Spelling suggestions: "subject:"imitative reasoning"" "subject:"limitative reasoning""
1 |
Elevers matematiska resonemang vid uppgiftslösningar i grupp : En fallstudie om hur imitativa och kreativa resonemang kan framträda i matematikklassrumFritz, John, Latvalehto, Alexander, Lindholm, Ellen January 2023 (has links)
Den här studien syftar till att undersöka vilka matematiska resonemang som framträder när elever löser uppgifter i grupp. Det resultat som framkommit baseras utifrån fallstudie där elevers användning av matematiska resonemang har observerats i två klassrum. I studiens resultat visade det sig att imitativa matematiska resonemang framträdde när de löste uppgifter i grupp. Det visade sig även att kreativt matematiskt resonemang användes, men endast vid ett fåtal tillfällen. Slutsatsen utifrån studiens resultat är att uppgifter som främjar kreativa matematiska resonemang borde få en given plats i undervisningen, utan att imitativa resonemang försvinner. När det kommer till studiens resultat och dess relevans för vårt yrke så är det viktigt att skapa en medvetenhet kring matematiska resonemang och att ge elever möjlighet till att använda såväl imitativa som kreativa resonemang. Vidare forskning utifrån studiens resultat kan vara att undersöka öppna uppgifters påverkan på imitativa och kreativa resonemang.
|
2 |
Elevers arbete med matematiska resonemang / Students' work with mathematical reasoningShokfah, Aichah January 2024 (has links)
Abstrakt Syftet med denna studie är att undersöka faktorer som kan påverka elevers matematiska resonemang. Detta gjordes genom att undersöka vilken typ av resonemang elever i årskurs 9 använde när de löste olika uppgifter och även elevernas uppfattningar om matematik. Teoretiska perspektiv för studien är baserad på Lithners teoretiska ramverk som skiljer på två huvudtyper av matematiska resonemang: den första är imitativt resonemang, där eleven imiterar lösningsalgoritmer som hen känner till, och kreativt matematiskt resonemang, där eleven skapar en lösning för att lösa en uppgift. Metoderna som användes i studien var observation och ostrukturerade intervjuer. Resultaten visar att elever använde imitativa resonemang för att lösa uppgifter och sällan använde kreativa matematiska resonemang. Det är rimligt att anta att arbetssättet hade en roll för vilken typ av matematiska resonemang elever använde för att lösa olika övningsuppgifter. Resultatet tyder även på att elevens träning på att lösa uppgifter som krävde användning av kreativt matematiskt resonemang påverkade betyget eleven fick i det skriftliga provet. Eleverna indikerade uppfattningar om att uppgifter som krävde användning av kreativa matematiska resonemang för att lösas var svåra, särskilt svåra att förstå. De slutsatser som dras är att antalet uppgifter som kräver användning av kreativt matematiskt resonemang för att lösas bör utökas och eleverna behöver utveckla sitt matematiska språk.
|
3 |
Pratet och räknefärdigheten : Från det procedurala mot det konceptuella / The talk and the numeracy : From the procedural towards the conceptualFodorpataki, László January 2023 (has links)
I identify a recent trend in school mathematics as well as in some of the research literature in mathematics education: an emphasis on creative uses of mathematics and an increased emphasis on verbalizations, reasoning and conceptualization as opposed to numerical and computational skills. With tools provided by a qualitative textual analysis of several Swedish curricula from the past from which I trace a shift of focus from the classical towards the conceptual aspects of mathematical knowledge, I examine the common research framework for discussing mathematical knowledge in terms of the procedural and the conceptual. I investigate whether the shift towards a conceptual approach to mathematical knowledge has occurred and how this presumed shift reveals itself. A close reading and comparison of the historical guidance documents' purpose descriptions and grading criteria concerning the mathematics subject is carried out. Commentary materials for the various course plans are examined. Here I conclude that a shift has occurred during the last decades in the mathematics curricula that may have severely affected the mathematical education in schools. I argue that this shift needs to be acknowledged in order to halt a tendency that seems to gravitate towards a decreasing mathematical competency among the Swedish students.
|
4 |
Assessing mathematical creativity : comparing national and teacher-made tests, explaining differences and examining impactBoesen, Jesper January 2006 (has links)
<p>Students’ use of superficial reasoning seems to be a main reason for learning difficulties in mathematics. It is therefore important to investigate the reasons for this use and the components that may affect students’ mathematical reasoning development. Assessments have been claimed to be a component that significantly may influence students’ learning.</p><p>The purpose of the study in Paper 1 was to investigate the kind of mathematical reasoning that is required to successfully solve tasks in the written tests students encounter in their learning environment. This study showed that a majority of the tasks in teacher-made assessment could be solved successfully by using only imitative reasoning. The national tests however required creative mathematically founded reasoning to a much higher extent.</p><p>The question about what kind of reasoning the students really use, regardless of what theoretically has been claimed to be required on these tests, still remains. This question is investigated in Paper 2.</p><p>Here is also the relation between the theoretically established reasoning requirements, i.e. the kind of reasoning the students have to use in order to successfully solve included tasks, and the reasoning actually used by students studied. The results showed that the students to large extent did apply the same reasoning as were required, which means that the framework and analysis procedure can be valuable tools when developing tests. It also strengthens many of the results throughout this thesis. A consequence of this concordance is that as in the case with national tests with high demands regarding reasoning also resulted in a higher use of such reasoning, i.e. creative mathematically founded reasoning. Paper 2 can thus be seen to have validated the used framework and the analysis procedure for establishing these requirements.</p><p>Paper 3 investigates the reasons for why the teacher-made tests emphasises low-quality reasoning found in paper I. In short the study showed that the high degree of tasks solvable by imitative reasoning in teacher-made tests seems explainable by amalgamating the following</p><p>factors: (i) Limited awareness of differences in reasoning requirements, (ii) low expectations of students abilities and (iii) the desire to get students passing the tests, which was believed easier when excluding creative reasoning from the tests.</p><p>Information about these reasons is decisive for the possibilities of changing this emphasis. Results from this study can also be used heuristically to explain some of the results found in paper 4, concerning those teachers that did not seem to be influenced by the national tests.</p><p>There are many suggestions in the literature that high-stake tests affect practice in the classroom. Therefore, the national tests may influence teachers in their development of classroom tests. Findings from paper I suggests that this proposed impact seem to have had a limited effect, at least regarding the kind of reasoning required to solve included tasks. What about other competencies described in the policy documents?</p><p>Paper 4 investigates if the Swedish national tests have had such an impact on teacher-made classroom assessment. Results showed that impact in terms of similar distribution of tested competences is very limited. The study however showed the existence of impact from the national tests on teachers test development and how this impact may operate.</p>
|
5 |
Assessing mathematical creativity : comparing national and teacher-made tests, explaining differences and examining impactBoesen, Jesper January 2006 (has links)
Students’ use of superficial reasoning seems to be a main reason for learning difficulties in mathematics. It is therefore important to investigate the reasons for this use and the components that may affect students’ mathematical reasoning development. Assessments have been claimed to be a component that significantly may influence students’ learning. The purpose of the study in Paper 1 was to investigate the kind of mathematical reasoning that is required to successfully solve tasks in the written tests students encounter in their learning environment. This study showed that a majority of the tasks in teacher-made assessment could be solved successfully by using only imitative reasoning. The national tests however required creative mathematically founded reasoning to a much higher extent. The question about what kind of reasoning the students really use, regardless of what theoretically has been claimed to be required on these tests, still remains. This question is investigated in Paper 2. Here is also the relation between the theoretically established reasoning requirements, i.e. the kind of reasoning the students have to use in order to successfully solve included tasks, and the reasoning actually used by students studied. The results showed that the students to large extent did apply the same reasoning as were required, which means that the framework and analysis procedure can be valuable tools when developing tests. It also strengthens many of the results throughout this thesis. A consequence of this concordance is that as in the case with national tests with high demands regarding reasoning also resulted in a higher use of such reasoning, i.e. creative mathematically founded reasoning. Paper 2 can thus be seen to have validated the used framework and the analysis procedure for establishing these requirements. Paper 3 investigates the reasons for why the teacher-made tests emphasises low-quality reasoning found in paper I. In short the study showed that the high degree of tasks solvable by imitative reasoning in teacher-made tests seems explainable by amalgamating the following factors: (i) Limited awareness of differences in reasoning requirements, (ii) low expectations of students abilities and (iii) the desire to get students passing the tests, which was believed easier when excluding creative reasoning from the tests. Information about these reasons is decisive for the possibilities of changing this emphasis. Results from this study can also be used heuristically to explain some of the results found in paper 4, concerning those teachers that did not seem to be influenced by the national tests. There are many suggestions in the literature that high-stake tests affect practice in the classroom. Therefore, the national tests may influence teachers in their development of classroom tests. Findings from paper I suggests that this proposed impact seem to have had a limited effect, at least regarding the kind of reasoning required to solve included tasks. What about other competencies described in the policy documents? Paper 4 investigates if the Swedish national tests have had such an impact on teacher-made classroom assessment. Results showed that impact in terms of similar distribution of tested competences is very limited. The study however showed the existence of impact from the national tests on teachers test development and how this impact may operate.
|
6 |
Lärares matemtikundervisning och hur den kan stödja elevers utveckling av resonemangsförmågan i årskurs 2-3 : En intervjustudie i lärares uppfattningar av matematiska resonemang och hur de organiserar undervisningen för att främja förmågan att föra och följa matematiska resonemang / Teachers’ mathematical education and how it can support students’ development of reasoning ability in grades 2-3 : An interview study about teachers’ perceptions of mathematical reasoning and how they organize lessons to foster the ability to make and follow mathematical reasoningAndersson Rosenkvist, Emma, Coughlin, Nathalie January 2023 (has links)
Syftet med denna studie är att undersöka hur lärare ser på förmågan att föra och följa matematiska resonemang och hur lärares matematikundervisning kan organiseras för att möjliggöra för elever att främja denna förmåga. Vi har använt oss av ett ramverk beskrivet av Herbert m.fl. (2015) om lågstatielärares uppfattning om matematiska resonemang. Vi har även utformat ett eget ramverk baserat på vad forskning visar främjar elevers matematiska resoenamngsförmåga och utifrån det genomfört en deduktiv innehållsanalys. Genom semisturkturerade intervjuer har 12 lärare i årskurs 2-3 gett sin syn på matematiska resonemang och hur de organiserar undervisningen för att främja elevers matematiska resonemangsförmåga. Resultatet visar att lärare ser resoneamng som svårdefinerat men att de ändå bedriver en undervisning som möjliggör för eleverna att främja denna förmåga. Vidare visade resultatet att undervisningen lärarna bedrev visade på djupare uppfattning av matematiska resonemang än vad de själva uttryckte. Däremot ser de flesta lärare att matematikboken inte ger eleverna möjlighter till matematiska resonemang. Några lärare lyfter materialet Sluta räkna-serien av Ulla Öberg som särskilt gynnsamt för att utveckla elevers matematiska resonemangsförmåga. Det som dominerar lärarnas undervisning i arbetet med matematiska resonemang är problemlösning, öppna uppgifter, arbete i par eller grupp samt arbete med konkret material. / The aim of this study is to examine how teachers view the ability to make and follow mathematical reasoning and how teachers' mathematical lessons can be organized to enable students to develop this ability. We have used the framework described by Herbert et al. (2015) for primary teachers' perceptions of mathematical reasoning. We have also created our own framework based on what research shows fosters students' matehematical reasoning ability and based on this made a deductive content analysis. Through semi-structured interviews 12 teachers in grades 2-3 gave their views on mathematical reasoning and how they organize their lessons to foster students' mathematical reasoning ability. The results show that teachers view reasoning as hard to define but that they still conduct lessons that make it possible for students to foster this ability. Furtthermore, the results show that the lessons the teachers conduct show a higher perception of mathematical reasoning than what they themselves express. Most of the teachers express that the mathematical textbook does not give students the possibility for mathematical reasoning. Some teachers mention the material Sluta räkna-serien by Ulla Öberg as especially effective to foster students' mathematical reasoning ability. What dominates the teachers' lessons when working with mathematical reasoning are problem solving, open tasks, working in pairs or groups and working with concrete material.
|
7 |
Hur resonerar elever egentligen? : En kvalitativ studie om användningen av kreativa och imitativa resonemang hos elever i årskurs 3 vid arbete med rika problem.Bernhardsson, Maja, Filippa, Undestam January 2023 (has links)
Denna kvalitativa studie fokuserar på att undersöka hur kreativa och imitativa resonemang kommer till uttryck i en lågstadiekontext. Genom observationer av videoinspelningar av när 20 elever i årskurs 3 arbetar med rika problem har vi kommit fram till fem teman som beskriver tillfällen där kreativa och imitativa resonemang uttrycks. Dessa är när: elever utgår från tidigare matematiska kunskaper, elever använder sig av bilder eller plockmaterial, elever tar hjälp från andra, elever gissar sig fram, och elever diskuterar de matematiska förutsättningarna. Resultatet visar att kreativt resonemang förekommer i alla teman, och att de ofta är tätt sammanflätade med de imitativa resonemang som förekommer.
|
8 |
Programmering som verktyg för problemlösning i matematik : En innehållsanalys av gymnasieläroböcker i matematik / Programming as a tool for problem solving inmathematicsCelik, Robert January 2020 (has links)
Som ett led i att stärka den digitala kompetensen i den svenska skolan så beslöt regeringen2017 att införa användandet av programmering i matematikämnet. Sedan höstterminen 2018 så har flertalet matematikkurser för gymnasiet fått uppdaterade kursplaner med tillägget att programmering ska användas som verktyg för problemlösning. I praktiken innebär detta att drygt hälften av de nationella gymnasieprogrammen nu får programmering som antingen obligatorisk eller valbar genom någon av matematikkurserna i c-spåret eller matematik 3b. I samband med de uppdaterade styrdokumenten så har förlagen givit ut reviderade läromedel i matematik eller webresurser med programmeringsuppgifter. I detta arbete utreds i vilken utsträckning dessa programmeringsuppgifter relaterar till problemlösning. Analysen visar att endast en dryg fjärdedel av samtliga analyserade programmeringsuppgifter kategoriseras som problemlösningsuppgifter. Metoden för dataanalys bygger på Lithners ramverk för imitativa och kreativa resonemang. Metoden definierar tre olika lösningstyper (kategorier) av matematikuppgifter; High relatedness tasks (HR), Local low relatedness tasks (LLR) och Global low relatedness tasks (GLR). När lösningen till en uppgift är en procedur tagen från läroboken så räknas det till HR kategorin och räknas då som ett imitativt resonemang. När en uppgift tillhör någon av de två övriga kategorierna (LLR eller GLR) så innebär det att eleven själv behövt konstruera stora delar av lösningen till en uppgift. För att främja utvecklingen av problemlösningsförmågan som räknas som ett kreativt resonemang, så måste eleven få arbeta med uppgifter som tillhör LLR eller GLR kategorierna. Metoden för datainsamling är en innehållsanalys av läromedel i matematik som utgörs av förlaget Natur & Kulturs serie Matematik 5000+ samt förlaget Gleerups serie Exponent med en tillhörande webresurs. I arbetet analyserades 86 programmeringsuppgifter ur Matematik 5000+ samt ytterligare 20 programmeringsuppgifter publicerade som en webresurs med hänvisning till Exponent. Ett antal av de 20 programmeringsuppgifterna relaterade till två läromedel vilket ledde till att det totala antalet analyserade programmeringsuppgifter blev 113. Det visade sig att en delmängd av de analyserade uppgifterna var sådana att någon lösningsalgoritm inte behövdes för att lösa uppgiften, exempelvis genom att facit varit givet i problemformuleringen. Eftersom den typen av uppgifter inte kunde kategoriseras till någon av de tre befintliga kategorierna så definierades en ny fjärde kategori None relatedness tasks (NR). Resultatet visar att nästan hälften av de analyserade uppgifterna (55 av 113) tillhör NR kategorin. En del av förklaringen ligger i att Matematik 5000+ introducerar eleverna till programmering genom färdiga exempel. Analysen visade att ytterligare 28 uppgifter hamnade i HR kategorin vilket således innebär att endast en dryg fjärdedel av samtliga analyserade programmeringsuppgifter klassas som problemlösning. För matematik 3c derivata och matematik 3c integraler så analyserades totalt tio uppgifter där ingen av dessa relaterade till problemlösning. Här används programmeringen istället som ett verktyg för att förklara viktiga begrepp som ingår i dessa kapitel. De matematiska moment som visade sig lämpa sig väl för problemlösningsuppgifter var bl.a. matematik 1c aritmetik och matematik 2c linjär algebra. Sammanfattningsvis så visar studien att en stor majoritet av programmeringsuppgifterna leder till att eleven introduceras till programmering eller leder till att eleven får arbeta med procedurförmågan. Exponent hade en jämförelsevis stor andel programmeringsuppgifter för problemlösning, med sina 44 %. Matematik 5000+ i sin tur presenterar ett större antal uppgifter för problemlösning med deras 18, vilket dock motsvarar endast 21 % av de totalt 86 uppgifterna. / As part of increasing the digital competence in the Swedish school, the government decided in 2017 to introduce the use of programming in the subject of mathematics. Since the autumn term 2018, several mathematics courses for upper secondary school have received updated syllabi with the addition that programming will be used as a tool for problem solving. In practice, this means that just over half of the national upper secondary school programs now receive programming that is either compulsory or elective through one of the mathematics courses in the c-track or mathematics course 3b. In conjunction with the updated governing documents, the publishers have published revised teaching aids in mathematics or webresources with programming tasks. In this thesis, it is investigated to what extent these programming tasks relate to problem solving. The analysis shows that only just over a quarterof all analyzed programming tasks are categorized as problem-solving tasks.The method of data analysis is based on Lithner's framework for imitative and creative reasoning. The method defines three different solution types (categories) of mathematical problems; High relatedness tasks (HR), Local low relatedness tasks (LLR) and Global low relatedness tasks (GLR). When the solution to a task is a procedure taken from the textbook, it is considered part of the HR category and is then categorized as an imitative reasoning. When a task belongs to one of the other two categories (LLR or GLR), it means that the student has had to construct large parts of the solution for the task. In order to promote the development of problem-solving ability, which is considered as creative reasoning, the student must be allowed to work with tasks that belong to the LLR or GLR categories. The method of data collection is content analysis of teaching aids in mathematics, which consists of the publisher Natur & Kultur’s series Matematik 5000+ and the publisher Gleerups's series Exponent with an associated web resource. In this study, 86 programming tasks from Matematik 5000+ were analyzed and another 20 programming tasks published as a web resource with reference to Exponent. Some of the 20 programming tasks referred to two teaching aids, which led to the total number of analyzed programming tasks becoming 113. It turned out that a subset of the analyzed tasks was such that no solution algorithm was needed to solve them, for example by the fact that the results had been given in the problem formulation. As this type of data could not be categorized into any of the three existing categories, a new fourth category None relatedness tasks (NR) was defined. The results show that almost half of the analyzed tasks (55 of 113) belong to the NR category. Part of the explanation lies in the fact that Matematik 5000+ introduce the students to programming through ready-made examples. The analysis showed that a further 28 tasks ended up in the HR category, which thus means that only just over a quarter of all analyzed programming tasks are classified as problem solving. For mathematics 3c derivatives and mathematics 3c integrals, a total of ten tasks were analyzed, none of which related to problem solving. The programming tasks were instead used as a tool to explain important concepts from these chapters. The mathematical chapters that proved to be well suited for problem-solving tasks were e.g. mathematics 1c arithmetic and mathematics 2c linear algebra. In summary, this study shows that a large majority of the programming tasks rather introduce the student to programming or to tasks requiring mere procedural skills, than to tasks that require problemsolving skills. Exponent had a comparatively large proportion of programming tasks for problem solving, with its 44%. Matematik 5000+ in turn presents a larger number of tasks for problem solving with their 18, which, however, corresponds to only 21% of the total 86 tasks.
|
9 |
"Jag har ont i min hjärna nu!" : En kvalitativ studie om hur lågstadieelever för olika matematiska resonemang / “I have pain in my brain now!” : A qualitative study on how primary school pupils do different mathematical reasoningGustafsson, Linda, Bederian, Nanour January 2024 (has links)
Skolverket (2022a) betonar vikten av att elever utvecklar sin resonemangsförmåga, som är en av de fem angivna förmågorna i matematikens kursplan. Trots kursplanens betoning visar forskning att elever ofta spenderar mycket tid på självständigt arbete med läroböcker under matematikundervisningen. Därför undersöker vår studie hur elever i årskurs 1 resonerar när de arbetar med uppgifter som anses främja ett kreativt matematiskt resonemang (KMR). Vidare undersöktes möjligheter och utmaningar med att använda sådana uppgifter. Som teoretiskt ramverk användes Lithners (2008) kategorisering av olika resonemang samt Gray och Talls (1994) teori om proceptuellt tänkande för att besvara studiens frågeställningar. Utöver dessa teorier användes aven Vygoskijs teori för bredare förståelse av studiens resultat (Säljö, 2020). Studien identifierade möjligheter med att använda arbetssättet som metod, om den anpassas och stöttas på rätt sätt. Detta kan hjälpa eleverna att utveckla djupare matematiska insikter samt förbättra sin resonemangsförmåga. En utmaning med arbetssättet var att hitta en uppgift som betraktas utmanade för alla elever trots skillnaderna i deras förkunskaper. Metoden som användes för att samla in empirin var "task-based interviews". Eleverna engagerades i matematiska aktiviteter och ombads tänka högt för att synliggöra deras tankeprocess. Resultaten visade att trots att det var utmanade att tillämpa Lithners (2008) ramverk på yngre elever så kunde de flesta föra KMR. / The Swedish National Agency (2002a) for Education emphasizes the importance of students developing their reasoning skills, which is one of the five competencies outlined in the mathematics curriculum. Despite the curriculum's emphasis, research shows that students often spend a lot of time working independently with textbooks during mathematics instruction. Therefore, our study examines how first-grade students reason when working on tasks designed to promote creative mathematical reasoning (CMR). Additionally, the study explores the opportunities and challenges associated with using such tasks. To answer the research questions, Lithner's (2008) categorization of different types of reasoning and Gray and Tall's (1994) theory of proceptual thinking were used as theoretical frameworks. Vygotsky's theory was also employed for a broader understanding of the study's results (Säljö, 2020). The study identified opportunities for using this approach as a method, provided it is adapted and supported appropriately. This can help students develop deeper mathematical insights and improve their reasoning skills. One challenge with this approach was finding a task that is challenging for all students despite differences in their prior knowledge. The method used to collect empirical data was "task-based interviews." Students engaged in mathematical activities and were asked to think aloud to reveal their thought processes. The results showed that although it was challenging to apply Lithner's (2008) framework to younger students, most were able to engage in CMR.
|
Page generated in 0.1095 seconds