Spelling suggestions: "subject:"LA abrasion"" "subject:"LA brasion""
291 |
Modellierung und Simulation der Beanspruchung von Zugsträngen aus Stahllitze für ZahnriemenWitt, Robert 16 November 2007 (has links)
In dieser Arbeit wird das Verhalten von gewickelten Seilen aus Stahllitze unter Zug- und Biegebelastung mit Hilfe der Methode der Finiten Elemente untersucht. Ausgehend von dem Modell einer einfachen Litze mit einem Kern- und sechs Außendrähten erfolgt eine ausführliche Analyse der Spannungsverteilung sowohl bei rein axialer Belastung als auch bei Biegung über eine Seilscheibe. Darauf aufbauend wird das Simulationsmodell schrittweise um komplexere Seilkonstruktionen bis hin zu zweifachen Verseilungen erweitert. Daran schließt sich die Untersuchung der inneren Belastungen bei Einbettung in ein Elastomer an, wie dies bei Zugsträngen in Riemengetrieben der Fall ist, sowie der spezifischen Einflüsse der Verzahnung auf die Seilbeanspruchung bei Zahnriemengetrieben. Des weiteren wird eine Möglichkeit der Validierung der Modelle vorgestellt, die ein experimentelles Ermitteln der Relativverschiebungen der Filamente auch im Inneren des Seils zulässt. Abschließend folgen Richtlinien zur Auslegung von Zugsträngen in Zahnriemen sowie Vorschläge, die in dieser Arbeit gewonnenen Ergebnisse in eine zukünftige Verschleißtheorie einfließen zu lassen. / This work examines the behaviour of steel cords under tensile loading and bending by the Method of Finite Elements (FEM). Beginning with a simple strand consisting of one centre and six outer wires a detailed analysis of the stress distribution is made for pure strain as well as for bending over a sheave. Based on this examination the model is extended step by step towards complex cord constructions. The investigation of cables embedded in an elastomer follows, especially the influence of a tooth profile of timing belts on the load inside the cable. Furthermore, a possible validation method for the model is presented. In conclusion directives are given for steel cord design in timing belts and suggestions are made to use the results in a wear model in the future.
|
292 |
Einflussfaktoren auf die Haftfestigkeit und Eigenschaftsänderungen textiler Substrate beim 3D-Druck mit unterschiedlichen DruckmodulenZedler, Sarah Lysann 25 August 2022 (has links)
Die 3D-Drucktechnologie bietet eine Möglichkeit zur digitalen Funktionalisierung textiler Substrate. Jedoch hemmen fehlende Grundlagen, die geringe Materialpalette für textile Anwendungen, hohe Investitionskosten und lange Druckzeiten den Einsatz in der Textilindustrie. Die Arbeit befasst sich mit verschiedenen Einflüssen auf die Haftfestigkeit von 3D-Druck-Textil-Verbunden. Zudem werden die Effekte der 3D-Druckschichten auf die Eigenschaften der Textilien ermittelt. Dafür werden vier Gewebe und zwei Gestricke durch drei Druckmodule mit drei thermoplastischen Filamenten, einem thermoplastischen Granulat sowie einem Silikonkautschuk bedruckt.
Die Einflüsse der Faktoren Textilart, Faserstoff, Textilausrichtung, Textildicke und -oberfläche sowie die Druckmodule mit den verarbeitbaren Druckmaterialien werden experimentell untersucht. Die größten signifikanten Effekte auf die Haftfestigkeit hat die Materialwahl, wobei der Effekt des Druckmaterials größer ist als der Einfluss des Textils. Die Druckschichten beeinflussen die textilen Eigenschaften unterschiedlich stark. Die thermoplastischen Materialien erhöhen die breitenbezogene Biegesteifigkeit der Textilien je nach Druckmaterial und Schichtdicke. Das Zugverhalten der Substrate wird durch die Druckschichten bis auf einzelne Ausnahmen kaum beeinflusst. Die Abriebbeständigkeit der Textilien kann durch 3D-gedruckte Strukturen soweit erhöht werden, dass sie Scheuerversuchen mit erhöhten Anforderungen gegenüber Sandpapier standhalten.
Insgesamt ergänzt die Arbeit den Forschungsstand um Erkenntnisse zum 3D-Druck auf Textilien mithilfe unterschiedlicher Druckmodule. Zur verwendbaren Materialpalette gehören auch in anderen Veredlungsprozessen verwendete Materialien. Beispiele und Druckmuster veranschaulichen Anwendungspotenziale in den Bereichen der Sport-, Arbeits- und technischen Textilien.:Abkürzungen und Symbole
Abbildungsverzeichnis
Tabellenverzeichnis
1 Einleitung
2 Theoretische Grundlagen
2.1 Begriffe und Verfahren in der additiven Fertigung
2.1.1 Polymerisation/Stereolithographie
2.1.2 Sintern und Schmelzen
2.1.3 Extrusionsverfahren/Schmelzschichtung
2.2 Forschungsstand der additiven Fertigungsverfahren in der Textilindustrie
2.2.1 Textil- bzw. Bekleidungsherstellung
2.2.2 Textilmodifikation
2.2.3 Zusammenfassung zum Forschungsstand
2.3 Überblick zur Haftfestigkeit
2.4 Zielstellung
3 Maschinentechnik, Materialien und Methoden
3.1 Versuchsanlage am STFI
3.1.1 Filamentextruder
3.1.2 Nadelventil
3.1.3 Dispensersystem
3.2 Materialien
3.2.1 Textile Substrate
3.2.2 Druckmaterialien
3.3 Versuchsplanung und -durchführung
3.3.1 Datenvorbereitung und Druckparameter
3.3.2 Versuchsplanung
3.3.3 Prüfverfahren
3.4 Methoden der statistischen Auswertung
4 Untersuchung zur Haftfestigkeit
4.1 Einzeleffekte des Drucksubstrats
4.2 Einzeleffekte des Druckmaterials
4.3 Zusammenfassung der Erkenntnisse zu den Einzeleffekten auf die Haftfestigkeit
4.4 Interaktion der Parameter unterschieden nach Wahl des Textils
4.5 Interaktion der Parameter unterschieden nach verwendetem Druckmodul
4.6 Zusammenfassung der Erkenntnisse zur Haftfestigkeit
5 Charakterisierung der hergestellten Verbunde
5.1 Qualitative Beurteilung der Grenzflächen durch mikroskopische Aufnahmen
5.2 Dickenabweichung von der Sollschichtdicke
5.2.1 Abweichung von der Solldicke der reinen Druckschichten
5.2.2 Abweichung von der Sollschichtdicke der bedruckten Textilien
5.2.3 Zusammenfassung der Erkenntnisse zur Dickenabweichung von der Sollschichtdicke
6 Einfluss der applizierten 3D-Druckschichten auf die textilen Eigenschaften
6.1 Einfluss auf die Biegesteifigkeit
6.1.1 Biegesteifigkeiten der Ausgangsmaterialien
6.1.2 Biegesteifigkeiten der bedruckten Textilien
6.1.3 Einfluss der Biegerichtung auf die Biegesteifigkeiten
6.1.4 Zusammenfassung der Erkenntnisse zur Biegesteifigkeit
6.2 Einfluss auf das Zugverhalten
6.2.1 Zugverhalten der Ausgangsmaterialien
6.2.2 Zugverhalten der bedruckten Textilien
6.2.3 Zusammenfassung der Erkenntnisse zum Zugverhalten
6.3 Einfluss auf das Abriebverhalten
6.3.1 Abriebverhalten der Ausgangsmaterialien
6.3.2 Abriebverhalten der bedruckten Textilien
6.3.3 Einfluss der verwendeten Druckgeometrie auf das Abriebverhalten
6.3.4 Zusammenfassung der Erkenntnisse zum Abriebverhalten
6.4 Waschbeständigkeit der bedruckten Textilien
7 Bewertung der erzielten Ergebnisse
7.1 Bewertung und Vergleich der Ergebnisse mit dem Forschungsstand
7.2 Anwendungsmöglichkeiten des 3D-Drucks auf textilen Substraten
8 Zusammenfassung und Ausblick
9 Literaturverzeichnis
10 Anhang
10.1 Anhang zum Kapitel Methoden der statistischen Auswertung
10.2 Anhang zum Kapitel Haftfestigkeit
10.3 Anhang zum Kapitel Mikroskopie
10.4 Anhang zum Kapitel Dickenabweichung
10.5 Anhang zum Kapitel Biegesteifigkeit
10.6 Anhang zum Kapitel Zugverhalten
10.7 Anhang zum Kapitel Abriebverhalten / 3D printing technology offers an opportunity for digital functionalization of textile substrates. But lack of fundamentals, the small range of materials for textile applications, high investment costs and long printing times inhibit its use in the textile industry. This thesis addresses various influences on the adhesion strength of 3D printed textile composites. In addition, the effects of the 3D printed layers on the properties of the textiles are determined. For this purpose, four woven and two knitted fabrics are printed by three printing modules with three thermoplastic filaments, one thermoplastic granulate and one silicone rubber.
The influences of the factors textile type, fiber material, textile orientation, textile thickness and surface as well as the printing modules with the processable printing materials are investigated experimentally. The greatest significant effects on adhesion are due to the choice of material, with the effect of the printing material being greater than the influence of the textile. The printing layers affect the textile properties to different degrees. The thermoplastic materials increase the width-related bending stiffness of the textiles depending on the printing material and layer thickness. With a few exceptions, the tensile behavior of the substrates is hardly affected by the printing layers. The abrasion resistance of the textiles can be increased by 3D-printed structures to such an extent that they can withstand abrasion tests with increased requirements compared to sandpaper.
All in all, the work adds to the state of research knowledge on 3D printing on textiles using different printing modules. The range of materials that can be printed also includes materials used in other finishing processes. Examples and printed samples illustrate potential applications in the fields of sports, work and technical textiles.:Abkürzungen und Symbole
Abbildungsverzeichnis
Tabellenverzeichnis
1 Einleitung
2 Theoretische Grundlagen
2.1 Begriffe und Verfahren in der additiven Fertigung
2.1.1 Polymerisation/Stereolithographie
2.1.2 Sintern und Schmelzen
2.1.3 Extrusionsverfahren/Schmelzschichtung
2.2 Forschungsstand der additiven Fertigungsverfahren in der Textilindustrie
2.2.1 Textil- bzw. Bekleidungsherstellung
2.2.2 Textilmodifikation
2.2.3 Zusammenfassung zum Forschungsstand
2.3 Überblick zur Haftfestigkeit
2.4 Zielstellung
3 Maschinentechnik, Materialien und Methoden
3.1 Versuchsanlage am STFI
3.1.1 Filamentextruder
3.1.2 Nadelventil
3.1.3 Dispensersystem
3.2 Materialien
3.2.1 Textile Substrate
3.2.2 Druckmaterialien
3.3 Versuchsplanung und -durchführung
3.3.1 Datenvorbereitung und Druckparameter
3.3.2 Versuchsplanung
3.3.3 Prüfverfahren
3.4 Methoden der statistischen Auswertung
4 Untersuchung zur Haftfestigkeit
4.1 Einzeleffekte des Drucksubstrats
4.2 Einzeleffekte des Druckmaterials
4.3 Zusammenfassung der Erkenntnisse zu den Einzeleffekten auf die Haftfestigkeit
4.4 Interaktion der Parameter unterschieden nach Wahl des Textils
4.5 Interaktion der Parameter unterschieden nach verwendetem Druckmodul
4.6 Zusammenfassung der Erkenntnisse zur Haftfestigkeit
5 Charakterisierung der hergestellten Verbunde
5.1 Qualitative Beurteilung der Grenzflächen durch mikroskopische Aufnahmen
5.2 Dickenabweichung von der Sollschichtdicke
5.2.1 Abweichung von der Solldicke der reinen Druckschichten
5.2.2 Abweichung von der Sollschichtdicke der bedruckten Textilien
5.2.3 Zusammenfassung der Erkenntnisse zur Dickenabweichung von der Sollschichtdicke
6 Einfluss der applizierten 3D-Druckschichten auf die textilen Eigenschaften
6.1 Einfluss auf die Biegesteifigkeit
6.1.1 Biegesteifigkeiten der Ausgangsmaterialien
6.1.2 Biegesteifigkeiten der bedruckten Textilien
6.1.3 Einfluss der Biegerichtung auf die Biegesteifigkeiten
6.1.4 Zusammenfassung der Erkenntnisse zur Biegesteifigkeit
6.2 Einfluss auf das Zugverhalten
6.2.1 Zugverhalten der Ausgangsmaterialien
6.2.2 Zugverhalten der bedruckten Textilien
6.2.3 Zusammenfassung der Erkenntnisse zum Zugverhalten
6.3 Einfluss auf das Abriebverhalten
6.3.1 Abriebverhalten der Ausgangsmaterialien
6.3.2 Abriebverhalten der bedruckten Textilien
6.3.3 Einfluss der verwendeten Druckgeometrie auf das Abriebverhalten
6.3.4 Zusammenfassung der Erkenntnisse zum Abriebverhalten
6.4 Waschbeständigkeit der bedruckten Textilien
7 Bewertung der erzielten Ergebnisse
7.1 Bewertung und Vergleich der Ergebnisse mit dem Forschungsstand
7.2 Anwendungsmöglichkeiten des 3D-Drucks auf textilen Substraten
8 Zusammenfassung und Ausblick
9 Literaturverzeichnis
10 Anhang
10.1 Anhang zum Kapitel Methoden der statistischen Auswertung
10.2 Anhang zum Kapitel Haftfestigkeit
10.3 Anhang zum Kapitel Mikroskopie
10.4 Anhang zum Kapitel Dickenabweichung
10.5 Anhang zum Kapitel Biegesteifigkeit
10.6 Anhang zum Kapitel Zugverhalten
10.7 Anhang zum Kapitel Abriebverhalten
|
293 |
Effect of temperature on early stage adhesion during TiAlN sliding against Inconel 718 and Stainless steel 316L : High temperature tribologyAli, Ahsan January 2023 (has links)
High-performance materials such as stainless steels and nickel based super alloys are widely used in demanding applications where high mechanical and thermal properties are required. The applications of super alloys are mainly found in jet engines, power plants and gas turbines demanding high fatigue strength, corrosion and oxidation resistance as well as wear resistant properties. In order to use them, they go through various machining processes such as milling, turning, cutting, polishing etc. until the final product is achieved. Modern manufacturing industries employs various machining tools and technologies to improve the machining process of heat resistant super alloys. However, there are still challenges which needs to be addressed. Among them, adhesive wear of the machining tools is one of the main wear mechanism during the tribological interaction of tool and workpiece, preventing them to achieve the desired quality and surface finish of the end product. Moreover, it damages the tool reducing its lifecycle and in return, increasing the production cost. Among the cutting tools tungsten carbide (WC/Co) tools coated with TiAlN coating due to their good high temperature performance are extensively used. Nonetheless, these coatings still face issue like adhesive wear, abrasion, oxidation at higher temperature damaging the tools and subsequent machining. Therefore, it is imperative to understand the initiation mechanism of adhesive wear during the tribological interaction of super alloys and coated cutting tool material. In this research work, the tribological response of two coatings deposited by physical vapour deposition (PVD), having the composition Ti60Al40N and Ti40Al60N have been studied against two super alloys material, i.e. Inconel 718 and stainless steel 316L. A high temperature SRV (Schwingung (Oscillating), Reibung (Friction), Verschleiß (Wear)) reciprocation friction and wear test set up was employed to investigate the friction behaviour, wear rate and dominant wear mechanisms. For Ti60Al40N coating, the experimental results revealed that generally, friction increases in case of sliding against Inconel 718 up to 400 °C and drops at 760 °C. A high wear volume at room temperature and a decrease to a minimum at 760 °C has been observed for Inconel 718. On the other side, Stainless steel 316L (SS 316L) faces a continuous rise in friction coefficient with highest value at 760 °C during sliding against Ti60Al40N coating. Wear is highest at 400 °C for SS 316L pin. The worn surfaces shows that both workpiece materials experience increase in material transfer due to adhesive wear with rise in temperature. At 400 °C, adhesion is the primary wear mechanism for both workpiece materials. A further rise in temperature to 760 °C promotes the adhesive wear through oxides formation on both material surfaces. Similarly, Ti40Al60N coating shows the same friction behaviour with change in average steady state friction values for both material of Inconel 718 and SS 316L. Both workpiece materials responds in a similar way to wear volume loss, i.e. lowest at room temperature and highest at 760 °C. For Inconel 718, transfer of coating constituents on to the Inconel 718 pin surface was detected and associated with coating rupture and peeling, exacerbating with rise in temperature. Adhesion, abrasion, and oxidation are primary wear mechanisms at 400 °C and 760 °C. For SS 316L, coating transfer only happen at 400 °C. No damage of coating at 40 °C, a complete damage at 400 °C, and formation of dense porous oxides layers at 760 °C have been noticed. At 400 °C, adhesion, abrasion, and chipping while at 760 °C, adhesion, three body abrasion, ploughing and oxidation are the main wear mechanisms.
|
294 |
Ätiologie und Epidemiologie pathologischer Veränderungen an den Skeletfunden der neolithischen Populationen aus Calden, Rheine und Großenrode / Etiology and epidemiology of pathological changes on the skeletal remains of the Neolithic populations from Calden, Rheine and GroßenrodeCyris, Jan Christian 17 August 2020 (has links)
No description available.
|
295 |
Placement of Controls in Construction Equipment Using Operators´Sitting Postures : Process and RecommendationsJalkebo, Charlotte January 2014 (has links)
An ergonomically designed work environment may decrease work related musculoskeletal disorders, lead to less sick leaves and increase production time for operators and companies all around the world. Volvo Construction Equipment wants to deepen the knowledge and investigate more carefully how operators are actually sitting whilst operating the machines, how this affects placement of controls and furthermore optimize controls placements accordingly. The purpose is to enhance their product development process by suggesting guidelines for control placement with improved ergonomics based on operators’ sitting postures. The goal is to deliver a process which identifies and transfers sitting postures to RAMSIS and uses them for control placement recommendations in the cab and operator environments. Delimitations concerns: physical ergonomics, 80% usability of the resulted process on the machine types, and the level of detail for controls and their placements. Research, analysis, interviews, test driving of machines, video recordings of operators and the ergonomic software RAMSIS has served as base for analysis. The analysis led to (i) the conclusion that sitting postures affect optimal ergonomic placement of controls, though not ISO-standards, (ii) the conclusion that RAMSIS heavy truck postures does not seem to correspond to Volvo CE’s operators’ sitting postures and (iii) and to an advanced engineering project process suitable for all machine types and applicable in the product development process. The result can also be used for other machines than construction equipment. The resulted process consists of three independent sub-processes with step by step explanations and recommendations of; (i) what information that needs to be gathered, (ii) how to identify and transfer sitting postures into RAMSIS, (iii) how to use RAMSIS to create e design aid for recommended control placement. The thesis also contains additional enhancements to Volvo CE’s product development process with focus on ergonomics. A conclusion is that the use of motion capture could not be verified to work for Volvo Construction Equipment, though it was verified that if motion capture works, the process works. Another conclusion is that the suggested body landmarks not could be verified that they are all needed for this purpose except for those needed for control placement. Though they are based on previous sitting posture identification in vehicles and only those that also occur in RAMSIS are recommended, and therefore they can be used. This thesis also questions the most important parameters for interior vehicle design (hip- and eye locations) and suggests that shoulder locations are just as important. The thesis concluded five parameters for control categorization, and added seven categories in addition to those mentioned in the ISO-standards. Other contradictions and loopholes in the ISO-standards were identified, highlighted and discussed. Suggestions for improving the ergonomic analyses in RAMSIS can also be found in this report. More future research mentioned is more details on control placement as well as research regarding sitting postures are suggested. If the resulted process is delimited to concern upper body postures, other methods for posture identification may be used.
|
Page generated in 0.0658 seconds