• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 118
  • 52
  • 51
  • 49
  • 20
  • 19
  • 16
  • 8
  • 8
  • 7
  • 7
  • 5
  • 4
  • 3
  • 3
  • Tagged with
  • 376
  • 84
  • 51
  • 37
  • 35
  • 34
  • 34
  • 32
  • 30
  • 28
  • 27
  • 26
  • 26
  • 25
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

VERTICALLY INTERCONNECTED WIDE-BANDWIDTH MONOLITHIC PLANAR ANTENNAS FOR 3D-IC

LIU, BOSUI January 2002 (has links)
No description available.
192

A Passive Seismic Investigation of the Crustal Structure under Ohio

Brandeberry, Jessica L. January 2007 (has links)
No description available.
193

Development of A Multi-channel RGB Laser Diode Driver for Laser Projection Applications

Zha, Rong January 2019 (has links)
In this thesis, a red green and blue (RGB) laser diode driver (LDD) is designed, assembled and tested, which can work as a standalone device or an internal component fully controlled by a laser projector. In particular, the thesis explores a multi-channel RGB LDD for a retrofitted laser projector, targeting projectors for home, business and education. If laser diodes (LDs) with the same color are connected in series, a higher forward voltage is required, making most commercial LDDs unsuitable for this application due to their insufficient compliance voltages. If the connections of all the LDs are in parallel, issues on size and cost arise since many LDs are used in this case. Another problem to use the commercial LDDs for RGB laser projection is that there are no proper communication interfaces to link the LDDs to the laser projector. In order to solve these problems by taking advantage of all the features of iC-HTG, an integrated circuit with automatic current control functionality, both the hardware circuits and the software for an eight-channel LDD are designed. Experimental results show that all the RGB channels can achieve compliance voltage of 23 V within the required working current range, which can drive up to 5 blue, 4 green or 10 red LDs in series in each single channel. It is confirmed experimentally that the designed LDD can fulfill the requirements on driving current (i.e. 1% accuracy and 1% stability). The protection functions of the developed LDD are also explored and verified experimentally. It can detect the open laser connection before the LDD channels are enabled. Fast over-current protection can be achieved within 1.5 µs. Circuit interfaces and protocols of the communications enable the multi-channel RGB LDD to work as a standalone device or an internal component of the laser projector. / Thesis / Master of Applied Science (MASc)
194

High performance on-chip array antenna based on metasurface feeding structure for terahertz integrated circuits

Alibakhshikenari, M., Virdee, B.S., See, C.H., Abd-Alhameed, Raed, Limiti, E. 06 1900 (has links)
Yes / In this letter a novel on-chip array antenna is investigated which is based on CMOS 20μm Silicon technology for operation over 0.6-0.65 THz. The proposed array structure is constructed on three layers composed of Silicon-Ground-Silicon layers. Two antennas are implemented on the top layer, where each antenna is constituted from three sub-antennas. The sub-antennas are constructed from interconnected dual-rings. Also, the sub-antennas are interconnected to each other. This approach enhances the aperture of the array. Surface waves and substrate losses in the structure are suppressed with metallic via-holes implemented between the radiation elements. To excite the structure, a novel feeding mechanism is used comprising open-circuited microstrip lines that couple electromagnetic energy from the bottom layer to the antennas on the top-layer through metasurface slot-lines in the middle ground-plane layer. The results show the proposed on-chip antenna array has an average radiation gain, efficiency, and isolation of 7.62 dBi, 32.67%, and -30 dB, respectively. / H2020-MSCA-ITN-2016 SECRET-722424 and the financial support from the UK Engineering and Physical Sciences Research Council (EPSRC) under grant EP/E0/22936/1
195

An Analog/Mixed Signal FFT Processor for Ultra-Wideband OFDM Wireless Transceivers

Lehne, Mark 02 October 2008 (has links)
As Orthogonal Frequency Division Multiplexing (OFDM) becomes more prevalent in new leading-edge data rate systems processing spectral bandwidths beyond 1 GHz, the required operating speed of the baseband signal processing, specifically the Analog- to-Digital Converter (ADC) and Fast Fourier Transform (FFT) processor, presents significant circuit design challenges and consumes considerable power. Additionally, since Ultra-WideBand (UWB) systems operate in an increasingly crowded wireless environment at low power levels, the ability to tolerate large blocking signals is critical. The goals of this work are to reduce the disproportionately high power consumption found in UWB OFDM receivers while increasing the receiver linearity to better handle blockers. To achieve these goals, an alternate receiver architecture utilizing a new FFT processor is proposed. The new architecture reduces the volume of information passed through the ADC by moving the FFT processor from the digital signal processing (DSP) domain to the discrete time signal processing domain. Doing so offers a reduction in the required ADC bit resolution and increases the overall dynamic range of the UWB OFDM receiver. To explore design trade-offs for the new discrete time (DT) FFT processor, system simulations based on behavioral models of the key functions required for the processor are presented. A new behavioral model of the linear transconductor is introduced to better capture non-idealities and mismatches. The non-idealities of the linear transconductor, the largest contributor of distortion in the processor, are individually varied to determine their sensitivity upon the overall dynamic range of the DT FFT processor. Using these behavioral models, the proposed architecture is validated and guidelines for the circuit design of individual signal processing functions are presented. These results indicate that the DT FFT does not require a high degree of linearity from the linear transconductors or other signal processing functions used in its design. Based on the results of the system simulations, a prototype 8-point DT FFT processor is designed in 130 nm CMOS. The circuit design and layout of each of the circuit functions; serial-to-parallel converter, FFT signal flow graph, and clock generation circuitry is presented. Subsequently, measured results from the first proof-of-concept IC are presented. The measured results show that the architecture performs the FFT required for OFDM demodulation with increased linearity, dynamic range and blocker handling capability while simultaneously reducing overall receiver power consumption. The results demonstrate a dynamic range of 49 dB versus 36 dB for the equivalent all-digital signal processing approach. This improvement in dynamic range increases receiver performance by allowing detection of weak sub-channels attenuated by multipath. The measurements also demonstrate that the processor rejects large narrow-band blockers, while maintaining greater than 40 dB of dynamic range. The processor enables a 10x reduction in power consumption compared to the equivalent all digital processor, as it consumes only 25 mWatts and reduces the required ADC bit depth by four bits, enabling application in hand-held devices. Following the success of the first proof-of-concept IC, a second prototype is designed to incorporate additional functionality and further demonstrate the concept. The second proof-of-concept contains an improved version of the serial-to-parallel converter and clock generation circuitry with the additional function of an equalizer and parallel- to-serial converter. Based on the success of system level behavioral simulations, and improved power consumption and dynamic range measurements from the proof-of-concept IC, this work represents a contribution in the architectural development and circuit design of UWB OFDM receivers. Furthermore, because this work demonstrates the feasibility of discrete time signal processing techniques at 1 GSps, it serves as a foundation that can be used for reducing power consumption and improving performance in a variety of future RF/mixed-signal systems. / Ph. D.
196

MID-INFRARED LASER ABSORPTION SPECTROSCOPY DIAGNOSTICS FOR INTERNAL COMBUSTION ENGINE SYSTEMS

Joshua W Stiborek (18423714) 23 April 2024 (has links)
<p dir="ltr">This work presents the development and application of novel laser absorption spectroscopy sensors that were deployed to make high-rate (1-15 kHz) measurements of temperature, CO, NO, CO<sub>2</sub>, and air-fuel ratio in internal combustion engine (ICE) systems. These sensors provided measurements with unprecedented time resolution in ICE exhaust that allowed for individual cylinder firing events to be detected which will greatly improve understanding of ICE systems and allow for emissions reduction strategies to be tested. </p>
197

Energy Harvesting Circuit with Input Matching in Boundary Conduction Mode for Electromagnetic Generators

Xu, Yudong 24 September 2018 (has links)
The proposed circuit intends to harvest kinetic energy from ElectroMagnetic Generators (EMGs). In order to extract maximum power from an EMG, an AC-DC boost rectifier is designed to match the impedance of the EMG. Rather than operate a buck-boost converter in Discontinuous Conduction Mode (DCM) in other impedance matching cases, the proposed method is running the boost topology in Boundary Conduction Mode (BCM). So it would perform resistive input matching, while reducing the converter power loss. The boost rectifier also merges a rectifier and a boost converter to reduce power loss for rectification. It also utilizes the internal inductance of the EMG to eliminate the impedance matching error and reduce the off-chip inductor size. An optional buck converter regulates the output voltage to 5 V to power devices through USB ports. The proposed circuit is designed and fabricated in BiCMOS 0.18 μm technology. Its functionality is shown through simulation results. The measurement of the IC is also performed. However, since the IC only work partially, test result is gathered using some discrete components as substitutes. It indicates the circuit can realize the proposed control method. / Master of Science / The development of energy-efficient semiconductor devices has reduced the power requirements of electronic circuits. As the electronics’ scale decreases, so does the energy consumption. In this sense, batteries were also produced in smaller size providing more energy storage availability. However, due to technical and technological issues, the batteries have not been followed by the same evolutionary trend limiting the operational time and performance of portable devices as it need to be recharged or replaced periodically. On the other hand, portable electronic devices such as cell phones, GPS, cameras, etc. are powered only by batteries. For circumstances that power supplies are not accessible, energy harvesting (EH) from human or environmental sources has proven to be an effective alternative or complement. Light, thermal, mechanical and RF are major sources in EH. Among them, mechanical energy from wind, waves, vibrations, etc. is commonly existed in our daily life. The energy is harvested by using micro generators and the various types include electromagnetic, piezoelectric and electrostatic. In particular, the ElectroMagnetic Generator (EMG) is of great interest for its potentially high energy density and efficiency. Since EMG is an AC voltage generator while portable devices usually require a stable DC supply, an EH circuit as a rectifier ought to be designed. At the same time, for EH application, we would like to harvest as much power as possible from EMGs. This research project addresses the development of a unique EH circuit capable of fulfilling the distinct needs illustrated above.
198

Challenges in molecular simulation of homogeneous ice nucleation

Anwar, Jamshed, Davidchack, R., Handel, R., Brukhno, Andrey V. January 2008 (has links)
No / We address the problem of recognition and growth of ice nuclei in simulation of supercooled bulk water. Bond orientation order parameters based on the spherical harmonics analysis are shown to be ineffective when applied to ice nucleation. Here we present an alternative method which robustly differentiates between hexagonal and cubic ice forms. The method is based on accumulation of the maximum projection of bond orientations onto a set of predetermined vectors, where different terms can contribute with opposite signs with the result that the irrelevant or incompatible molecular arrangements are damped out. We also introduce an effective cluster size by assigning a quality weight to each molecule in an ice-like cluster. We employ our cluster analysis in Monte Carlo simulation of homogeneous ice formation. Replica-exchange umbrella sampling is used for biasing the growth of the largest cluster and calculating the associated free energy barrier. Our results suggest that the ice formation can be seen as a two-stage process. Initially, short tetrahedrally arranged threads and rings are present; these become correlated and form a diffuse ice-genic network. Later, hydrogen bond arrangements within the amorphous ice-like structure gradually settle down and simultaneously `tune-up¿ nearby water molecules. As a result, a well-shaped ice core emerges and spreads throughout the system. The process is very slow and diverse owing to the rough energetic landscape and sluggish molecular motion in supercooled water, while large configurational fluctuations are needed for crystallization to occur. In the small systems studied so far the highly cooperative molecular rearrangements eventually lead to a relatively fast percolation of the forming ice structure through the periodic boundaries, which inevitably affects the simulation results. / EPSRC
199

Navigating Extremes: Advancing 3D-IC with Flexible Glass for Harsh Environments

Joo Min Kim (18838408) 17 June 2024 (has links)
<p dir="ltr">The rapid evolution of semiconductor technology, driven by the limitations of Moore's Law, necessitates innovative approaches to enhance device performance and miniaturization. This thesis explores the advancement of three-dimensional integrated circuits (3D-ICs) using flexible glass-based substrates, focusing on their application in extreme environments. Flexible glass emerges as a promising material for 3D-IC packaging due to its superior electrical insulation, thermal stability, chemical resistance, and mechanical strength. These properties are critical for maintaining device reliability and functionality under harsh conditions such as high temperatures, humidity, and radiation. Their unique properties make them particularly suited for applications in aerospace, military, and automotive industries, where electronics must endure severe operational environments. The research presented in this thesis provides a comprehensive examination of the processes involved in fabricating flexible glass-based 3D-ICs, detailing methodologies for integrating semiconductor components onto a flexible glass substrate using common platform technology (CPT). This approach ensures compatibility across diverse systems and enhances the scalability and cost-effectiveness of 3D-IC solutions. Experimental results indicate that 3D-ICs incorporating flexible glass substrates exhibit enhanced functionality and durability. This study underscores the transformative potential of flexible glass in revolutionizing the design and performance of future electronic systems, ensuring their operability and longevity in demanding settings. By addressing the challenges of traditional packaging materials, flexible glass represents a significant advancement in 3D-IC technology, promising to broaden the operational landscape of electronic devices and change how they are deployed across various high-stakes fields.</p>
200

Optimisation de l'immunothérapie non spécifique du cancer superficiel de la vessie

Ayari, Cherifa 18 April 2018 (has links)
Le cancer superficiel de la vessie (CSV) présente un taux élevé de récidive (60%). De ces récidives 10 à 15% progresseront vers un cancer infiltrant beaucoup plus dangereux. La résection transurétrale (RTU) des tumeurs superficielles est souvent suivie d’immunothérapie intravésicale par le BCG (Bacille-Calmette-Guérin) afin de prévenir la récidive et la progression ; cependant ce traitement échoue dans 40% des cas. De plus, la sévérité des effets secondaires empêche plusieurs patients de tolérer un traitement complet. La prédiction de la réponse au BCG et le développement de traitements alternatifs s’avèrent donc nécessaires. Nous avons d’abord évalué la signification clinique de la présence de cellules dendritiques matures infiltrant la tumeur (CDIT) et de macrophages associés aux tumeurs (MAT) dans des CSV à bas risque, traités seulement par RTU. La présence de CDIT a permis d’identifier des patients à risque élevé de progression. Chez des patients à haut risque de récidive et de progression traités au BCG, nous avons observé que ceux qui ont un haut niveau d'infiltration par des CDIT ou des MAT ne répondaient pas efficacement au BCG. Dans un deuxième volet, j’ai exploré la possibilité d’utiliser d’autres agents théarapeutiques pouvant se combiner au BCG ou le remplacer pour stimuler la réponse antitumorale. Pour un tel rôle j’ai choisi les agonistes des Toll-like receptors (TLR). Les TLR, principalement exprimés par les cellules du système immunitaire et quelques cellules épithéliales, jouent un rôle important dans l’immunité innée en reconnaissant des motifs moléculaires conservés de pathogènes. J’ai d’abord montré que les TLR sont exprimés et fonctionnels dans des cellules urothéliales normales et tumorales. Par la suite, j’ai démontré que le poly(I :C), agoniste du TLR3, a un effet cytotoxique et antiprolifératif direct sur des lignées de cancer de vessie. Dans les cellules MGH-U3, il induit également la sécrétion de cytokines pro-inflammatoires et induit fortement l’expression des molécules du CMH de classe I alors que le BCG a très peu d’effet sur l’immunogénicité de ces cellules. Un essai d’inhibition de croissance tumorale utilisant le modèle de cancer de vessie murin MBT-2 a montré que l’utilisation combinée du BCG et du poly(I :C) inhibe très significativement la croissance tumorale alors que chacun des produits utilisés seuls n’avait pas d’effet significatif. Notre étude suggère que le poly(I :C) dû à ses effets anti-néoplasiques pourrait améliorer l’efficacité thérapeutique du BCG dans l’immunothérapie du CSV. / Non-muscle invasive bladder cancer (NMIBC) is characterized by a high rate of recurrence (60%). Ten to fiftheen % of the recurrences will progress toward muscle-invasive tumors, which are more dangerous. Transurethral resection (TUR) of non-muscle invasive tumors is frequently followed by intravesical immunotherapy using BCG (bacillus Calmette-Guérin) to prevent recurrence and progression but this treatment fails in 40% of cases. Moreover, the severity of the side effects prevents many patients to comply with the whole treatment. Tools to predict the response to BCG and the development of alternative treatments are therefore required. We first evaluated the clinical significance of the presence of tumor infiltrating mature dendritic cells (TIDCs) and of tumor-associated macrophages (TAMs) in low-risk NMIBCs treated only by TUR. The presence of TIDCs allowed the identification of patients that were at high risk of progression. In patients with NMIBCs at high risk of recurrence and progression treated with BCG, we observed that those with a high level of MAT or TIDC infiltration did not respond efficiently to BCG. In the second part of my work, I have explored the possibility to use other immunomodulatory agents to replace or complement BCG immunotherapy. I therefore selected toll-like receptors (TLRs) agonists for this purpose. TLRs, which are mainly expressed in immune cells but also epithelial cells, play an important role in the innate immunity by recognizing molecular patterns that are conserved between pathogens. I have first showed that TLRs are expressed and functional in normal and tumor urothelial cells. Then, I showed that poly(I:C), a TLR3 agonsist, has direct cytotoxic and antiproliferative effects on bladder cancer cell lines. In MGH-U3 cells, it induces the secretion of proinflammatory cytokines and expression of major histocompatibility class I molecules whereas BCG has little effect on the immunogenicity of these cells. A growth inhibition assay using the MBT-2 murine bladder cancer model showed that the combination of poly(I:C) and BCG inhibited very significantly the growth of bladder cancer cells whereas each product alone had no significant effect. Our study suggests that poly(I:C), due to its anti-tumoral effects, could improve the therapeutic efficacy of BCG for the immunotherapy of NMIBCs.

Page generated in 0.0282 seconds