 60
3.7. X-ray absorption spectroscopy ............................................ 60
3.8. Thermal analysis ................................................................. 62
3.9. Magnetic susceptibility measurements ................................... 63
3.10. 11B NMR spectroscopy ..................................................... 63
3.11. Quantum chemical calculations ........................................... 64
3.11.1. Total energy calculations ................................................ 64
3.11.2. Charge transfer analysis ................................................ 64
3.11.3. Chemical bonding........................................................... 64
III RARE EARTH THIOBORATES ................................................. 67
1. Reinvestigation of the only reported rare earth thioborate – EuB2S4 ....69
2. RE[BS3] (RE = La – Nd, Sm, Gd, Tb) .................................... 69
2.1. Syntheses and phase analyses .......................................... 70
2.2. Crystal structure determinations ........................................ 74
2.3. X-ray absorption spectroscopy: EXAFS data analysis for Pr[BS3] ..... 79
2.4. Crystal chemistry .............................................................. 80
2.5. Optical spectroscopy ......................................................... 83
2.6. Thermal analysis ............................................................... 86
2.7. Magnetic susceptibility ....................................................... 88
2.8. X-ray absorption spectroscopy: XANES data analysis for Sm[BS3] .. 91
2.9. Crystal structure investigation at low temperature using synchrotron radiation ................................................................................... 91
2.10. Summary ......................................................................... 95
3. Gd[BS3] : Ce, Eu, Tb ............................................................. 97
3.1. Syntheses and phase analyses ............................................. 97
3.2. Crystal structure determinations ......................................... 101
3.3. Crystal chemistry .............................................................. 103
3.4. Optical spectroscopy ......................................................... 104
3.5. Thermal analysis ............................................................... 106
3.6. Summary ......................................................................... 107
4. RE9B5S21 (RE = Tb – Lu, Y) ................................................ 107
4.1. Syntheses and phase analyses ........................................... 108
4.2. Crystal structure determinations ........................................ 109
4.3. Crystal chemistry .............................................................. 112
4.4. Electronic structure, charge transfer and chemical bonding .... 115
4.5. X-ray absorption spectroscopy: EXAFS data analysis for Lu9B5S21 .............................................................................. 119
4.6. Thermal analysis ............................................................... 121
4.7. 11B NMR investigations ..................................................... 122
4.8. Optical spectroscopy ......................................................... 123
4.9. Summary ......................................................................... 126
IV ON THE WAY TO RARE EARTH SELENOBORATES .................... 127
1. Towards ternary phases in the systems RE–B–Se, with RE = Sm, Tb – Lu.......................................................................................... 129
2. The system La–B–Se ........................................................... 134
3. The system Gd–B–Se .......................................................... 136
4. The system Y–B–Se ............................................................ 137
5. Summary ........................................................................... 139
V SUMMARY AND OUTLOOK ..................................................... 141
VI APPENDIX .......................................................................... 149
VII REFERENCES .................................................................... 163
VIII LIST OF FIGURES ............................................................. 181
IX LIST OF TABLES ................................................................ 193
X CURRICULUM VITAE ........................................................... 199
XI VERSICHERUNG ............................................................... 203
|
Page generated in 0.0366 seconds