Spelling suggestions: "subject:"kohlenstoff"" "subject:"11kohlenstoff""
351 |
Laser Patterned N-doped Carbon: Preparation, Functionalization and Selective Chemical SensorsWang, Huize 03 July 2023 (has links)
Die kürzliche globale COVID-19-Pandemie hat deutlich gezeigt, dass hohe medizinische Kosten eine große Herausforderung für unser Gesundheitssystem darstellen. Daher besteht eine wachsende Nachfrage nach personalisierten tragbaren Geräten zur kontinuierlichen Überwachung des Gesundheitszustands von Menschen durch nicht-invasive Erfassung physiologischer Signale. Diese Dissertation fasst die Forschung zur Laserkarbonisierung als Werkzeug für die Synthese flexibler Gassensoren zusammen und präsentiert die Arbeit in vier Teilen. Der erste Teil stellt ein integriertes zweistufiges Verfahren zur Herstellung von laserstrukturiertem (Stickstoff-dotiertem) Kohlenstoff (LP-NC) ausgehend von molekularen Vorstufen vor. Der zweite Teil demonstriert die Herstellung eines flexiblen Sensors für die Kohlendioxid Erfassung basierend auf der Laserumwandlung einer Adenin-basierten Primärtinte. Die unidirektionale Energieeinwirkung kombiniert mit der tiefenabhängigen Abschwächung des Laserstrahls ergibt eine neuartige geschichtete Sensorheterostruktur mit porösen Transducer- und aktiven Sensorschichten. Dieser auf molekularen Vorläufern basierende Laserkarbonisierungsprozess ermöglicht eine selektive Modifikation der Eigenschaften von gedruckten Kohlenstoffmaterialien. Im dritten Teil wird gezeigt, dass die Imprägnierung von LP-NC mit Molybdäncarbid Nanopartikeln die Ladungsträgerdichte verändert, was wiederum die Empfindlichkeit von LP-NC gegenüber gasförmigen Analyten erhöht. Der letzte Teil erläutert, dass die Leitfähigkeit und die Oberflächeneigenschaften von LP-NC verändert werden können, indem der Originaltinte unterschiedliche Konzentrationen von Zinknitrat zugesetzt werden, um die selektiven Elemente des Sensormaterials zu verändern. Basierend auf diesen Faktoren zeigte die hergestellte LP-NC-basierte Sensorplattform in dieser Studie eine hohe Empfindlichkeit und Selektivität für verschiedene flüchtige organische Verbindungen. / The recent global COVID-19 pandemic clearly displayed that the high costs of medical care on top of an aging population bring great challenges to our health systems. As a result, the demand for personalized wearable devices to continuously monitor the health status of individuals by non-invasive detection of physiological signals, thereby providing sufficient information for health monitoring and even preliminary medical diagnosis, is growing. This dissertation summarizes my research on laser-carbonization as a tool for the synthesis of functional materials for flexible gas sensors. The whole work is divided into four parts. The first part presents an integrated two-step approach starting from molecular precursor to prepare laser-patterned (nitrogen-doped) carbon (LP-NC). The second part shows the fabrication of a flexible LP-NC sensor architecture for room-temperature sensing of carbon dioxide via laser conversion of an adenine-based primary ink. By the unidirectional energy impact in conjunction with depth-dependent attenuation of the laser beam, a novel layered sensor heterostructure with a porous transducer and an active sensor layer is formed. This molecular precursor-based laser carbonization method enables the modification of printed carbon materials. In the third part, it is shown that impregnation of LP-NC with molybdenum carbide nanoparticle alters the charge carrier density, which, in turn, increases the sensitivity of LP-NC towards gaseous analytes. The last part explains that the electrical conductivity and surface properties of LP-NC can be modified by adding different concentrations of zinc nitrate into the primary ink to add selectivity elements to the sensor materials. Based on these factors, the LP-NC-based sensor platforms prepared in this study exhibited high sensitivity and selectivity for different volatile organic compounds.
|
352 |
Development of Carbon Nanotube-based Field-Effect Transistors for Analog High-Frequency ApplicationsHartmann, Martin 04 January 2023 (has links)
The carbon nanotube-based field effect transistor (CNTFET) possesses the potential to overcome limitations of state-of-the-art technologies such as silicon-based complementary metal-oxide-semiconductors. However, the carbon nanotube (CNT) technology is still at its infancy and technology development is still necessary to exploit the CNT properties such as high charge carrier mobility, high current carrying capability, one-dimensional charge transport and their versatile integrability.
Within this work significant progress has been achieved scientifically and technologically in the advance of high frequency (HF) CNTFETs for analog applications. According to simulations by others, a technology flow has been developed based on electron beam lithography for bottom gated HF CNTFETs which outperform state-of the art top gate architectures with respect to their parasitic capacitances.
Moreover, the impact of electrostatic doping on the CNTFETs has been investigated. In particular, the dynamics of water desorption from the CNTFETs and the related reduction of p-type doping was investigated and the different impact of the n-type dopant polyethylenimine onto the channel region and contact region could be separated for the first time. Furthermore, the impact of doped CNT bundles on the device performance has been studied. It could be shown in detail for the first time, that high off-state source-drain leakage currents can be due to bundled semiconducting CNTs and does not necessarily imply the presence of metallic CNTs. The within the framework of this thesis designed and realized HF CNTFETs are operating in the GHz range with cut-off frequencies up to 14 GHz and maximum frequencies of oscillation up to 6 GHz at a channel length of 280 nm. Moreover, the impact of the spacer between the source-/ drain- to the gate electrode on the HF properties of the CNTFETs has been investigated experimentally for the first time. Simulations by others have successfully confirmed that a symmetrical reduction of the source to gate electrode spacer results in an increased device speed. By asymmetrically reducing the source to gate electrode spacer and in parallel increasing the drain-to-gate electrode spacer the device speed can be further enhanced. Moreover, within this work it has been experimentally indicated for the first time that the device properties of HF CNTFETs can be tuned by different device geometries towards either highest linearity or speed.
|
353 |
Emerging Internet of Things driven carbon nanotubes-based devicesZhang, Shu, Pang, Jinbo, Li, Yufen, Yang, Feng, Gemming, Thomas, Wang, Kai, Wang, Xiao, Peng, Songang, Liu, Xiaoyan, Chang, Bin, Liu, Hong, Zhou, Weijia, Cuniberti, Gianaurelio, Rümmeli, Mark H. 22 April 2024 (has links)
Carbon nanotubes (CNTs) have attracted great attentions in the field of electronics, sensors, healthcare, and energy conversion. Such emerging applications have driven the carbon nanotube research in a rapid fashion. Indeed, the structure control over CNTs has inspired an intensive research vortex due to the high promises in electronic and optical device applications. Here, this in-depth review is anticipated to provide insights into the controllable synthesis and applications of high-quality CNTs. First, the general synthesis and post-purification of CNTs are briefly discussed. Then, the state-of-the-art electronic device applications are discussed, including field-effect transistors, gas sensors, DNA biosensors, and pressure gauges. Besides, the optical sensors are delivered based on the photoluminescence. In addition, energy applications of CNTs are discussed such as thermoelectric energy generators. Eventually, future opportunities are proposed for the Internet of Things (IoT) oriented sensors, data processing, and artificial intelligence
|
354 |
Beitrag zur Entwicklung neuartiger hybrider Werkstoffverbunde auf Polymer/Keramik-BasisTodt, Andreas 08 September 2017 (has links)
Kohlenstofffaserverstärkter Kohlenstoff weist ausgezeichnete thermische, mechanische und chemische Eigenschaften auf. Aufgrund seiner Faserarchitektur und Porosität zeigt dieser eine mit metallischen und polymeren Werkstoffen vergleichbar hohe Schadenstoleranz. Die Herstellung komplexer Leichtbaustrukturen aus C/C-Verbunden ist jedoch zeit- und kostenintensiv. Ein neuer Ansatz stellt die Integration geometrisch simpler C/C-Verbunde in komplexe, problemlos zu realisierende polymere Strukturen dar. Ein derartiges Werkstoffkonzept vereint die Vorteile seiner Komponenten in einem ganzheitlichen Werkstoffsystem. Einen Nachteil stellt jedoch die geringe wechselseitige Adhäsion seiner Komponenten dar. Die Innovation dieses Beitrags stellt sich einerseits der Herausforderung die mechanischen Eigenschaften der C/C-Verbunde in Abhängigkeit der intrinsischen Porosität zu beeinflussen. Dies geschieht durch Veränderung der chemischen und physikalischen Vernetzungsbedingungen des Matrixprecursors. Andererseits soll die dadurch herrührende inhärente Porosität zur Vergrößerung der wirksamen äußeren Oberfläche und zur gezielten Verbesserung der Adhäsion zum Polymer führen. Es wird ein Kohlenstoffprecursor mit variabler offener
Porosität entwickelt und daraus neuartige verschiedenporöse C/C-Verbunde hergestellt und untersucht. Im Anschluss werden die verschiedenporösen C/C-Verbunde mit ausgewählten Polymeren unter definierten Konsolidierungsparametern thermisch gefügt und deren wechselseitiges Adhäsionsverhalten bewertet.:ABKÜRZUNGEN UND FORMELZEICHEN I
ABBILDUNGSVERZEICHNIS VI
TABELLENVERZEICHNIS XI
I EINLEITUNG UND MOTIVATION 1
II STAND DER TECHNIK 3
II 1 Hybride Polymer/Keramik - Werkstoffverbunde 3
II 1.1 Grundlagen zur Adhäsion 3
II 1.1.1 Adhäsionsmodelle 3
II 1.1.2 Keramik/Polymer-Grenzflächentypen 7
II 1.2 Konstruktionsprinzipien 8
II 1.2.1 Differentialbauweise 8
II 1.2.2 Integralbauweise 8
II 1.2.3 Mischbauweise 8
II 1.2.4 Hybridbauweise (hybride Werkstoffverbunde) 8
II 1.3 Fertigungsverfahren 9
II 1.3.1 Klassifizierung 10
II 1.3.2 In-situ-Fügetechnik (In-Mould Assembly) 11
II 1.3.3 Ex-situ-Fügetechnik (Post-Mould Assembly) 11
II 1.4 Aspekte zur Interfaceoptimierung 12
II 1.5 Versagensverhalten von einfachen hybriden Werkstoffverbunden 13
II 1.6 Fazit zu hybriden Polymer/Keramik - Werkstoffverbunden 14
II 2 Grundlagen zu Keramik/Matrix-Verbundwerkstoffen 15
II 2.1 Grundlagen zur Verstärkung keramischer Werkstoffe 15
II 2.1.1 Einteilung keramischer Werkstoffen 15
II 2.1.2 Versagensverhalten unverstärkter Monolithkeramik 15
II 2.1.3 Verstärkung keramischer Matrices 19
II 2.1.4 Verstärkungskomponenten und deren Wirkungsweise 20
II 2.2 Klassifizierung faserverstärkter Keramik/Matrix Verbundwerkstoffe 25
II 2.2.1 Weak Interface Composite – CMCs (WIC-CMC) 25
II 2.2.2 Weak Matrix Composite – CMCs (WMC-CMC) 25
II 2.3 Rissfortschrittsverhalten in faserverstärkten CMCs 26
II 2.3.1 Rissablenkung an der F/M-Grenzfläche 27
II 2.3.2 Rissausbreitung und sukzessives Versagen der Faser/Matrix-Domänen 28
II 2.3.3 Rissabschirmung und -ablenkung in porösen Matrices 28
II 2.4 Versagensverhalten faserverstärkter CMCs 29
II 2.4.1 Lastübertragungsverhalten an Faser/Matrix-Grenzflächen 29
II 2.4.2 Mikromechanisches Versagensverhalten 30
II 2.4.3 Makromechanisches Versagensverhalten 31
II 2.5 Fazit zu Keramik/Matrix-Verbundwerkstoffen 34
II 3 Kohlenstofffaserverstärkter Kohlenstoff 35
II 3.1 Kohlenstofffaserbasierte Verstärkungskomponenten 35
II 3.1.1 Kohlenstofffasern 35
II 3.1.2 Textile Flächengebilde 39
II 3.2 Kohlenstoffmatrix-bildende Precursoren und Verfahren 40
II 3.2.1 Allgemeine Verfahrensweisen 40
II 3.2.2 Grundlagen zu Phenolharzen 41
II 3.2.3 Polymerpyrolyse 46
II 3.2.4 Intrinsische Entwicklung der Porosität 49
II 3.3 Herstellung von PF-Novolak-basierten C/C-Verbunden 50
II 3.3.1 Herstellung der CFK- Produktzwischenstufe 50
II 3.3.2 Herstellung der C/C-Produktendstufe 51
II 4 Fazit zu kohlenstofffaserverstärktem Kohlenstoff 53
II 5 Thermoplastische Kunststoffe 54
II 5.1 Synthese 54
II 5.2 Klassifizierung von Polymeren 54
II 5.3 Thermoplastisches Ethylen-Vinylacetat (EVA) 55
II 5.4 Verarbeitung mittels Thermoplast-Spritzgießen 56
II 5.5 Mechanisches Verhalten 57
II 5.6 Fazit zu thermoplastischen Kunststoffen 58
II 6 Folgerungen und Zielsetzung 59
III EXPERIMENTELLER TEIL 61
III 1 Methodische Vorgehensweise 61
III 2 Versuchsbeschreibung und –durchführung 63
III 2.1 Charakterisierende Verfahren 63
III 2.1.1 Prozessbegleitende Untersuchungen 63
III 2.1.2 Dynamische Differenz-Kalorimetrie und Thermogravimetrie 64
III 2.1.3 ATR Spektroskopie 65
III 2.1.4 Röntgendiffraktometrie (XRD) 66
III 2.1.5 Raman Spektroskopie 67
III 2.1.6 Gefüge- und Phasenanalyse 68
III 2.1.7 Oberflächenanalyse der C/C-Verbunde 68
III 2.1.8 3-Punkt-Biegeprüfung 69
III 2.1.9 Haftabzugversuch 70
III 2.2 Entwicklung und Untersuchung des Matrixprecursors 71
III 2.2.1 Validierung des Matrixprecursors 71
III 2.2.2 Komposition der Harz / Härter-Gemische 71
III 2.2.3 Vernetzungsverhalten der Vorkondensate 72
III 2.2.4 Kohlenstoffausbeute der Resite 73
III 2.2.5 Phasengenese des generierten Matrixkohlenstoffs 74
III 2.2.6 Mikrostrukturentwicklung der Resite und Matrixkohlenstoffe 75
III 2.3 Entwicklung und Untersuchung der CFK-Produktzwischenstufe 76
III 2.3.1 Beschreibung zur Herstellung 76
III 2.3.2 Gefüge- und Phasenanalyse 78
III 2.3.3 Untersuchungen zum mechanischen Verhalten 78
III 2.4 Entwicklung und Untersuchung der C/C-Produktendstufe 79
III 2.4.1 Beschreibung zur Herstellung 79
III 2.4.2 Gefüge- und Phasenanalyse 80
III 2.4.3 Untersuchungen zum mechanischen Verhalten 80
III 2.5 Entwicklung und Untersuchung hybrider EVA/(C/C)-Werkstoffverbunde 81
III 2.5.1 Herstellung der C/C-Verbundwerkstoffkomponenten 81
III 2.5.2 Untersuchung der Oberflächenmorphologien der porösen C/C-Verbunde 81
III 2.5.3 Herstellung der hybriden EVA/(C/C)-Werkstoffverbunde 82
III 2.5.4 Gefüge und Phasenanalyse am hybriden Interface 84
III 2.5.5 Untersuchungen zum mechanischen Verhalten 84
III 3 Ergebnisse 85
III 3.1 Untersuchung des Matrixprecursors 85
III 3.1.1 Validierung des Matrixprecursors 85
III 3.1.2 Vernetzungsverhalten der Vorkondensate 85
III 3.1.3 Kohlenstoffausbeute der Resite 91
III 3.1.4 Phasengenese des generierten Matrixkohlenstoffs 92
III 3.1.5 Porositätsentwicklung der Resite und Matrixkohlenstoffe 94
III 3.2 Mikrostrukturentwicklung der Verbundwerkstoffe 98
III 3.2.1 Gefüge- und Phasenanalyse der CFK-Verbunde 98
III 3.2.2 Gefüge- und Phasenanalyse der C/C-Verbunde 103
III 3.3 Untersuchung der Faser/Matrix-Adhäsion 107
III 3.3.1 Einflüsse auf die Faser/Matrix-Adhäsion der CFK-Verbunde 107
III 3.3.2 Einflüsse auf die Faser/Matrix-Adhäsion der C/C-Verbunde 109
III 3.4 Mechanisches Verhalten der Verbundwerkstoffe 110
III 3.4.1 3-Punkt-Biegefestigkeiten der Verbunde bei einem Härtedruck von 15 bar 110
III 3.4.2 3-Punkt-Biegefestigkeiten der Verbunde bei einem Härtedruck von 60 bar 111
III 3.5 Untersuchung der hybriden EVA/(C/C)-Werkstoffverbunde 113
III 3.5.1 Entwicklung der Oberflächenmorphologie ausgewählter C/C-Verbunde 113
III 3.5.2 Mikrostrukturelles Adhäsionsverhalten am hybriden Interface 115
III 3.5.3 Mechanisches Adhäsionsverhalten am hybriden Interface 117
III 4 Diskussion der Ergebnisse 119
III 4.1 Vernetzungsverhalten der Resite 119
III 4.1.1 Netzwerkgenese der Vorkondensate und Degradation des Härters 119
III 4.1.2 Einfluss des Härtermassenanteils auf das Vernetzungsverhalten der Resite 121
III 4.1.3 Zur Phasengenese der generierten Matrixkohlenstoffe 122
III 4.1.4 Fazit zum Vernetzungsverhalten der Resite 122
III 4.2 Ausbildung der Porenmorphologie 124
III 4.2.1 Porenmorphologie der Resite 124
III 4.2.2 Porenmorphologie der Matrixkohlenstoffe 126
III 4.2.3 Fazit zur Ausbildung der Porenmorphologie 127
III 4.3 Mikrostrukturentwicklung der Verbundwerkstoffe 128
III 4.3.1 Mikrostrukturentwicklung der CFK-Produktzwischenstufe 128
III 4.3.2 Mikrostrukturentwicklung der C/C-Produktendstufe 128
III 4.3.3 Porositätsentwicklung der CFK- und C/C-Verbunde 129
III 4.3.4 Fazit zur Mikrostrukturentwicklung der Verbundwerkstoffe 130
III 4.4 Mechanisches Verhalten der Verbundwerkstoffe 131
III 4.4.1 Einfluss der Härtermassenanteils 131
III 4.4.2 Einfluss des Härtedrucks 131
III 4.4.3 Einfluss des Temperns 131
III 4.4.4 Einfluss des Pyrolyseschrumpfes 131
III 4.4.5 Fazit zum mechanischen Verhalten der Verbundwerkstoffe 132
III 4.5 Hybride EVA/(C/C)-Werkstoffverbunde 133
III 4.5.1 Entwicklung der Oberflächenmorphologie ausgewählter C/C-Verbunde 133
III 4.5.2 Mikrostrukturelles Adhäsionsverhalten am hybriden Interface 133
III 4.5.3 Mechanisches Adhäsionsverhalten am hybriden Interface 134
III 4.5.4 Fazit zur Realisierung der hybriden Werkstoffverbunde 134
IV SCHLUSSFOLGERUNGEN 135
V ZUSAMMENFASSUNG UND AUSBLICK 139
VI LITERATURQUELLEN 140
ANLAGEN / Fibre-reinforced ceramic matrix composite materials are characterized by excellent thermal, mechanical and chemical properties. Their high tolerance regarding damaging is a result of the intrinsic fibre structure and porosity. Due to this fact, they offer outstanding dampening characteristics, as is the case for polymeric materials. The production of complex structures is very time consuming and expensive. The integration of simple geometric ceramic composite materials in complex polymeric structures is regarded as a new approach for the production of these materials. These easy-to-produce hybrid ceramic/polymer compound materials combine the advantages of ceramics and polymers in one material system. However, one main disadvantage of these materials is the mutual adhesion of the two components. This article deals with the challenge of the manipulation of the mechanical properties of the C/C composites depending on the intrinsic porosity. This is realized by altering the physical and chemical wetting/coating conditions of the matrix precursor. In addition, the inherent porosity is supposed to increase the effective outer surface and specifically improve the adhesion. For this purpose, a novel carbon precursor with an adjustable open porosity is developed and investigated further. During this different versions of the CFRP and various C/C materials of different production steps are produced and examined. The variation of the precursors is supposed to take place in the polymeric state. The different C/C composites are subsequently thermally bonded with selected polymers and defined consolidation parameters. The mutual joining and connection behaviour is investigated further.:ABKÜRZUNGEN UND FORMELZEICHEN I
ABBILDUNGSVERZEICHNIS VI
TABELLENVERZEICHNIS XI
I EINLEITUNG UND MOTIVATION 1
II STAND DER TECHNIK 3
II 1 Hybride Polymer/Keramik - Werkstoffverbunde 3
II 1.1 Grundlagen zur Adhäsion 3
II 1.1.1 Adhäsionsmodelle 3
II 1.1.2 Keramik/Polymer-Grenzflächentypen 7
II 1.2 Konstruktionsprinzipien 8
II 1.2.1 Differentialbauweise 8
II 1.2.2 Integralbauweise 8
II 1.2.3 Mischbauweise 8
II 1.2.4 Hybridbauweise (hybride Werkstoffverbunde) 8
II 1.3 Fertigungsverfahren 9
II 1.3.1 Klassifizierung 10
II 1.3.2 In-situ-Fügetechnik (In-Mould Assembly) 11
II 1.3.3 Ex-situ-Fügetechnik (Post-Mould Assembly) 11
II 1.4 Aspekte zur Interfaceoptimierung 12
II 1.5 Versagensverhalten von einfachen hybriden Werkstoffverbunden 13
II 1.6 Fazit zu hybriden Polymer/Keramik - Werkstoffverbunden 14
II 2 Grundlagen zu Keramik/Matrix-Verbundwerkstoffen 15
II 2.1 Grundlagen zur Verstärkung keramischer Werkstoffe 15
II 2.1.1 Einteilung keramischer Werkstoffen 15
II 2.1.2 Versagensverhalten unverstärkter Monolithkeramik 15
II 2.1.3 Verstärkung keramischer Matrices 19
II 2.1.4 Verstärkungskomponenten und deren Wirkungsweise 20
II 2.2 Klassifizierung faserverstärkter Keramik/Matrix Verbundwerkstoffe 25
II 2.2.1 Weak Interface Composite – CMCs (WIC-CMC) 25
II 2.2.2 Weak Matrix Composite – CMCs (WMC-CMC) 25
II 2.3 Rissfortschrittsverhalten in faserverstärkten CMCs 26
II 2.3.1 Rissablenkung an der F/M-Grenzfläche 27
II 2.3.2 Rissausbreitung und sukzessives Versagen der Faser/Matrix-Domänen 28
II 2.3.3 Rissabschirmung und -ablenkung in porösen Matrices 28
II 2.4 Versagensverhalten faserverstärkter CMCs 29
II 2.4.1 Lastübertragungsverhalten an Faser/Matrix-Grenzflächen 29
II 2.4.2 Mikromechanisches Versagensverhalten 30
II 2.4.3 Makromechanisches Versagensverhalten 31
II 2.5 Fazit zu Keramik/Matrix-Verbundwerkstoffen 34
II 3 Kohlenstofffaserverstärkter Kohlenstoff 35
II 3.1 Kohlenstofffaserbasierte Verstärkungskomponenten 35
II 3.1.1 Kohlenstofffasern 35
II 3.1.2 Textile Flächengebilde 39
II 3.2 Kohlenstoffmatrix-bildende Precursoren und Verfahren 40
II 3.2.1 Allgemeine Verfahrensweisen 40
II 3.2.2 Grundlagen zu Phenolharzen 41
II 3.2.3 Polymerpyrolyse 46
II 3.2.4 Intrinsische Entwicklung der Porosität 49
II 3.3 Herstellung von PF-Novolak-basierten C/C-Verbunden 50
II 3.3.1 Herstellung der CFK- Produktzwischenstufe 50
II 3.3.2 Herstellung der C/C-Produktendstufe 51
II 4 Fazit zu kohlenstofffaserverstärktem Kohlenstoff 53
II 5 Thermoplastische Kunststoffe 54
II 5.1 Synthese 54
II 5.2 Klassifizierung von Polymeren 54
II 5.3 Thermoplastisches Ethylen-Vinylacetat (EVA) 55
II 5.4 Verarbeitung mittels Thermoplast-Spritzgießen 56
II 5.5 Mechanisches Verhalten 57
II 5.6 Fazit zu thermoplastischen Kunststoffen 58
II 6 Folgerungen und Zielsetzung 59
III EXPERIMENTELLER TEIL 61
III 1 Methodische Vorgehensweise 61
III 2 Versuchsbeschreibung und –durchführung 63
III 2.1 Charakterisierende Verfahren 63
III 2.1.1 Prozessbegleitende Untersuchungen 63
III 2.1.2 Dynamische Differenz-Kalorimetrie und Thermogravimetrie 64
III 2.1.3 ATR Spektroskopie 65
III 2.1.4 Röntgendiffraktometrie (XRD) 66
III 2.1.5 Raman Spektroskopie 67
III 2.1.6 Gefüge- und Phasenanalyse 68
III 2.1.7 Oberflächenanalyse der C/C-Verbunde 68
III 2.1.8 3-Punkt-Biegeprüfung 69
III 2.1.9 Haftabzugversuch 70
III 2.2 Entwicklung und Untersuchung des Matrixprecursors 71
III 2.2.1 Validierung des Matrixprecursors 71
III 2.2.2 Komposition der Harz / Härter-Gemische 71
III 2.2.3 Vernetzungsverhalten der Vorkondensate 72
III 2.2.4 Kohlenstoffausbeute der Resite 73
III 2.2.5 Phasengenese des generierten Matrixkohlenstoffs 74
III 2.2.6 Mikrostrukturentwicklung der Resite und Matrixkohlenstoffe 75
III 2.3 Entwicklung und Untersuchung der CFK-Produktzwischenstufe 76
III 2.3.1 Beschreibung zur Herstellung 76
III 2.3.2 Gefüge- und Phasenanalyse 78
III 2.3.3 Untersuchungen zum mechanischen Verhalten 78
III 2.4 Entwicklung und Untersuchung der C/C-Produktendstufe 79
III 2.4.1 Beschreibung zur Herstellung 79
III 2.4.2 Gefüge- und Phasenanalyse 80
III 2.4.3 Untersuchungen zum mechanischen Verhalten 80
III 2.5 Entwicklung und Untersuchung hybrider EVA/(C/C)-Werkstoffverbunde 81
III 2.5.1 Herstellung der C/C-Verbundwerkstoffkomponenten 81
III 2.5.2 Untersuchung der Oberflächenmorphologien der porösen C/C-Verbunde 81
III 2.5.3 Herstellung der hybriden EVA/(C/C)-Werkstoffverbunde 82
III 2.5.4 Gefüge und Phasenanalyse am hybriden Interface 84
III 2.5.5 Untersuchungen zum mechanischen Verhalten 84
III 3 Ergebnisse 85
III 3.1 Untersuchung des Matrixprecursors 85
III 3.1.1 Validierung des Matrixprecursors 85
III 3.1.2 Vernetzungsverhalten der Vorkondensate 85
III 3.1.3 Kohlenstoffausbeute der Resite 91
III 3.1.4 Phasengenese des generierten Matrixkohlenstoffs 92
III 3.1.5 Porositätsentwicklung der Resite und Matrixkohlenstoffe 94
III 3.2 Mikrostrukturentwicklung der Verbundwerkstoffe 98
III 3.2.1 Gefüge- und Phasenanalyse der CFK-Verbunde 98
III 3.2.2 Gefüge- und Phasenanalyse der C/C-Verbunde 103
III 3.3 Untersuchung der Faser/Matrix-Adhäsion 107
III 3.3.1 Einflüsse auf die Faser/Matrix-Adhäsion der CFK-Verbunde 107
III 3.3.2 Einflüsse auf die Faser/Matrix-Adhäsion der C/C-Verbunde 109
III 3.4 Mechanisches Verhalten der Verbundwerkstoffe 110
III 3.4.1 3-Punkt-Biegefestigkeiten der Verbunde bei einem Härtedruck von 15 bar 110
III 3.4.2 3-Punkt-Biegefestigkeiten der Verbunde bei einem Härtedruck von 60 bar 111
III 3.5 Untersuchung der hybriden EVA/(C/C)-Werkstoffverbunde 113
III 3.5.1 Entwicklung der Oberflächenmorphologie ausgewählter C/C-Verbunde 113
III 3.5.2 Mikrostrukturelles Adhäsionsverhalten am hybriden Interface 115
III 3.5.3 Mechanisches Adhäsionsverhalten am hybriden Interface 117
III 4 Diskussion der Ergebnisse 119
III 4.1 Vernetzungsverhalten der Resite 119
III 4.1.1 Netzwerkgenese der Vorkondensate und Degradation des Härters 119
III 4.1.2 Einfluss des Härtermassenanteils auf das Vernetzungsverhalten der Resite 121
III 4.1.3 Zur Phasengenese der generierten Matrixkohlenstoffe 122
III 4.1.4 Fazit zum Vernetzungsverhalten der Resite 122
III 4.2 Ausbildung der Porenmorphologie 124
III 4.2.1 Porenmorphologie der Resite 124
III 4.2.2 Porenmorphologie der Matrixkohlenstoffe 126
III 4.2.3 Fazit zur Ausbildung der Porenmorphologie 127
III 4.3 Mikrostrukturentwicklung der Verbundwerkstoffe 128
III 4.3.1 Mikrostrukturentwicklung der CFK-Produktzwischenstufe 128
III 4.3.2 Mikrostrukturentwicklung der C/C-Produktendstufe 128
III 4.3.3 Porositätsentwicklung der CFK- und C/C-Verbunde 129
III 4.3.4 Fazit zur Mikrostrukturentwicklung der Verbundwerkstoffe 130
III 4.4 Mechanisches Verhalten der Verbundwerkstoffe 131
III 4.4.1 Einfluss der Härtermassenanteils 131
III 4.4.2 Einfluss des Härtedrucks 131
III 4.4.3 Einfluss des Temperns 131
III 4.4.4 Einfluss des Pyrolyseschrumpfes 131
III 4.4.5 Fazit zum mechanischen Verhalten der Verbundwerkstoffe 132
III 4.5 Hybride EVA/(C/C)-Werkstoffverbunde 133
III 4.5.1 Entwicklung der Oberflächenmorphologie ausgewählter C/C-Verbunde 133
III 4.5.2 Mikrostrukturelles Adhäsionsverhalten am hybriden Interface 133
III 4.5.3 Mechanisches Adhäsionsverhalten am hybriden Interface 134
III 4.5.4 Fazit zur Realisierung der hybriden Werkstoffverbunde 134
IV SCHLUSSFOLGERUNGEN 135
V ZUSAMMENFASSUNG UND AUSBLICK 139
VI LITERATURQUELLEN 140
ANLAGEN
|
355 |
Direkter Drucksensor unter Verwendung von Kohlenstoffnanoröhren-Nanokompositen / Direct pressure sensor using carbon nanotubes nanocompositeDinh, Nghia Trong 08 July 2016 (has links) (PDF)
Im Gegensatz zu herkömmlichen Dehnungsmessstreifen können Carbon nanotube (CNT)-basierte Komposite zusätzlich eine ausgeprägte Druck-abhängigkeit des Widerstandes aufweisen. Deshalb können Drucksensoren aus CNT-Nanokomposite ohne den Einsatz von Verformungskörpern wie z. B. Biegebalken aufgebaut werden. Die möglichen Anwendungsgebiete für diese direkt messenden Sensoren wurden in der vorliegenden Arbeit bei drei industriellen Anwendungen wie z. B. bei Robotergreifarmen gezeigt. Die Zielstellung dieser Arbeit ist die Entwicklung und Charakterisierung eines neuartigen Sensors aus CNT-Nanokomposite. Unter Verwendung von Multi-walled carbon nanotube (MWCNT)-Epoxidharz und interdigitalen Elektroden soll der Sensor auf wenigen Quadratzentimetern Drücke im Megapascal-Bereich und somit Kräfte im Kilonewton-Bereich messen können. Durch die Auswahl geeigneter Werkstoffe und die Modellierung mit der Finite Element Methode wurde der Sensorentwurf durchgeführt sowie der Messbereich abgeschätzt. Die Herstellung der MWCNT-Epoxidharz-Dispersion erfolgte durch mechanische Mischverfahren. Anschließend wurden aus der Dispersion druckempfindliche Schichten mit der Schablonendrucktechnik hergestellt. Dabei wurden die Herstellungs-parameter und besonders der Füllstoffgehalt der MWCNTs variiert, um deren Einflüsse auf das mechanische, thermische und elektrische Verhalten zu untersuchen.
Die Charakterisierung der mechanischen Kenngrößen erfolgte mit Zugversuchen und dynamisch-mechanischer Analyse. In den Untersuchungen zeigen die MWCNT-Komposite eine signifikante Steigerung der Zugfestigkeit und eine Erhöhung der Glasübergangstemperatur gegenüber reinem Epoxidharz. Die Abhängigkeiten der Druckempfindlichkeit und der Temperaturempfindlichkeit vom Füllstoffgehalt wurden untersucht. Eine besonders hohe Druckempfindlichkeit, aber auch Temperaturempfind-lichkeit wurde bei Proben mit geringem Füllstoffgehalt (1 wt% und 1,25 wt%) festgestellt. Es ist also wichtig, die richtige Materialkombination für diese Art Sensor zu finden. Die realisierten Sensoren liefern zuverlässige Antwortsignale bei wiederholten Belastungen bis zu einer Belastung von 20 MPa (entspricht 2 kN). Zusätzlich wurde der Temperatureinfluss in einem Bereich von −20 °C bis 50 °C durch eine Wheatstonesche Brückenschaltung kompensiert. Die vorliegende Arbeit zeigt, dass eine zuverlässige Druckmessung mit einer Temperaturmessabweichung von 0,214 MPa/10 K gewährleistet werden kann. / In contrast to conventional metallic strain gauges, carbon nanotube (CNT) composites have an additional pressure sensitivity. Therefore, deformation elements such as bending beam is not needed by using pressure sensors, which are based on CNT nanocomposite. The possible areas of application for these pressure direct measured sensors were showed in three industrial application such as robot gripper. The focus of this work is the development and characterization of a new sensor manufactured from CNT nanocomposite. By using multi-walled carbon nanotube (MWCNT) epoxy and interdigital electrodes the sensor, which has a dimension of few square centimetre, should measure a pressure in mega Pascal range and hence a force in kilo newton range. By the selection of suitable materials and the modelling using finite element method, the sensor design as well as the measurement range were carried out. The MWCNT epoxy dispersion is manufactured by using a mechanical mixing process. Subsequent, the dispersion is used to fabricate pressure sensitive layers by stencil printing methods. Thereby, the fabrication parameters and especially the filler content of the MWCNTs were varied for the mechanical, thermal and electrical investigation.
The characterization of the mechanical characteristic values were carried out by using tensile test and dynamic mechanical analysis. The results show a significant increasing of the tensile strength and glass transition temperature in comparison to neat epoxy. Additionally, the influence of the filler content to the pressure and thermal sensitivity were investigated. A highly pressure sensitivity but also a highly thermal sensitivity are obtained for samples with lower filler contents (1 wt% and 1.25 wt%). Therefore, a suitable material combination has to be chosen. The fabricated sensors show reliable response signals by repeated excitations up to 20 MPa (meets to 2 KN). Moreover, the temperature influence ranged from -20 °C to 50 °C was compensated with a Wheatstone bridge. This work demonstrate a direct pressure sensitive sensor with reliable response signals by a thermal deviation of 0.214 MPa/10K.
|
356 |
Persistence of exogenous organic carbon in soil as a cultivation propertyMewes, Paul 14 August 2017 (has links)
Eine biochemische Indikation des Anteils exogener organischer Kohlenstoffquellen (EOC), der nach dem Eintrag potenziell im Boden verbleibt (Cpot) wurde entwickelt. Haupthypothese dieser Studie war, dass der Abbau von EOC durch die biochemische Zusammensetzung vorhergesagt werden kann, welche bei Pflanzenrückständen von der Kulturart, dem Pflanzenrückstandstyp sowie dem Anbausystem und im Allgemeinen vom Ausgangssubstrat organischer Düngestoffe und der EOC-Kategorie (pyrogen , mikrobiell und pflanzlich) beeinflusst wird. Zunächst wurden Pflanzenrückstände im Energiepflanzenanbau zur Biogasgewinnung (Restpflanze / Stroh, Stoppeln, Grobwurzeln, Feinwurzeln, natürlicher Bestandsabfall) von Mais, Sorghum, Sudangras, Wintergetreide, Hafer, Erbse in Einzel-, Zwei- und Mischkultursystemen betrachtet. In einem zweiten Schritt wurden Pflanzenrückstände im Allgemeinen mit organischen Düngern, Komposten, Rückständen aus anaerober Vergärung in der Biogasproduktion (Gärrückstände) und Biokohlen verglichen. Die biochemische Zusammensetzung von EOC wurde durch die Konzentrationen von Kohlenstoff- (C), Stickstoff (N), wasserlöslicher Kohlehydrate (WSC), Hemizellulose (HEM), Zellulose (CEL) und Lignin (LIC) in g pro kg Trockenmasse dargestellt. In Inkubationsversuchen wurde EOC gleichmäßig mit Boden vermischt und über 310 Tage die Zugabe-induzierte Kohlendioxid-Freisetzung gemessen. Cpot wurde als Grenzwert der Modellschätzung für die Inkubationsdaten bestimmt. Die Beziehung zwischen biochemischer Zusammensetzung und Cpot wurde durch die Partial-Least-Squares-Regression-Methode abgeleitet. Cpot unterschied sich stärker zwischen verschiedenen organischen Düngestoffen, als speziell zwischen verschiedenen Pflanzenrückständen und konnte durch die biochemische Zusammensetzung vorhergesagt werden. Der Indikator für Cpot (in g C pro kg EOC) wurde als Ipot = 269 + 13 N – 0.5 WSC + 0.7 CEL + 1.5 LIC für Pflanzenrückstände und im Allgemeinen als Ipot = 924 – 1.9 C + 2.0 LIC vorgeschlagen. / A biochemical indication for the fraction of exogenous organic carbon (EOC), potentially remaining in soil after application (Cpot) has been developed. Main hypothesis of this study was that decomposition of EOC can be predicted by the biochemical composition, which in case of plant residues is influenced by the crop residue type, crop species and agricultural management and in general depends on the original substrate and category (pyrogen, microbial, and plant-derived EOC) of organic materials. A first set of EOC was created, containing plant residues in energy crop cultivation for biogas production (shoot / straw, stubble, coarse root, fine root, and litter) of maize, sorghum, sudan grass, winter cereal, pea, and oats in single-, double- and intercropping systems. In a second set of EOC, plant residues in general were compared with other organic fertilisers, urban composts, residues of anaerobic fermentation in biogas production (digestates), and biochar. The biochemical composition of EOC was characterised by the concentrations of carbon (C), nitrogen (N), water-soluble carbohydrates (WSC), hemicelluloses (HEM), cellulose (CEL), and lignin (LIC) in g per kg dry matter. In incubation experiments, EOC was homogeneously incorporated into soil and EOC-induced carbon dioxide-release was measured for 310 d. Cpot was determined as modelled limit for the incubation results. Finally, the relation between biochemical composition and Cpot of EOC was evaluated by the partial least squares regression method. Cpot largely varied between different types and categories of EOC, while less variation was obtained between different plant residues. The biochemical composition was predictive for Cpot (expressed as g C per kg EOC), proposing the biochemical indicator as Ipot = 269 + 13 N – 0.5 WSC + 0.7 CEL + 1.5 LIC specifically for plant residues and as Ipot = 924 – 1.9 C + 2.0 LIC for EOC in general.
|
357 |
Plant and soil microbial responses to drought stress in different ecosystems: the importance of maintaining the continuumvon Rein, Isabell 31 July 2017 (has links)
Der Klimawandel bedroht Ökosysteme auf der ganzen Welt. Besonders der Anstieg in Länge, Intensität und Häufigkeit von Dürren kann bedeutenden Einfluss auf den globalen Kohlenstoffkreislauf haben. Die Frage, ob Pflanzen und Mikroorganismen anfällig gegenüber ökologischem Stress wie Dürren sind, wurde bereits in vielen Studien für verschiedene Ökosysteme und mit verschiedenen Ansätzen untersucht, aber Analysen von Dürreauswirkungen, die ober- und unterirdische Interaktionen von Pflanzen und Mikroorganismen mit einbeziehen, sind eher selten. Deshalb wird in der vorliegenden Studie die Frage erörtert, wie Trockenheit und/oder Hitze die Interaktionen von Pflanzen und Mikroorganismen in Bezug auf ihre Kohlenstoff-Verbindung beeinflussen. Dies dient zur Bestimmung der Stärke der Pflanze-Mikroorganismen-Kohlenstoff-Verbindung, wenn das Ökosystem an seine Grenzen gebracht wird.
Der Fokus liegt deshalb auf durch Trockenstress und Hitze hervorgerufenen Veränderungen in der ober-unterirdischen Kohlenstoff-Dynamik in zwei vom Klimawandel bedrohten Ökosystemen. Es wurde untersucht, wie extreme Klimaereignisse, deren Häufigkeit in Zukunft weiter ansteigen soll, die Kohlenstoff-Verbindung zwischen Pflanzen und Mikroorganismen beeinflusst und wie mikrobielle Gemeinschaften unter diesen Umständen reagieren, um die Resistenz und Reaktionsmechanismen von Ökosystemen im zukünftigen Klimawandel besser vorhersagen zu können.
In Kapitel 4 wurde ein Buchenwaldunterholz-Ökosystem untersucht. Buchenwaldmonolithen wurden einem extremen Klimaereignis (Trockenheit und/oder Hitze) ausgesetzt. Die Stärke der Pflanze-Mikroorganismen-Kohlenstoff-Verbindung und Veränderungen in der mikrobiellen Gemeinschaftsstruktur und -aktivität wurden mithilfe von stabilen 13C Isotopenmethoden und Ansätzen auf molekularer Basis, wie 16S rRNA- und Phospholipid-Analysen, bestimmt. In Kapitel 5 wurde ein kleines aquatisches Ökosystems untersucht. Zwei emerse aquatische Makrophyten, Phragmites australis und Typha latifolia, wurden in einem Mesokosmos-Experiment mit Sediment aus einem Soll einer einmonatigen Dürre ausgesetzt. Mithilfe einer 13CO2 Pulsmarkierung, sowie PLFA- und nicht-strukturbildenden Kohlenhydrat-Analysen wurde Kohlenstoff von den Blättern in die Wurzeln bis ins Sediment verfolgt, wo er teilweise in mikrobielle Phospholipide eingebaut wird.
Diese Studie hat gezeigt, dass die zwei untersuchten Ökosysteme Trockenstress und Hitze relativ gut widerstehen können, zumindest kurzfristig, und dass das Kohlenstoff-Kontinuum, beziehungsweise die Verbindung zwischen ober- und unterirdischen Gemeinschaften, auch unter starkem Stress intakt bleibt. Zusammenfassend scheint es, dass Ökosysteme stark von einem funktionierenden Pflanze-Boden/Sediment-Mikroorganismen Kohlenstoff-Kontinuum abhängen und versuchen, es auch unter starkem Stress zu erhalten, was möglicherweise dazu beiträgt, dem Anstieg von extremen Dürreperioden aufgrund des Klimawandels besser zu widerstehen. / Climate change is threatening ecosystems around the world. Especially the increase in duration, intensity, and frequency of droughts can have a considerable impact on the global carbon cycle. The question whether plants and microbes are susceptible to environmental stress like drought has been assessed in many studies for different ecosystem types and by using numerous approaches, but research on drought effects that includes above- and belowground interactions is rather scarce. Therefore, the present study assesses the question of how drought and/or heat influence the interactions of plants and microbes, especially the carbon coupling, in order to determine the strength of plant-microbe carbon linkages when an ecosystem is pushed to its limits.
The focus of this study thus lies on changes in aboveground-belowground carbon dynamics and the subsequent effects on the soil microbial community under drought and/or heat stress in two climate-threatened ecosystems. It was evaluated how extreme climate events, that are predicted to be more frequent in the near future, affect the carbon coupling between plants and microorganisms and how microbial communities respond under these circumstances, in order to be able to better predict ecosystem resistance and response mechanisms under future climate change.
In chapter 4 a beech forest understory ecosystem was investigated. An extreme climate event (drought and/or heat) was imposed on beech forest monoliths and the strength of the plant-microbe carbon linkages and changes in the microbial community structure and activity were determined by using stable 13C isotope techniques and molecular-based approaches like 16S rRNA and microbial phospholipid-derived fatty acid (PLFA) analysis. In chapter 5 a small aquatic ecosystems was investigated. Two emergent aquatic macrophytes, Phragmites australis and Typha latifolia, were grown on kettle hole sediment and then exposed to a month-long summer drought in a mesocosm experiment. By conducting a 13CO2 pulse labeling as well as PLFA and non-structural carbohydrate analyses, the fate of carbon was traced from the plant leaves to the roots and into the sediment, where some of the recently assimilated carbon is incorporated into microbial PLFAs.
Overall, this study showed that the two investigated ecosystems can endure environmental stress like heat and drought relatively well, at least in the short-term, and that the carbon continuum, or the linkage between above- and belowground communities, remained intact even under severe stress. In conclusion, it seems that ecosystems strongly depend on and try to maintain a functional plant-soil/sediment microorganism carbon continuum under drought, which might help to withstand the increase in extreme drought events under future climate change.
|
358 |
Small but powerfulScharroba, Anika 19 May 2017 (has links)
In der vorliegenden Arbeit wurden die Einflüsse der landwirtschaftlichen Nutzung auf die Struktur und Biomasse von Nematoden entlang eines Tiefengradientens und innerhalb zweier Vegetationsperioden an einem Ackerstandort untersucht. Die Freilandanalyse der Nematodengemeinschaft wies auf ein mit Nährstoffen angereichertes und gestörtes Ökosystem, mit einer geringen Diversität, hin. Entlang des Tiefengradienten bildeten die Nematoden Metacommunities, welche Umweltgegebenheiten wie Nahrungsquellen und abiotischen Faktoren widerspiegeln. Signifikant höhere Biomassen wurden unter Weizen im Vergleich zu Mais als Ackerfrucht beobachtet. Die Streuapplikation induzierte einen „bottom-up“ Effekt mit größeren Biomassen in den niedrigen als in den höheren trophischen Stufen. Die Nematoden Biomassen sowie die faunistischen Indizes (Channel Index, Enrichment Index) zeigten, dass der Kohlenstofffluss im Bakterienkanal des Bodens dominierte. Allerdings deckte das 13C Pulse-Labelling Experiment im Feld auf, dass der Kohlenstofffluss durch die Pilzgemeinschaft sowie die pilzfressenden Nematoden wesentlich höhere Umsatzraten aufweist. In einem 14C-Laborexperiment wurde ein vollständiges Budget des Flusses von wurzelbürtigem Kohlenstoff in das Nahrungsnetz der Nematoden bestimmt. Hierbei wiesen die pflanzenparasitären Nematoden die höchsten 14C-Gehalte innerhalb weniger Tage auf, da sie direkt an den Wurzeln fressen und über die Herbivorenkette den Nährstoffzyklus im Boden eröffnen. / The present research considered the effects of agricultural management practice on the nematode community structure and biomass in three different depths and two successive vegetation periods at an arable field site. The resource quality was manipulated by crop plant and organic amendment, to investigate the major soil carbon pathways based on roots, bacteria and fungi. The nematode community analysis pointed to a highly enriched and disturbed ecosystem with low biodiversity. Along the depth gradient the nematodes formed distinct metacommunities, reflecting resource availability and abiotic environmental factors. Wheat supported significantly greater nematode biomass than maize. The litter amendment induced bottom-up effects, with greater biomass allocation at lower than at higher trophic levels. The biomass of nematode families as well as faunal indices (Channel Index, Enrichment Index) revealed a predominance of the bacterial carbon channel in the arable soil. A 13C pulse-labelling experiment investigating the flux of root- derived C into the soil food web revealed high turnover rates in the fungal carbon pathway. This was evident for soil fungi as well as for fungal-feeding nematodes and contradicts general assumptions of a more active bacterial pathway in arable soils. A laboratory experiment with 14C isotope was used to compile a complete budget for the root-derived carbon in the nematode food web. Here plant-feeding nematodes, which feed on living plant roots, thereby opening the root C cycling into the food web, showed highest amounts of 14C allocation within a few days.
|
359 |
Die Berechnung von Struktur, Energetik und kernmagnetischen Abschirmungen von Fullerenen und ihren DerivatenHeine, Thomas 27 July 1999 (has links) (PDF)
No description available.
|
360 |
Harte amorphe wasserstoffhaltige Kohlenstoffschichten mittels mittelfrequenzgepulster PlasmaentladungenGünther, Marcus 07 September 2012 (has links) (PDF)
Harte amorphe wasserstoffhaltige Kohlenstoffschichten (a-C:H) haben in den letzten Jahrzehnten stark an Bedeutung gewonnen. Diese Art von Hartstoffschichten wird zunehmend für die Reduzierung von Reibung und Verschleiß in unterschiedlichen Bereichen eingesetzt. In der Forschung, aber auch für Kleinserien, werden a-C:H-Schichten üblicherweise mit Hochfrequenzplasmaentladungen abgeschieden. Eine Alternative ist die Plasmaaktivierung mit einer asymmetrisch bipolar gepulsten Spannung im Mittelfrequenzbereich. Auf diese Weise wird eine homogene Beschichtung großer Substratflächen mit qualitativ hochwertigen Schichten ermöglicht.
Die vorliegende Arbeit beschäftigt sich mit der plasmagestützten Abscheidung von harten a-C:H-Schichten mit mittelfrequenzgepulsten Entladungen. Zur Schichtabscheidung werden Ethin-Argon- und Isobuten-Argon-Gasgemische verwendet. Der Einfluss des Prozessdrucks auf den Abscheideprozess und die Schichteigenschaften wird untersucht. Dazu wurden Argonentladungen und Beschichtungsplasmen mittels optischer Emissionsspektroskopie charakterisiert. Zur Charakterisierung der Schichteigenschaften wurden unter anderem Nanoindentation-Messungen, elastische Rückstreudetektionsanalysen und thermische Desorptionsspektroskopie verwendet. Zur Untersuchung des Einflusses der Ionen auf das Schichtwachstum wird ein Modell zur Identifizierung von Ionenspezies in Beschichtungsplasmen vorgestellt. In Verbindung mit der Messung der Substratströme konnte der Ionenanteil am Schichtwachstum bestimmt werden.
Ein weiterer Teil der vorliegenden Arbeit untersucht ein Hybridverfahren, in dem die mittelfrequenzgepulste Entladung mit einer zusätzlichen ECR-Entladung kombiniert wird. Es wird gezeigt, dass durch dieses Hybridverfahren eine deutliche Steigerung der Abscheiderate harter a-C:H-Schichten erreicht werden kann. Die abgeschiedenen Schichten wurden zusätzlich bezüglich ihrer Oberflächenstruktur und ihrer Verschleißfestigkeit untersucht.
|
Page generated in 0.0466 seconds