• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 19
  • 5
  • Tagged with
  • 62
  • 62
  • 38
  • 34
  • 18
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Caractérisation de vortex intraventriculaires par échographie Doppler ultrarapide

Faurie, Julia 07 1900 (has links)
Les maladies cardiaques sont une cause majeure de mortalité dans le monde (la première cause en Amérique du nord [192]), et la prise en charge de ses maladies entraîne des coûts élevés pour la société. La prévalence de l’insuffisance cardiaque augmente fortement avec l’âge, et, avec une population vieillissante, elle va demeurer une préoccupation croissante dans le futur, non seulement pour les pays industrialisés mais aussi pour ceux en développement. Ainsi il est important d’avoir une bonne compréhension de son mécanisme pour obtenir des diagnostics précoces et un meilleur prognostic pour les patients. Parmi les différentes formes d’insuffisance cardiaque, on trouve la dysfonction diastolique qui se traduit par une déficience du remplissage du ventricule. Pour une meilleure compréhension de ce mécanisme, de nombreuses études se sont intéressées au mouvement du sang dans le ventricule. On sait notamment qu’au début de la diastole le flux entrant prend la forme d’un anneau vortical (ou vortex ring). La formation d’un vortex ring par le flux sanguin après le passage d’une valve a été décrite pour la première fois en 1513 par Léonard de Vinci (Fig. 0.1). En effet après avoir moulé l’aorte dans du verre et ajouter des graines pour observer le flux se déplaçant dans son fantôme, il a décrit l’apparition du vortex au passage de la valve aortique. Ces travaux ont pu être confirmés 500 ans plus tard avec l’apparition de l’IRM [66]. Dans le ventricule, le même phénomène se produit après la valve mitrale, c’est ce qu’on appelle le vortex diastolique. Or, le mouvement d’un fluide (ici le sang) est directement relié a son environnement : la forme du ventricule, la forme de la valve, la rigidité des parois... L’intérêt est donc grandissant pour étudier de manière plus approfondie ce vortex diastolique qui pourrait apporter de précieuses informations sur la fonction diastolique. Les modalités d’imagerie permettant de le visualiser sont l’IRM et l’échographie. Cette thèse présente l’ensemble des travaux effectués pour permettre une meilleure caractérisation du vortex diastolique dans le ventricule gauche par imagerie ultrasonore Doppler. Pour suivre la dynamique de ce vortex dans le temps, il est important d’obtenir une bonne résolution temporelle. En effet, la diastole ventriculaire dure en moyenne 0.5 s pour un coeur humain au repos, une cadence élevée est donc essentielle pour suivre les différentes étapes de la diastole. La qualité des signaux Doppler est également primordiale pour obtenir une bonne estimation des vitesses du flux sanguin dans le ventricule. Pour étudier ce vortex, nous nous sommes intéressés à la mesure de sa vorticité en son centre v et à l’évolution de cette dernière dans le temps. Le travail se divise ainsi en trois parties, pour chaque un article a été rédigé : 1. Développement d’une séquence Doppler ultrarapide : La séquence se base sur l’utilisation d’ondes divergentes qui permettent d’atteindre une cadence d’image élevée. Associée à la vortographie, une méthode pour localiser le centre du vortex diastolique et en déduire sa vorticité, nous avons pu suivre la dynamique de la vorticité dans le temps. Cette séquence a permis d’établir une preuve de concept grâce à des acquisitions in vitro et in vivo sur des sujets humains volontaires. 2. Développement d’une séquence triplex : En se basant sur la séquence ultrarapide Doppler, on cherche ici à ajouter des informations supplémentaires, notamment sur le mouvement des parois. La séquence triplex permet non seulement de récupérer le mouvement sanguin avec une haute cadence d’images mais aussi le Doppler tissulaire. Au final, nous avons pu déduire les Doppler couleur, tissulaire, et spectral, en plus d’un Bmode de qualité grâce à la compensation de mouvement. On peut alors observer l’interdépendance entre la dynamique du vortex et celle des parois, en récupérant tous les indices nécessaires sur le même cycle cardiaque avec une acquisition unique. 3. Développement d’un filtre automatique : La quantification de la vorticité dépend directement des vitesses estimées par le Doppler. Or, en raison de leur faible amplitude, les signaux sanguins doivent être filtrés. En effet lors de l’acquisition les signaux sont en fait une addition des signaux sanguins et tissulaires. Le filtrage est une étape essentielle pour une estimation précise et non biaisée de la vitesse. La dernière partie de ce doctorat s’est donc concentrée sur la mise au point d’un filtre performant qui se base sur les dimensions spatiales et temporelles des acquisitions. On effectue ainsi un filtrage du tissu mais aussi du bruit. Une attention particulière a été portée à l’automatisation de ce filtre avec l’utilisation de critères d’information qui se basent sur la théorie de l’information. / Heart disease is one of the leading causes of death in the world (first cause in North America [192]), and causes high health care costs for society. The prevalence of heart failure increases dramatically with age and, due to the ageing of the population, will remain a major concern in the future, not only for developed countries, but also for developing countries. It is therefore crucial to have a good understanding of its mechanism to obtain an early diagnosis and a better prognosis for patients. Diastolic dysfunction is one of the variations of heart failure and leads to insufficient filling of the ventricle. To better understand the dysfunction, several studies have examined the blood motion in the ventricle. It is known that at the beginning of diastole, the filling flow creates a vortex pattern known as a vortex ring. This development of the ring by blood flow after passage through a valve was first described in 1513 by Leonardo Da Vinci (Fig. 0.1). After molding a glass phantom in an aorta and adding seeds to visually observe the flow through the phantom, he could describe the vortex ring development of the blood coming out of the aortic valve. His work was confirmed 500 years later with the emergence of MRI [66]. The same pattern can be observed in the left ventricle when the flow emerges from the mitral valve, referred to as the diastolic vortex. The flow motion (in our case the blood) is directly related to its environment : shape of the ventricle, shape of the valve, stiffness of the walls... There is therefore a growing interest in further studies on this diastolic vortex that could lead to valuable information on diastolic function. The imaging modalities which can be used to visualize the vortex are MRI and ultrasound. This thesis presents the work carried out to allow a better characterization of the diastolic vortex in the left ventricle by Doppler ultrasound imaging. For temporal monitoring of vortex dynamics, a high temporal resolution is required, since the ventricular diastole is about 0.5 s on average for a resting human heart. The quality of Doppler signals is also of utmost importance to get an accurate estimate of the blood flow velocity in the ventricle. To study this vortex, we focused on evaluating the core vorticity evaluation and especially on its evolution in time. The work is divided in three parts, and for each of them an article has been written : 1. Ultrafast Doppler sequence : The sequence is based on diverging waves, which resulted in a high frame rate. In combination with vortography, a method to locate the vortex core and derive its vorticity, the vortex dynamics could be tracked over time. This ix sequence could establish a proof of concept based on in vitro and in vivo acquisitions on healthy human volunteers. 2. Triplex sequence : Based on the ultrafast sequence, we were interested in adding information on the wall motion. The triplex sequence is able to recover not only the blood motion with a high framerate but also tissue Doppler. In the end, we could derive color, tissue, and spectral Doppler, along with a high quality Bmode by using motion compensation. The interdependence between vortex and walls dynamics could be highlighted by acquiring all the required parameters over a single cardiac cycle. 3. Automatic clutter filter : Vorticity quantification depends directly on the estimation of Doppler velocity. However, due to their low amplitude, blood signals must be filtered. Indeed, acquired signals are actually an addition of tissue and blood signals. Filtering is a critical step for an unbiased and accurate velocity estimation. The last part of this doctoral thesis has focused on the design of an efficient filter that takes advantage of the temporal and spatial dimensions of the acquisitions. Thus the tissue alongside the noise is removed. Particular care was taken to automatize the filter by applying information criteria based on information theory.
52

Suivi par élastographie ultrasonore après réparation endovasculaire d’anévrisme aorto-iliaque : étude de faisabilité in vivo

Bertrand-Grenier, Antony 12 1900 (has links)
No description available.
53

Cartographie, analyse et reconnaissance de réseaux vasculaires par Doppler ultrasensible 4D / Cartography, analysis and recognition of vascular networks by 4D ultrasensitive Doppler

Cohen, Emmanuel 19 December 2018 (has links)
Le Doppler ultrasensible est une nouvelle technique d'imagerie ultrasonore permettant d'observer les flux sanguins avec une résolution très fine et sans agent de contraste. Appliquée à l'imagerie microvasculaire cérébrale des rongeurs, cette méthode produit de très fines cartes vasculaires 3D du cerveau à haute résolution spatiale. Ces réseaux vasculaires contiennent des structures tubulaires caractéristiques qui pourraient servir de points de repère pour localiser la position de la sonde ultrasonore et tirer parti des avantages pratiques des appareils à ultrason. Ainsi, nous avons développé un premier système de neuronavigation chez les rongeurs basé sur le recalage automatique d'images cérébrales. En utilisant des méthodes d’extraction de chemins minimaux, nous avons développé une nouvelle méthode isotrope de segmentation pour l’analyse géométrique des réseaux vasculaires en 3D. Cette méthode a été appliquée à la quantification des réseaux vasculaires et a permis le développement d'algorithmes de recalage de nuages de points pour le suivi temporel de tumeurs. / Ultrasensitive Doppler is a new ultrasound imaging technique allowing the observation of blood flows with a very fine resolution and no contrast agent. Applied to cerebral microvascular imaging in rodents, this method produces very fine vascular 3D maps of the brain at high spatial resolution. These vascular networks contain characteristic tubular structures that could be used as landmarks to localize the position of the ultrasonic probe and take advantage of the easy-to-use properties of ultrasound devices such as low cost and portability. Thus, we developed a first neuronavigation system in rodents based on automatic registration of brain images. Using minimal path extraction methods, we developed a new isotropic segmentation framework for 3D geometric analysis of vascular networks (extraction of centrelines, diameters, curvatures, bifurcations). This framework was applied to quantify brain and tumor vascular networks, and finally leads to the development of point cloud registration algorithms for temporal monitoring of tumors.
54

Développement d'une nouvelle méthode de caractérisation tissulaire basée sur l'élastographie ultrasonore : application pour le dépistage précoce du cancer du sein

Ouared, Abderrahmane 09 1900 (has links)
Le cancer du sein est le cancer le plus fréquent chez la femme. Il demeure la cause de mortalité la plus importante chez les femmes âgées entre 35 et 55 ans. Au Canada, plus de 20 000 nouveaux cas sont diagnostiqués chaque année. Les études scientifiques démontrent que l'espérance de vie est étroitement liée à la précocité du diagnostic. Les moyens de diagnostic actuels comme la mammographie, l'échographie et la biopsie comportent certaines limitations. Par exemple, la mammographie permet de diagnostiquer la présence d’une masse suspecte dans le sein, mais ne peut en déterminer la nature (bénigne ou maligne). Les techniques d’imagerie complémentaires comme l'échographie ou l'imagerie par résonance magnétique (IRM) sont alors utilisées en complément, mais elles sont limitées quant à la sensibilité et la spécificité de leur diagnostic, principalement chez les jeunes femmes (< 50 ans) ou celles ayant un parenchyme dense. Par conséquent, nombreuses sont celles qui doivent subir une biopsie alors que leur lésions sont bénignes. Quelques voies de recherche sont privilégiées depuis peu pour réduire l`incertitude du diagnostic par imagerie ultrasonore. Dans ce contexte, l’élastographie dynamique est prometteuse. Cette technique est inspirée du geste médical de palpation et est basée sur la détermination de la rigidité des tissus, sachant que les lésions en général sont plus rigides que le tissu sain environnant. Le principe de cette technique est de générer des ondes de cisaillement et d'en étudier la propagation de ces ondes afin de remonter aux propriétés mécaniques du milieu via un problème inverse préétabli. Cette thèse vise le développement d'une nouvelle méthode d'élastographie dynamique pour le dépistage précoce des lésions mammaires. L'un des principaux problèmes des techniques d'élastographie dynamiques en utilisant la force de radiation est la forte atténuation des ondes de cisaillement. Après quelques longueurs d'onde de propagation, les amplitudes de déplacement diminuent considérablement et leur suivi devient difficile voir impossible. Ce problème affecte grandement la caractérisation des tissus biologiques. En outre, ces techniques ne donnent que l'information sur l'élasticité tandis que des études récentes montrent que certaines lésions bénignes ont les mêmes élasticités que des lésions malignes ce qui affecte la spécificité de ces techniques et motive la quantification de d'autres paramètres mécaniques (e.g.la viscosité). Le premier objectif de cette thèse consiste à optimiser la pression de radiation acoustique afin de rehausser l'amplitude des déplacements générés. Pour ce faire, un modèle analytique de prédiction de la fréquence de génération de la force de radiation a été développé. Une fois validé in vitro, ce modèle a servi pour la prédiction des fréquences optimales pour la génération de la force de radiation dans d'autres expérimentations in vitro et ex vivo sur des échantillons de tissu mammaire obtenus après mastectomie totale. Dans la continuité de ces travaux, un prototype de sonde ultrasonore conçu pour la génération d'un type spécifique d'ondes de cisaillement appelé ''onde de torsion'' a été développé. Le but est d'utiliser la force de radiation optimisée afin de générer des ondes de cisaillement adaptatives, et de monter leur utilité dans l'amélioration de l'amplitude des déplacements. Contrairement aux techniques élastographiques classiques, ce prototype permet la génération des ondes de cisaillement selon des parcours adaptatifs (e.g. circulaire, elliptique,…etc.) dépendamment de la forme de la lésion. L’optimisation des dépôts énergétiques induit une meilleure réponse mécanique du tissu et améliore le rapport signal sur bruit pour une meilleure quantification des paramètres viscoélastiques. Il est aussi question de consolider davantage les travaux de recherches antérieurs par un appui expérimental, et de prouver que ce type particulier d'onde de torsion peut mettre en résonance des structures. Ce phénomène de résonance des structures permet de rehausser davantage le contraste de déplacement entre les masses suspectes et le milieu environnant pour une meilleure détection. Enfin, dans le cadre de la quantification des paramètres viscoélastiques des tissus, la dernière étape consiste à développer un modèle inverse basé sur la propagation des ondes de cisaillement adaptatives pour l'estimation des paramètres viscoélastiques. L'estimation des paramètres viscoélastiques se fait via la résolution d'un problème inverse intégré dans un modèle numérique éléments finis. La robustesse de ce modèle a été étudiée afin de déterminer ces limites d'utilisation. Les résultats obtenus par ce modèle sont comparés à d'autres résultats (mêmes échantillons) obtenus par des méthodes de référence (e.g. Rheospectris) afin d'estimer la précision de la méthode développée. La quantification des paramètres mécaniques des lésions permet d'améliorer la sensibilité et la spécificité du diagnostic. La caractérisation tissulaire permet aussi une meilleure identification du type de lésion (malin ou bénin) ainsi que son évolution. Cette technique aide grandement les cliniciens dans le choix et la planification d'une prise en charge adaptée. / Breast cancer is the most frequent cancer in women and the leading cause of death for women between 35 and 55 years old. In Canada, more than 20,000 new cases are diagnosed each year. Most of the previous works have shown that life expectancy is closely related to the precocity of diagnosis. Current diagnostic imaging methods such as mammography, sonography, MRI present limitations such as irradiation (mammography), low specificity and low resolution (sonography) and high cost (MRI). For example, about 95% of abnormalities detected by mammography are proven to be benign lesions after complementary examinations (biopsy). Sonography is useful as a complementary examination but the low resolution of its images, its low specificity (54% for women less than 50 years) and its operator dependent interpretation seriously limit the use of this modality alone. MRI is a non-invasive technique with a relatively high sensitivity (86% for women below 50 years), but its limitations are the high cost and the waiting time for medical examination, which dedicate it as a monitoring technique in high-risk patients. It is therefore necessary to examine new noninvasive and cost effective methods. In this context, dynamic elastography is a promising approach. It is an emerging quantitative medical imaging technique inspired from palpation and based on the determination of elastic properties (stiffness) of tissues. This thesis aims the development of a novel dynamic ultrasound elastography method for early detection of breast lesions. One of the main problems of dynamic elastography techniques using remote palpation (acoustic radiation force) is the strong attenuation of shear waves. After few wavelengths of propagation, displacement amplitudes considerably decrease and their tracking becomes difficult even impossible. This problem greatly affects biological tissue characterization. Moreover, these techniques give only the information about elasticity while recent studies show that some benign lesions have the same elasticity as malignant lesions which affect the specificity of these techniques and motivate investigation of other physical parameters (e.g. viscosity). The first objective of this thesis is to optimize the acoustic radiation force using frequency adaptation to enhance the amplitude of displacements. An analytical model has been developed to predict the optimal frequency for the generation of the radiation force. Once validated on phantoms (in vitro), this model was used for the prediction of the optimal frequencies for the generation of the radiation force in tissue mimicking phantoms and ex vivo human breast cancer samples obtained after total mastectomy. Gains in magnitude were between 20% to158% for in vitro measurements on agar-gelatin phantoms, and 170% to 336% for ex vivo measurements on a human breast sample, depending on focus depths and attenuations of tested samples. The signal-to-noise ratio was also improved by more than four folds with adapted sequences. We conclude that frequency adaptation is a complementary technique that is efficient for the optimization of displacement amplitudes. This technique can be used safely to optimize the deposited local acoustic energy, without increasing the risk of damaging tissues and transducer elements. In the second part of this thesis, a prototype of an ultrasound probe for the generation of a specific type of adaptive shear waves called ''adaptive torsional shear waves'' has been developed. The goal was to use the optimized radiation force (developed in the first part) to generate adaptive torsional shear wave, and prove their utility in improving the amplitude of displacement. During their inward propagation, the amplitude of displacement generated by torsional shear waves was enhanced and the signal to noise ratio improved due to the constructive interferences. Torsional shear waves can also resonate heterogeneities which further enhance the displacement contrast between suspicious masses and its surrounding medium. Finally, in the context of assessment of mechanical proprieties of tissue, the last step of this thesis is to develop an inverse problem based on the propagation of adaptive torsional shear waves to estimate the viscoelastic parameters. A finite element method (FEM) model was developed to solve the inverse wave propagation problem and obtain viscoelastic properties of interrogated media. The inverse problem was formulated and solved in the frequency domain and its robustness was evaluated. The proposed model was validated in vitro with two independent rheology methods on several homogeneous and heterogeneous breast tissue mimicking phantoms over a broad range of frequencies (up to 400Hz). The obtained results were in good agreement with reference rheology methods with discrepancies between 8% and 38% for shear modulus and from 9% to 67% for loss modulus. The robustness study showed that the proposed inverse problem solution yielded a good estimation of the storage (19%) and loss moduli (32%) even with very noisy signals.
55

Approche matricielle de l'opérateur de propagation des ondes ultrasonores en milieu diffusant aléatoire

Aubry, Alexandre 23 September 2008 (has links) (PDF)
Cette thèse étudie les propriétés de l'opérateur de propagation des ondes ultrasonores en milieu aléatoire. Le dispositif expérimental consiste en un réseau multi-éléments placé en vis-à-vis d'un milieu désordonné. L'opérateur de propagation est donné par la matrice des réponses inter-éléments mesurées entre chaque couple de transducteurs. En s'appuyant sur la théorie des matrices aléatoires, le comportement statistique de cet opérateur a été étudié en régime de diffusion simple et multiple. Une cohérence déterministe des signaux est ainsi mise en évidence en régime de diffusion simple, cohérence qui disparaît dès que la diffusion multiple prédomine. Cette différence de comportement a permis la mise au point d'un radar intelligent séparant les échos simplement et multiplement diffusés. On peut ainsi extraire l'écho direct d'une cible échogène enfouie dans un milieu hautement diffusant, bien que ce dernier soit source de diffusion multiple et d'aberration. Une deuxième approche consiste, au contraire, à extraire une contribution de diffusion multiple noyée dans une contribution de diffusion simple largement prédominante. L'étude de l'intensité multiplement diffusée permet de mesurer des paramètres de transport (p.ex. la constante de diffusion D) caractérisant la propagation de l'onde multiplement diffusée. Un passage en champ lointain (ondes planes) permet d'obtenir une mesure fiable de D en étudiant le cône de rétrodiffusion cohérente. Un passage en champ proche, via l'utilisation de faisceaux gaussiens, permet d'effectuer des mesures locales de D en étudiant la croissance du halo diffusif. Cette approche a été appliquée au cas de l'os trabéculaire humain autour de 3 MHz.
56

Approche matricielle de l'opérateur de propagation des ondes ultrasonores en milieu diffusant aléatoire

Aubry, Alexandre 23 September 2008 (has links) (PDF)
Cette thèse étudie les propriétés de l'opérateur de propagation des ondes ultrasonores en milieu aléatoire. Le dispositif expérimental consiste en un réseau multi-éléments placé en vis-à-vis d'un milieu désordonné. L'opérateur de propagation est donné par la matrice des réponses inter-éléments mesurées entre chaque couple de transducteurs. En s'appuyant sur la théorie des matrices aléatoires, le comportement statistique de cet opérateur a été étudié en régime de diffusion simple et multiple. Une cohérence déterministe des signaux est ainsi mise en évidence en régime de diffusion simple, cohérence qui disparaît dès que la diffusion multiple prédomine. Cette différence de comportement a permis la mise au point d'un radar intelligent séparant les échos simplement et multiplement diffusés. On peut ainsi extraire l'écho direct d'une cible échogène enfouie dans un milieu hautement diffusant, bien que ce dernier soit source de diffusion multiple et d'aberration. Une deuxième approche consiste, au contraire, à extraire une contribution de diffusion multiple noyée dans une contribution de diffusion simple largement prédominante. L'étude de l'intensité multiplement diffusée permet de mesurer des paramètres de transport (p.ex. la constante de diffusion D) caractérisant la propagation de l'onde multiplement diffusée. Un passage en champ lointain (ondes planes) permet d'obtenir une mesure fiable de D en étudiant le cône de rétrodiffusion cohérente. Un passage en champ proche, via l'utilisation de faisceaux gaussiens, permet d'effectuer des mesures locales de D en étudiant la croissance du halo diffusif. Cette approche a été appliquée au cas de l'os trabéculaire humain autour de 3 MHz
57

Déconvolution aveugle parcimonieuse en imagerie échographique avec un algorithme CLEAN adaptatif

Chira, Liviu Teodor 17 October 2013 (has links) (PDF)
L'imagerie médicale ultrasonore est une modalité en perpétuelle évolution et notamment en post-traitement où il s'agit d'améliorer la résolution et le contraste des images. Ces améliorations devraient alors aider le médecin à mieux distinguer les tissus examinés améliorant ainsi le diagnostic médical. Il existe déjà une large palette de techniques "hardware" et "software". Dans ce travail nous nous sommes focalisés sur la mise en oeuvre de techniques dites de "déconvolution aveugle", ces techniques temporelles utilisant l'enveloppe du signal comme information de base. Elles sont capables de reconstruire des images parcimonieuses, c'est-à-dire des images de diffuseurs dépourvues de bruit spéculaire. Les principales étapes de ce type de méthodes consistent en i) l'estimation aveugle de la fonction d'étalement du point (PSF), ii) l'estimation des diffuseurs en supposant l'environnement exploré parcimonieux et iii) la reconstruction d'images par reconvolution avec une PSF "idéale". La méthode proposée a été comparée avec des techniques faisant référence dans le domaine de l'imagerie médicale en utilisant des signaux synthétiques, des séquences ultrasonores réelles (1D) et images ultrasonores (2D) ayant des statistiques différentes. La méthode, qui offre un temps d'exécution très réduit par rapport aux techniques concurrentes, est adaptée pour les images présentant une quantité réduite ou moyenne des diffuseurs.
58

Commande optimale appliquée aux systèmes d'imagerie ultrasonore

Ménigot, Sébastien 12 December 2011 (has links) (PDF)
Les systèmes d'imagerie médicale ultrasonore ont considérablement amélioré le diagnostic clinique par une meilleure qualité des images grâce à des systèmes plus sensibles et des post-traitements. La communauté scientifique de l'imagerie ultrasonore a consenti à un très grand effort de recherche sur les post-traitements et sur le codage de l'excitation sans s'intéresser, outre mesure, aux méthodes de commande optimale. Ce travail s'est donc légitimement tourné vers les méthodes optimales basées sur l'utilisation d'une rétroaction de la sortie sur l'entrée. Pour rendre applicable ces méthodes, ce problème complexe de commande optimale a été transformé en un problème d'optimisation paramétrique sous-optimal et plus simple. Nous avons appliqué ce principe au domaine de l'imagerie ultrasonore : l'échographie, l'imagerie harmonique native et l'imagerie harmonique de contraste avec ou sans codage de la commande. La simplicité de l'approche nous a permis, par une modification de la fonction de coût, de l'adapter à l'imagerie harmonique. Cette adaptation montre que la méthode peut être appliquée à l'imagerie ultrasonore en générale. Aujourd'hui, les enjeux de l'imagerie ultrasonore portent non seulement sur les traitements des excitations ou des images mais aussi sur les capteurs. Ce point nous a conduit naturellement à rechercher la commande optimale des transducteurs capacitifs (cMUT) afin de les adapter à une utilisation plus large en imagerie ultrasonore codée. Nos méthodes de compensation et de codage par commande optimale procurent des résultats très prometteurs qui vont au delà de nos espérances. Le champ d'applications de nos méthodes de codage optimal est large et nous n'en voyons pas forcément encore toutes les limites. L'atout majeur de nos approches est leur simplicité d'utilisation et d'implémentation. En effet, elles ne nécessitent pas d'informations a priori difficilement accessibles sur les outils utilisés ou milieux explorés. Notre système s'adapte automatiquement aux variations qui peuvent être liées au vieillissement du capteur ou à la modification du milieu exploré.
59

Étude et optimisation de sondes matricielles 2D pour l'imagerie ultrasonore 3D.

Diarra, Bakary 11 October 2013 (has links) (PDF)
L'imagerie échographique en trois dimensions (3D) est une modalité d'imagerie médicale en plein développement. En plus de ses nombreux avantages (faible cout, absence de rayonnement ionisant, portabilité) elle permet de représenter les structures anatomiques dans leur forme réelle qui est toujours 3D. Les sondes à balayage mécaniques, relativement lentes, tendent à être remplacées par des sondes bidimensionnelles ou matricielles qui sont un prolongement dans les deux directions, latérale et azimutale, de la sonde classique 1D. Cet agencement 2D permet un dépointage du faisceau ultrasonore et donc un balayage 3D de l'espace. Habituellement, les éléments piézoélectriques d'une sonde 2D sont alignés sur une grille et régulièrement espacés d'une distance (en anglais le " pitch ") soumise à la loi de l'échantillonnage spatial (distance inter-élément inférieure à la demi-longueur d'onde) pour limiter l'impact des lobes de réseau. Cette contrainte physique conduit à une multitude d'éléments de petite taille. L'équivalent en 2D d'une sonde 1D de 128 éléments contient 128x128=16 384 éléments. La connexion d'un nombre d'éléments aussi élevé constitue un véritable défi technique puisque le nombre de canaux dans un échographe actuel n'excède que rarement les 256. Les solutions proposées pour contrôler ce type de sonde mettent en oeuvre du multiplexage ou des techniques de réduction du nombre d'éléments, généralement basées sur une sélection aléatoire de ces éléments (" sparse array "). Ces méthodes souffrent du faible rapport signal à bruit du à la perte d'énergie qui leur est inhérente. Pour limiter ces pertes de performances, l'optimisation reste la solution la plus adaptée. La première contribution de cette thèse est une extension du " sparse array " combinée avec une méthode d'optimisation basée sur l'algorithme de recuit simulé. Cette optimisation permet de réduire le nombre nécessaire d'éléments à connecter en fonction des caractéristiques attendues du faisceau ultrasonore et de limiter la perte d'énergie comparée à la sonde complète de base. La deuxième contribution est une approche complètement nouvelle consistant à adopter un positionnement hors grille des éléments de la sonde matricielle permettant de supprimer les lobes de réseau et de s'affranchir de la condition d'échantillonnage spatial. Cette nouvelle stratégie permet d'utiliser des éléments de taille plus grande conduisant ainsi à un nombre d'éléments nécessaires beaucoup plus faible pour une même surface de sonde. La surface active de la sonde est maximisée, ce qui se traduit par une énergie plus importante et donc une meilleure sensibilité. Elle permet également de balayer un angle de vue plus important, les lobes de réseau étant très faibles par rapport au lobe principal. Le choix aléatoire de la position des éléments et de leur apodization (ou pondération) reste optimisé par le recuit simulé. Les méthodes proposées sont systématiquement comparées avec la sonde complète dans le cadre de simulations numériques dans des conditions réalistes. Ces simulations démontrent un réel potentiel pour l'imagerie 3D des techniques développées. Une sonde 2D de 8x24=192 éléments a été construite par Vermon (Vermon SA, Tours France) pour tester les méthodes de sélection des éléments développées dans un cadre expérimental. La comparaison entre les simulations et les résultats expérimentaux permettent de valider les méthodes proposées et de prouver leur faisabilité.
60

Surgical tools localization in 3D ultrasound images / Localisation d'outils thérapeutiques de forme linéaire par imagerie ultrasonore 3D

Uhercik, Marian 20 April 2011 (has links)
Cette thèse traite de la détection automatique d’outils chirurgicaux de géométrie linéaire tels que des aiguilles ou des électrodes en imagerie ultrasonore 3D. Une localisation précise et fiable est nécessaire pour des interventions telles que des biopsies ou l’insertion d’électrode dans les tissus afin d’enregistrer leur activité électrique (par exemple dans le cortex cérébral). Le lecteur est introduit aux bases de l’imagerie ultrasonore (US) médicale. L’état de l’art des méthodes de localisation est rapporté. Un grand nombre de méthodes sont basées sur la projection comme la transformation de Hough ou la Projection Intégrale Parallèle (PIP). Afin d’améliorer l’implantation des méthodes PIP connues pour être assez lentes, nous décrivons une possible accélération par approche multirésolution. Nous proposons d’utiliser une méthode d’ajustement de modèle utilisant une approche RANSAC et une optimization locale. C’est une méthode rapide permettant un traitement temps réel et qui a l’avantage d’être très robuste en présence d’autres structures fortement échogènes dans le milieu environnant. Nous proposons deux nouveaux modèles d’apparence et de forme de l’outil dans les images US 3D. La localisation de l’outil peut être améliorée en exploitant son aspect tubulaire. Nous proposons un modèle d’outil utilisant un filtrage rehausseur de ligne que nous avons incorporé dans le schéma de recherche de modèle. La robustesse de cet algorithme de localisation est améliorée au prix d’un temps additionnel de pré-traitement. La localisation temps-réel utilisant le modèle de forme est démontrée par une implantation sur l’échographe Ultrasonix RP. Toutes les méthodes proposées on été testée sur des données de simulation US, des données de fantômes (qui sont des tissus synthétiques imitant les tissus biologiques) ainsi que sur des données réelles de biopsie du sein. Les méthodes proposées ont montré leur capacité à produire des résultats similaires en terme de précision mais en limitant d’avantage le nombre d’échecs de détection par rapport aux méthodes de l’état de l’art basées sur les projections. / This thesis deals with automatic localization of thin surgical tools such as needles or electrodes in 3D ultrasound images. The precise and reliable localization is important for medical interventions such as needle biopsy or electrode insertion into tissue. The reader is introduced to basics of medical ultrasound (US) imaging. The state of the art localization methods are reviewed in the work. Many methods such as Hough transform (HT) or Parallel Integral Projection (PIP) are based on projections. As the existing PIP implementations are relatively slow, we suggest an acceleration by using a multiresolution approach. We propose to use model fitting approach which uses randomized sample consensus (RANSAC) and local optimization. It is a fast method suitable for real-time use and it is robust with respect to the presence of other high-intensity structures in the background. We propose two new shape and appearance models of tool in 3D US images. Tool localization can be improved by exploiting its tubularity. We propose a tool model which uses line filtering and we incorporated it into the model fitting scheme. The robustness of such localization algorithm is improved at the expense of additional time for pre-processing. The real-time localization using the shape model is demonstrated by implementation on the 3D US scanner Ultrasonix RP. All proposed methods were tested on simulated data, phantom US data (a replacement for a tissue) and real tissue US data of breast with biopsy needle. The proposed methods had comparable accuracy and the lower number of failures than the state of the art projection based methods.

Page generated in 0.4239 seconds