• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 5
  • Tagged with
  • 54
  • 27
  • 24
  • 24
  • 19
  • 18
  • 13
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The effect of building energy saving apartment blocks / Effekten av att bygga energisnåla flerbostadshus

Hörlin, Jesper, Jensen, Martin January 2014 (has links)
Att bygga energieffektiva bostäder blir idag allt viktigare. Grunden till detta arbete ligger i vårt intresse för energismart byggande och företagens nyfikenhet över huruvida de lyckats bygga energismart. Syftet med denna undersökning är att jämföra energiförbrukning för två principiella tillvägagångssätt att bygga flerbostadshus, som passiv- eller lågenergihus. De frågor som valts att behandla är:  Vad krävs för att ett hus ska klassas som ett passivhus respektive lågenergihus år 2009?  Klarar respektive konstruktion målet för energiförbrukning?  Vilka faktorer påverkar skillnaden i den specifika energiförbrukningen?  Vilken typ av koncept rekommenderas? Utifrån en teoretisk referensram inom området och tillhandahållet material, såsom ritningar och uppgifter om energiförbrukning, har en jämförelse mellan dessa två olika konstruktioner gjorts. Studien har riktat in sig på att studera parametrar som specifik energiförbrukning per Atemp och bidragande faktorer till en mer eller mindre lyckad energiförbrukning.
22

Miljöcertifiering av energieffektiva byggnader : Nybyggnation av parhus i Landskrona / Environmental assessment of energy efficient buildings : Design of a semi-detached house in Landskrona

Johansson, Viktor, Majed, Raya January 2014 (has links)
Denna studie har utförts för att öka kunskapen om miljö- och energikrav i Sverige. Studien har utgått från en tomt i Landskrona där ett flerbostadshus kommer att byggas. I studien studerades vilka miljö- och energikrav som finns i Sverige. De miljöcertifieringssystem som studerats är GreenBuilding, Miljöbyggnad, BREEAM och LEED. De lågenergihus som studerats är passivhus, minienergihus och nollenergihus. I studien studeras även för- och nackdelar med olika stomsystem i trä. En slutsats om det bäst lämpade stomsystem för byggnaden i Landskrona dras. Tre typer av konstruktionslösningar tas fram för byggnaden. För dessa konstruktioner utförs energiberäkningar. Beräkningarna görs för att se vad som krävs för att uppfylla miljö- och energikrav som ställs på en nyproducerad byggnad. I slutet av studien rekommenderas en passande konstruktionslösning för byggnaden i Landskrona för att uppfylla kraven Miljöbyggnad Guld och passivhus.
23

Energilösningar för Norra Djurgårdsstaden

Tvärne, Natalie January 2011 (has links)
Miljöfrågan har blivit mer och mer uppmärksammat i media och samhället. Detta har lett att mer krav ställs på att exempelvis minska energibehovet av flerbostadshus och därmed minska koldioxidbelastningen. Syftet med denna rapport är att besvara frågeställningen ”Hur kan olika kombinationer av energilösningar i flerbostadshus bidra till att vision och energimålen för NDS uppnås?”. För att kunna besvara huvudfrågan behövs data över modellfastigheters energibehov. Detta görs genom att få data och fakta från litteraturstudier och djupintervjuer. Med hjälp av energibehovet från intervjuerna kan koldioxidbelastningen beräknas och en jämförelse över de olika kombinationerna av energilösningar kan göras. Ett av resultatet från intervjuerna var att det framgick tydligt Boverkets energikrav för flerbostadshus är för lågt satt. Detta eftersom alla byggherrarnas modellfastigheter hade väsentligt lägre energibehov än Boverkets krav samt att respondenterna tyckte att kravet antingen var rimligt eller kunde skärpas. Respondenterna tyckte generellt att fjärrvärme var ett bättre alternativ vid uppvärmning då värmepumpar drivs av el. Detta då det finns risk att marginal el används som ger högre koldioxidbelastning enligt respondenterna. Vid efterföljande beräkning blev resultatet att den bästa modellfastigheten ur koldioxidsynpunkt var ett lågenergihus med frånluftvärmepump som använder grön el. I fallet nordisk elmix hade de båda passivhusen lägst koldioxidbelastning, följt av lågenergihuset i kombination med FTX och fjärrvärme. Viljan att bygga lågenergihus som samtidigt är lönsamma var hos alla respondenterna stor. Emellertid valet över tekniken som att bygga passivhus eller lågenergihus var åsikterna både negativ och positiv. Vid frågan om hur stor viljan och intresse över ny teknik som solenergi och gröna tak visade det sig att respondenterna inte använde solenergi i nybyggnation utan avvaktar tills det blir ekonomisk hållbara och kommersiellt gångbart. Under litteraturstudien framgick det att gröna tak skulle vara en energiåtgärd eftersom uppvärmnings- och kylbehovet skulle minska. Detta till motsatt till vad respondenterna svarade, de använde inte gröna tak som en åtgärd utan främst ur estetisk synpunkt, det såg vackert ut eller om en grönytefaktor behövdes uppfyllas. Att bygga modellfastigheterna som hade lägst koldioxidbelastning kan endast bidra till att NDS:s visions mål kan uppnås, men inte ensamt göra att dessa uppfylls. / Due to recent environmental concern regarding the climate change more and more pressure is laid on restricting the energy consumption on residential buildings, primarily to lower the carbon dioxide strain on the environment. The aim of this report is to answer how different combinations of energy solutions in residential buildings can contribute to the vision and energy goals of Norra Djurgårdsstaden (NDS) in Stockholm can be achieved. To answer this question an extensive literature study was done and interviewing five constructors who are connected in the NDS project. From the constructers the carbon dioxide strain could be calculated from energy consumption values of their model buildings. One of the results from the interviews was that the limit for energy consumption of residential buildings from Boverket was too low. This conclusion is due to the fact that all respondents’ model buildings had lower energy consumption than Boverkets’ limit and the response from the respondents said that the limit was reasonable or could be stricter. The general response of the respondents was that district heating is the better choice between using district heating or heat pumps when heating. This is because heat pumps are driven by electricity and when using electricity there is a risk of using marginal electricity. After the calculation of the carbon dioxide strain, the model building with the lowest strain was the exhaust air heath pump if it was driven by environmentally friendly electricity. If the model building was using Nordic electricity mix the model building with the lowest strain was the passive houses, then low energy house with the combination of FTX and district heating. The will to build low energy building was high, if it was on the same time profitable. But the response was both positive and negative on building passive house. It was clear after the interviews that new technology like solar energy and green roofs was negative. Using solar energy was interesting but the constructors are waiting until solar energy is more profitable and commercial marketable. Using green roofs to lower energy consumption was not likely, the constructors use green roofs on esthetic reasons or if the building had restriction on green areas. The conclusion of this report is if building model buildings with the lowest energy consumption would only contribute to NDS’s vision goals, not to alone fulfill the goal.
24

Uppföljning av idrifttagning och energiprestanda för två egenvärmehus i Hammarby Sjöstad

Gärde, Viktor January 2011 (has links)
Numera läggs alltmer resurser från både privata och offentliga aktörer på byggandet av energieffektiva byggnader. Denna satsning har bland annat att göra med EU:s krav på att alla ägda hus som byggs efter 2020 ska vara nära nollenergihus, men också med Boverkets krav vilka gäller specifikt för Sverige. Enligt Boverket får inte hus som byggs till och med 31:a december 2011 i Stockholm dra mer än 55 kWh/m2 Atemp över ett år ifall det värms upp med el, och 110 kWh/m2 Atemp över ett år ifall det värms upp på annat sätt. Utifrån dessa hårdare krav har energiberäkningarnas betydelse ökat avsevärt då det oftast krävs uppvisande av en preliminär sådan innan exploateringsavtal tecknas.   Ett kvarter bestående av två huskroppar i Hammarby Sjöstad har undersökts då deras energianvändning ligger över den beräknade. Målet med studien har varit att ta reda på vad som orsakat differensen mellan uppmätt normalårskorrigerad energianvändning och beräknad energianvändning och att undersöka vilken driftoptimering som kan göras för att minska differensen. Studien undersöker energianvändningen för de första tolv månaderna som huset varit i full drift.   Enligt två energiberäkningar är husens sammanlagrade specifika energianvändning enligt BBR18s format 54,5 kWh/m2 Atemp och år. I denna beräkningsmodell exkluderades påverkan av faktorer såsom uttorkning av byggfukt och vädring ur den specifika energianvändningen.   Den uppmätta normalårskorrigerade specifika energianvändningen var 78,1 kWh/m2 Atemp och år för studiens undersökta objekt över den undersökta perioden. De huvudsakliga förklaringarna till differensen mellan beräknad och den uppmätta normalårskorrigerade specifika energianvändningen är följande:  Fastighetselens energianvändning var 16,2 kWh/m2 Atemp och år. Detta förklaras främst utifrån att           belysningen förbrukade mer än beräknat och att pumparnas energianvändning inte ingick i           beräkningsmodellen.  Hushållselens energianvändning var 23,9 kWh/m2Atemp och år, vilket är 9,1 kWh/m2 Atemp och år           lägre än beräknat. Det har lett till ett ökat behov av värmeenergi för husen då mindre elenergi har           varit tillgänglig för återvinning genom husens FTX-aggregat och för uppvärmning av           lägenheterna. Faktorer såsom uttorkning av byggfukt, externel, och vädring har ej beaktats i energiberäkningen.           Detta har lett till att den normalårskorrigerade energianvändningen för uppvärmning av husen har           skiljt sig ifrån den beräknade energianvändningen. De teoretiska beräkningarna utgår ifrån balanserade flöden vilket ej har varit fallet i den           undersökta fastigheten. Detta leder till att ouppvärmd uteluft tillförts förråden genom           ytterväggsgaller, vilket fick radiatorernas energianvändning att vara betydligt högre än beräknat.           Dessa obalanserade flöden över ventilationsaggregaten, där det var ett högre flöde frånluft än           tilluft, orsakade också en lägre energiverkningsgrad hos ventilationsaggregatet än antaget i           beräkningarna. VVC-förlusterna har inte kommit huset till godo då VVC-slingan huvudsakligen är dragen längs           ett hisschakt.  Med rätt driftoptimering av befintliga komponenter kan den specifika energianvändningen närma sig den beräknade energiprestandan. Förslag på driftoptimeringsåtgärder är: Rätt driftstyrning av belysning Pumpen, vilken tjänar radiatorerna och eftervärmningsbatterierna, ska enbart vara på under           uppvärmningssäsong. Strypning av frånluftsflödena i förråden i avseende att minska de obalanserade flödena över           ventilationsaggregatet och värmeanvändningen hos radiatorerna. Minskning av inomhustemperatur i förråd och trapphus.  Förslag till fortsatt arbete är: Vidareutveckla systemlösningar för idrifttagande för lågenergihus med fokus på att finna optimal           uppsättning av mätare och databehandlingsutrustning. En tydligt formulerad byggnadsteknisk guide för lågenergihus som inte ska vara kopplad till           befintliga typer av lågenergihus. Framtagande av en checklista vid idrifttagning och driftoptimering av lågenergihus.
25

Sammanställning och uppföljning av energisnålt flerbostadshus

Gustafsson, Olof, Nyman, Gabriel January 2021 (has links)
I Sverige går 40 % av den slutliga energianvändningen till bostad- och servicesektorn. Energieffektivisering inom denna sektor har därför potential till att reducera en stor del av den totala energikonsumtionen i Sverige och därmed bidra till att de klimatmål som satts uppfylls. Det kommunala bostadsbolaget Uppvidingehus har i Åseda byggt tre flerbostadshus där ett av de omfattas av flera energibesparande system som de sökte och fick ett innovationsbidrag (utfärdat av riksdagen) för som riktade sig till hållbart byggande. De energibesparande systemen är dagvattenuppsamling för WC-spolning, solceller och solhybrider, en digitaliseringstjänst för de boende och ett energilagringssystem i form av batterier. Dessa system har sammanställts och granskats utifrån projekterade värden som gjordes vid uppstart. Resultatet visar att systemen helt/delvis uppnår de projekterade värdena eller har potential att uppnå de på sikt.
26

En kvantitativ utvärdering av ett lågenergihus i subarktiskt klimat : – gällande energianvändning, inomhusklimat och fuktvandring

Gustavsson, Jonathan January 2020 (has links)
Low-energy houses are a good concept for reducing energy use during the building's use. Especially when studies have shown economic profitability in buildings that meet the requirements for the definition of low-energy houses - that the energy performance is at least 25% better than the building standard from the Swedish National Board of Housing, Building and Planning. The investment cost of houses with low energy performance is higher, but the economic profitability is achieved under the reduced operating costs. However, it can be difficult to ensure the quality of all new construction techniques and installations, which can lead to worse energy performance than projected values ​​show. To maintain economic profitability, buildings must be maintained throughout their lifetime without unexpected costs to a greater extent. Moisture damage, which can seriously damage the construction and add odors that lead to a bad indoor climate, has over time caused great costs in our buildings. Poor indoor climate can have consequences that create or strengthen mental and physical symptoms. This is something we want to counteract with knowledge of how the indoor climate is in use. In Sweden, most evaluations of low-energy houses have treated houses in the southern parts of the country. There are large climate differences across the country. Construction techniques that are proven to work in the south, do not always perform as well in the north. In the northernmost parts, there is a subarctic climate - where the average temperature exceeds  for a maximum of three months a year. The purpose of this study is to evaluate a low-energy house in a subarctic climate and make a contribution to increased knowledge regarding the type of building in this climate. To achieve the project's goal, to map the house's performance in terms of energy use, indoor climate and moisture migration, literature and case studies have been carried out. These studies are aimed at one of four apartment buildings that are located in the northernmost parts of Sweden and have been built according to a concept with environmental thinking in focus. The evaluation is based on previously performed field measurements during 2016/2017 as well as a survey of residents in the case study building and its three adjacent almost identical houses. The energy performance in operation turns out to exceed the projected value. The house is designed with very small margins for the construction year's low-energy house requirements. Requirements from the Swedish National Board of Housing, Building and Planning are achieved, but the specific energy use of buildings exceeds the low-energy house requirement and achieves energy class C according to the Lågans definition. If the house's energy performance is set against today's stricter requirements and with the new calculation method with primary energy, it will not be able to achieve class C. Possible causes can be heat losses related to the house's supply air system and storage of domestic hot water. To evaluate the indoor climate, the thermal climate, humidity and carbon dioxide content of the house are studied. This is weighed together with the survey about the living experience of residents. The case study building is considered to perform well regarding the indoor climate, as no critical values ​​have been identified according to the field measurement and very little dissatisfaction from the survey study. The moisture content of the house's wall construction exceeds the critical moisture condition several times in all facades during parts of the year. There is no risk of microbial growth as this is during very short periods or periods where the corresponding temperature in the wall is too low. However, inactive measurement periods during the holiday season in the summer creates uncertainties. There may be value in continued control that runs continuously over the warmer period of the year. The general conclusion from the evaluation of the low-energy house is positive. A good concept with the environment in focus that has also tested modern technical solutions in the northern parts of the country.
27

Energiberäkningar på unikt lågenergihus : Beräkningar av elenergibehov, tankar kring självförsörjning och frågor om klimatpåverkan / Energy calculations on a unique low-energy-building : Calculations of electric needs, thoughts around self-sufficiency and questions about climate impact

Eklund, Simon January 2019 (has links)
För drygt två år sedan började Laura och Erik Vidje att bygga sitt eget hus i utkanten av Umeå. Det här byggprojektet skulle senare visa sig bli ett unikt och uppmärksammat projekt med många involverade och intresserade parter. Byggprojektet involverade en hel fastighet med bostad, gäststuga, garage, jordkällare och solcellsanläggning, och Laura och Erik skulle själva utföra så mycket av arbetet som gick. Vad som gjorde den här fastigheten unik var valet att utforma den efter kraven för passivhus och samtidigt använda sig av okonventionella och återvinningsbara byggnadsmaterial, bland annat var isoleringsmaterialet tänkt att bestå av halm och golvplattan av återvunnet foamglas. Även konstruktionen skulle bli väldigt genomtänkt, där stora fönster placeras mot söder med ett långt taköverhäng som skyddar mot hög solinstrålning på sommar men optimerar instrålningen på vintern. Väggarnas konstruktion var tänkt att bli nästan en meter tjock för att isolera väl och hela byggnaden klimatskärm skulle bli oerhört tät för att minimera värmeförluster, men den mest påtagligt ovanliga egenskapen med bostaden var att den skulle bli rundformad. I dagsläget har stora delar av fastigheten färdigställts, men innan vissa tekniska installationer utförs ville paret Vidje ta reda på vad fastigheten förväntas ha för behov, främst elenergimässigt och hur den kommer att prestera i förhållande till officiella krav. Detta visade sig endast bli positivt för dem då hela fastigheten uppskattas ha ett elenergibehov motsvarande ungefär 23,1 kWh/m2 och år vilket nästan är två tredjedelar av schablonvärdet för endast hushållsenergin. Även BBR-kravet för primärenergital visade sig ligga mer än dubbelt så högt som fastighetens beräknade primärenergital, vilket bevisar den högt planerade kvalitén och hur genomtänkt byggprojektet är. Det fanns även ett intresse att ta reda på vad det finns för nya tekniker inom hållbara hushåll och om dessa kommer att vara möjliga att implementera i deras hushåll. Bland annat var solcellerna kombinerade med ett hemmabatteri en viktig fråga för paret Vidje. De vill kunna använda så mycket av deras egna producerade solel som möjligt. Vad det här arbetet kom fram till var att den inplanerade solcellsanläggningen på 5 kWp (kilowattpeak) skulle lyckas täcka ca 70% av fastighetens årliga elbehov men att inte mer än max hälften av den producerade solelen skulle kunna användas av dem själva. Resten skulle säljas ut på elnätet eller sparas i ett eventuellt hemmabatteri. Vad som blev uppenbart efter batteriets lönsamhetsberäkningar var att med dagens elpriser kommer det alltid vara mer ekonomiskt lönsamt att sälja solcellernas överskottsel ut på nätet. Ekonomisk lönsamhet var ett återkommande tema, inte minst för just solcellerna och hemmabatteriet. För solcellerna låg fokuset på om det skulle bli mer lönsamt att hyra anläggningen eller att köpa den. I slutändan visade det sig inte vara en oerhörd ekonomisk skillnad mellan de två alternativ utan den avgörande aspekten kommer antagligen att vara bekvämligheten av att genomföra edera alternativ. 3 Solcellerna visade sig täcka en stor del av detta arbete då man även ville ta reda på hur stort klimatavtryck den planerade anläggningen kommer att ha jämfört med alternativet att använda elektricitet från Umeå Energis elnät. Resultatet från denna undersökning var nog det mest överraskande av alla resultat. På grund av att en stor del av världens solceller tillverkas i länder med höga växthusgasutsläpp samt kräver mycket energi för att tillverkas så innebär det att solcellers klimatavtryck är det högsta bland förnybara energikällor. Då Umeå Energi har övergått till 100% förnybar elproduktion med andra energislag än solkraft, visade det sig att under solcellernas livstid på 25 år skulle solcellsanläggningens klimatavtryck vara mer än dubbelt så högt än om elen hade tagits från nätet. Paret Vidje ville också veta mer om nyutvecklade energirelaterade tekniker, däribland V2G, självförsörjande hushåll, vätgaslagring, likströmsnät och elbilsladdning, för att kunna avgöra om någon av dessa kommer vara möjliga att integrera med deras fastighet inom en snar framtid. V2G, Vehicle-to-Grid, är fortfarande för outvecklat för att det skall vara möjligt för en privatperson att kunna använda sig av det. Självförsörjning är helt klart möjligt i dagsläget, men den enda väl fungerande metoden verkar vara vätgaslagring och det är fortfarande en teknik som är oetablerad på marknaden och därmed även väldigt dyr. Att ställa om sitt hushåll till ett likströmsnät är en intressant trend som en del kunniga personer har börjat göra de senaste åren, men det verkar dock vara just det, någonting som endast en kunnig och intresserad person i området kan klara av att genomföra i dagsläget. Det finns ingen etablerad teknik för att enkelt kunna ställa om ett hushåll till att använda likström i sina vägguttag. Eftersom paret Vidje planerar att införskaffa en elbil så var de väldigt nyfikna angående hur det kan gå till att ladda sin elbil hemma. Den mest kritiska frågan var om en laddbox var ett krav. Vad arbetet kom fram till var väldigt enkelt, laddbox är tekniskt sett inget krav, men att använda ett vanligt 230 V vägguttag som standard är en dålig och nästintill farlig metod. Det är dessutom en oerhört ineffektiv metod då vägguttag avger väldigt låga effekter och därmed skulle innebära ohållbart långa laddningstider. En laddbox på 11 kW verkar vara det bästa alternativet just nu för att ladda en elbil i hemmet. Snabbladdare på över 22 kW finns tillgängliga men är mer kostsamma och tillför endast kortare laddtid som egentligen inte är nödvändig för de flesta hushåll. / About two years ago Laura and Erik Vidje began building their very own home just outside the city of Umeå. This building project would later turn out to become a unique and well noticed project with many involved and interested parties. The building project involved an entire estate with a residence, guest house, cold storage cellar and a PV (photovoltaic) system, and Laura and Erik were planning on doing as work as possible by themselves. What made this estate so unique was the choice of designing it according to the passive house requirements and at the same time be using unconventional and recyclable building materials, among other things was that the isolating material was going to be entirely made up of straw and the base plate would be made of recycled foam glass. The construction was going to be very well thought through, with large window facing south and a long roof overhang that will protect against insolation during summer but optimizes the insolation during winter. The walls would be built almost one meter thick to make great isolation and the entire building envelope were going to be extremely dense to minimize heat loss, but the most obvious unique attribute about the residence were going to be its round shape. By today the estate is nearly finished, but before a few technical instalments is executed the Vidje couple wanted to know what energy related needs the estate will have and how it will perform relative to official requirements. This specifically turned out to be only positive for them because the estate is now estimated to have a total need of electricity at about 23,1 kWh/m2 Atemp and year, which is almost one third lower than the standard value only for household energy. Also, the BBR-requirement for EPpet (primärenergital) turned out to be more than twice as high as the actual EPpet for the estate, which proves how well thought out the building project is and its high quality. In addition to this there were an interest in learning about knew technologies within sustainable housing and whether it was possible to implement these to their home. An important question to the Vidje couple was the possibilities regarding the PV system combined with a battery storage system. They would want to use as much of their own solar electricity as possible. What this project found out was that the 5 kWp (kilowattpeak) PV system would be able to cover around 70% of the estates yearly electricity needs, but that they would only be able to personally use no more than half of all that produced electricity. The rest would have to be sold and transferred out on the grid or possibly be saved in a battery storage unit. What became obvious while calculating the profitability of a battery storage system was that, with today’s electricity pricing, to sell the surplus PV production out on the grid will always be the most economically profitable option. Economic profitability was a reoccurring theme, especially for the PV- and battery storage system. Most of the focus regarding the PV system was between the options of renting it or buying it. In the end it turned out not to be a very significant difference 5 between the two options, the most decisive aspect when choosing will most likely be the difference of overall comfortability between the two. Analysing the PV system became a larger part of this project than expected when another request was to figure out how big of a climate impact the system would have compared to if the same amount of electricity was used from Umeå Energis grid. This analysis came up with probably one of the most interesting results of this entire project. Because PV panels require a lot of energy to produce and a large proportion of all panels in the world are produced in countries with a high carbon footprint, it means that PV systems has one of the worst climate impacts of all renewable energy sources. According to Umeå Energi 100% of their electricity are produced from renewable sources where solar power is not one of them. Because of this it turned out that during the 25-year lifespan of the PV system it would have more than twice the climate impact rather than if the electricity came from the power grid. The Vidje couple also wanted to know more about newly developed technologies related to energy, among things like V2G, self-sustaining homes, hydrogen energy storage, direct current grids and electric vehicle charging, to be able to establish whether any of these would be possible to integrate with their home in the near future. V2G, Vehicle-to- Grid, is still very much under development and therefore are not available for any person to use. Self-sustainability is definitely possible with today’s standards, but the only method that seems to work well enough is hydrogen energy storage which is still not very well established on the market and therefore also very expensive. Readjusting your home to work with a direct current grid is an interesting trend that some knowledgeable people have been doing lately, but it seems to be just that, something only a person who is interested and knowledgeable in the area are capable to perform at this stage. There are now established technique for easily changing your home to be able to run on direct current. Because the Vidje couple are planning on getting an electric car it made them curious about what options there were to be able to charge it at home. The most critical question was if a charging box is a requirement or not. The answer is pretty simple, a charging box is technically not a requirement, but using a 230 V power outlet as standard is a very bad and sometimes even considered as dangerous. It is also a very inefficient method because regular outlets can only put out a relatively low power charge and therefore would mean unreasonably long charging times. An 11 kW charger box seems to be the best option right now be able to charge your electric car at home. Quick chargers above 22 kW to exist but are usually expensive and only lowers the charging time a little bit which for most households are quite unnecessary.
28

Uppvärmning av småhus i stadsdelen Djurgården - Linköping / Heating of detached houses in city district Djurgården - Linköping

Ågren, Per, Wimble, Peter January 2009 (has links)
<p>Syftet med detta examensarbete är att genomföra en energi- och systemanalys av den planerade stadsdelen Djurgården i Linköping. Den ska ge svar på vilket uppvärmningssystem kombinerat med hustyp som är mest systemriktigt. Att bygga så miljövänligt som möjligt för att mildra den globala uppvärmningen är i fokus för alla parter. Slutsatsen är att passivhus inte är miljövänligast när det byggs i ett fjärrvärmenät med kraftvärme.<sup>1 </sup>Det miljövänligaste och förmodligen det billigaste alternativet för alla parter är att bygga BBR2008 hus med fjärrvärme.<sup>2</sup></p><p>Examensarbetet utreder en alternativ anslutning av passivhus till fjärrvärme. Resultatet visar att anslutningen med EPS PEX och ackumulator i ett sekundärnät lönar sig jämfört med en traditionell anslutning med Twin-stålrör i primärnät.<sup>3</sup> Den alternativa anslutningens främsta egenskap är minskade värmeförluster med en bättre isolering.</p><p><sup>1</sup> Passivhus är ett hus med bra och tät isolering som gör hela konstruktionen energisnål</p><p><sup>2</sup> BBR2008 är hus med gällande energispecifikation från Boverket.</p><p><sup>3</sup> EPS PEX är plaströr med frigolit isolering</p> / <p>The purpose of the Master Thesis is to conduct an energy- and system analysis of the planed city district Djurgården in Linköping, Sweden. From a system perspective the thesis provides an answer to suitable combinations of heating system and house types. The focus of everyone in society today is to build as environment friendly as possible, in purpose to prevent global warming. The conclusion is that a passivehouse is not the best environment friendly solution to combine with a district heating system which includes a heating and power plant.<sup>1</sup> The best solution would be a BBR2008 house both from an environmental and probably also economical perspective.<sup>2</sup></p><p>The Master Thesis investigates an alternative solution for how to connect passivehouses to district heating. The result shows that EPS PEX with accumulator in a secondary system is more economical than a traditional Twinpipe in a primary system.<sup>3</sup> The best aspect of the alternative solution is the reduced heat losses due to better isolation.</p><p><sup>1</sup> Passivehouse is a house with extremely god isolation that makes the whole construction energy efficient.</p><p><sup>2 </sup>BBR2008 is a house with Swedish regulations for energy efficient year 2008</p><p><sup>3</sup><sup> </sup>EPS PEX is a culvert system with plastic pipes and an isolation of cellular plastic</p>
29

Svärdsjöstugan och Corvus corones plats : Utveckling i centrum

Gustavsson, Sofia January 2010 (has links)
No description available.
30

Multi-dimensional approach used for energy and indoor climate evaluation applied to a low-energy building

Karlsson, Fredrik January 2006 (has links)
The building sector alone accounts for almost 40% of the total energy demand and people spend more than 80% of their time indoors. Reducing energy demand in buildings is essential to the achievement of a sustainable built environment. At the same time, it is important to not deteriorate people’s health, well-being and comfort in buildings. Thus, designing healthy and energy-efficient buildings is one of the most challenging tasks. Evaluation of buildings with a broad perspective can give further opportunities for energy savings and improvement of the indoor climate. The aim of this thesis is to understand the functionality, regarding indoor climate and energy performance, of a low-energy building. To achieve this, a multi-dimensional approach is used, which means that the building is investigated from several points of views and with different methods. A systems approach is applied where the definition of the system, its components and the border to its environment, is essential to the understanding of a phenomenon. Measurement of physical variables, simulations, and qualitative interviews are used to characterize the performance of the building. Both energy simulation and computational fluid dynamic simulations are used to analyse the energy performance at the building level as well as the indoor climate at room level. To reveal the environmental impact of the low-energy building studied in this thesis the CO2 emissions and embodied energy have been investigated regarding different surrounding energy systems. The evaluated building is situated at the west coast of Sweden and uses about 50% of energy compared to a comparable ordinary Swedish building. The building is well-insulated and an air-to-air heat exchanger is used to minimise the heat losses through ventilation. The houses are heated mainly by the emissions from the household appliances, occupants, and by solar irradiation. During cold days an integrated electrical heater of 900 W can be used to heat the air that is distributed through the ventilation system. According to measurements and simulations, the ventilation efficiency and thermal environment could be further improved but the occupants are mostly satisfied with the indoor climate. The control of the heating system and the possibility for efficient ventilation during summertime are other important issues. This was found through quantitative measurements, simulations and qualitative interviews. The low-energy building gives rise to lower CO2 emissions than comparable buildings, but another energy carrier, such as district heating or biofuel, could be used to further improve the environmental performance of the building. The total energy demand, including the embodied energy, is lower than for a comparable building. To understand the functionality of a low-energy building both the technical systems and the occupants, who are essential for low-energy buildings, partly as heat sources but mainly as users of the technical systems, should be included in the analysis.

Page generated in 0.6045 seconds