1 |
Distribution cellulaire et subcellulaire du récepteur 5-HT₂� de la sérotonine dans le système nerveux central du ratCornea-Hébert, Virginia January 2004 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
2 |
Prédiction de la localisation cellulaire des protéines à l'aide de leurs séquences biologiques.Richard, Hugues 15 December 2005 (has links) (PDF)
Les compartiments cellulaires, de par les frontières membranaires qui les définissent, permettent l'accomplissement de taches métaboliques diverses au sein de la cellule. Cette spécialisation en domaines intracellulaires induit donc une différentiation dans la fonction des protéines qui les composent. Le grand nombre de gènes orphelins produits ces dernières années par les projets de séquençage motive la mise au point de méthodes efficaces pour la prédiction ab-initio de la localisation cellulaire des protéines.<br /><br />Ainsi la majorité de ce travail de thèse s'intéresse au problème de la prédiction du compartiment cellulaire d'une protéine à partir de sa séquence primaire.<br /><br />Nous nous sommes attachés à proposer des alternatives descriptives aux méthodes existantes de prédiction de la localisation cellulaire en utilisant : (1) de nouveaux descripteurs issus de la séquence nucléique, (2) une approche par chaînes de Markov cachées (CMC) et arbres de décision. L'approche par CMC est justifiée biologiquement a posteriori car elle permet la modélisation de signaux d'adressage conjointement à la prise en compte de la composition globale. En outre, l'étape de classification hiérarchique par arbre améliore nettement les résultats de classification. Les résultats obtenues lors des comparaisons avec les méthodes existantes et utilisant des descripteurs fondés sur la composition globale possèdent des performances similaires.
|
3 |
Characterization of P.falciparum histone methyltransferases : biological role and possible targets for new intervention strategies / Caractérisation des histones méthyltransférases de P.falciparum : rôle biologique et cibles possibles pour de nouvelles stratégies d'interventionDing, Shuai 15 December 2016 (has links)
On a montré que les PTM jouaient un rôle significatif de P. falciparum dans l'année de contrôle de la régulation transcriptionnelle, de l'expression monoaléique et de la différenciation sexuelle. Dix SET contenant des HKMTs contenant du domaine-ont été prédits; Six d'entre eux être essentiels pour le développement de stages de sang asexués. Le projet de thèse est centré sur la caractérisation biologique de PfSET7 et PfSET6. Nous avons observé l'échange de localisation cellulaire dynamique Pendant le cycle de vie: PfSET7 se trouvent dans de multiples foyers cytoplasmiques dans les stades érythrocytaires asexués et le stage de foie, et plus frappante, dans la membrane du parasite enrichie en gamétocytes. PfSET6 EXPOSÉ une localisation nucléaire dans les anneaux et un modèle ponctué dans le cytoplasme des trophozoites matures et schizontes, et est enrichi dans les structures de foyers dans le cytoplasme des gamétocytes. Pris ensemble, notre étude suggère que la méthylation non histone est beaucoup plus significative chez P. falciparum que précédemment attendu. La méthylation à médiation par PfSET7 Peut être une extension du code histone à - d'autres protéines cytosoliques; Partiellement PfSET6 s'associe à des voies de répression transcriptionnelle dans le noyau et des régulateurs post-transcriptionnels dans le cytoplasme. Une étude plus approfondie vise à identifier des cibles de domaine SET contenant des protéines dans le gène inducible knockout mutant parasite lignes. Le fait que PfSET7 et PfSET6 sont exprimés à différents stades du cycle de vie, les fait comme de nouvelles cibles pour le développement de médicaments contre cette maladie grave et de bloquer la transmission. / In P. falciparum, PTMs have been shown to play an important role in the control of transcriptional regulation, monoallelic expression, and sexual differentiation. Ten SET domain-containing HKMTs have been predicted; six of them appear to be essential for asexual blood stage development. My lab has expressed and purified two enzymatically active recombinant methyltransferase PfSET7 and PfSET6. In vitro enzyme kinetics assays shows they can methylate histones. The dissertation project is centered around the biological characterization of PfSET7 and PfSET6. We observed the dynamic changes of cellular localization during life cycle: PfSET7 are found in multiple cytoplasmic foci in asexual erythrocytic stages and liver stage, and more strikingly, enriched in parasite membrane in gametocytes. PfSET6 exhibited a nuclear localization in rings and a punctuated pattern in the cytoplasm of mature trophozoites and schizonts, and is enriched within foci-like structures in the cytoplasm of gametocytes. Taken together, our study suggests that non-histone methylation is much more important in P. falciparum than previously anticipated. PfSET7-mediated methylation may be an extension of the histone code to other cytosol proteins; PfSET6 partially associates with transcriptional repression pathways in the nucleus and post-transcriptional regulators in the cytoplasm. Further study aims to identify targets of SET domain containing proteins within the inducible gene knock out mutant parasite lines. The fact that PfSET7 and PfSET6 are expressed in different life cycle stages, makes them as novel targets for drug development that could against severe disease and to block pathogen transmission.
|
4 |
Effets biologiques de nanoparticules manufacturées : influence de leurs caractéristiquesSimon-deckers, Angélique 05 December 2008 (has links) (PDF)
A l'aube du XXIème siècle, les nanosciences et nanotechnologies promettent des progrès remarquables dans de nombreux domaines, mais soulèvent aussi de nombreuses inquiétudes en particulier au sujet de leurs effets sur la santé humaine et l'environnement. Cette étude a pour objectif d'apporter des éléments de réponse à la compréhension de la nature et de l'origine des effets biologiques de nanoparticules manufacturées : les oxydes de titane et les nanotubes de carbone. Pour cela les effets sur la viabilité cellulaire, la localisation cellulaire et la capacité à provoquer un stress oxydant, d'un panel de ces nanoparticules caractérisées de façon poussée ont été regardés in vitro sur deux modèles cellulaires : les cellules alvéolaires humaines A549 permettant de se placer dans un contexte d'exposition de l'homme par voie respiratoire et les bactéries Escherichia coli MG1655 et Cupriavidus metallidurans CH34 permettant de se placer dans un contexte de contamination environnementale. Il apparaît que les nanoparticules étudiées ne sont pas inertes pour ces différents modèles et que la nature et l'intensité des effets observés dépendent non seulement du modèle mais surtout des conditions d'exposition et des caractéristiques physicochimiques des nanoparticules qui pour certaines ont pu être identifiées comme prépondérantes.
|
5 |
Métabolisme lipidique et cycle du glyoxylate chez la levure Yarrowia lipolyticaKabran-Gnankon, Affoue Philomene 30 September 2010 (has links) (PDF)
La levure Yarrowia lipolytica est une levure oléagineuse capable de croître sur les substrats hydrophobes et les composés en C2 comme seul source de carbonne. La première partie de notre étude a permis de déterminer la localisation des protéines Lro1p et Dga1p impliquées dans la dernière étape de la synthèse des triglycérides. Ces protéines sont localisées dans la membrane cytoplasmique et à la surface des corps lipidique pour Lro1p et à la surface des corps lipidique pour Lro1p et à la surface des corps lipidiques pour dga1p. La deuxième partie de cette étude a permis d'avoir une idée plus précise du fonctionnement du cycle du glyoxylate chez la levure Y. lipolytica. Le premier objectif de cette deuxième partie de notre étude était de comprendre le fonctionnement du gène de la malate déshydrogénase chez cette levure. Contrairement à la levure S. cerevisiae qui possède trois gènes codant pour une malate déshydrogénaze, Y. lipolytica ne possède que deux gènes. Le premier gène YALI0D16753g code une malate déshydrogénase mitochondriale et le second gène YALI0E14190g présente une particularité d'épissage alternatif. En effet, le gène YALI0E14190g, en fonction de l'épissage, code une malate déshydrogénase cytoplasmique (séquence C-terminale PAN) ou une malate déshydrogénase adressée aux peroxysomes (séquence C-terminale AKI). Dans une troisième partie, nous nous sommes intéressés aux autres gènes du cycle du glyoxylate. La disruption du gène ICL1 a entrainé une incapacité de croissance du mutant sur acide oléique et sur les composés en C2 (éthanol, acétate). Néanmoins la suppression MLS et CIT2 n'a pas eu d'impact lors de la croissance sur les milieux nécessitant l'implication cycle du glyoxylate.
|
6 |
Génomique fonctionnelle de la transduction de signal, isolement et caractérisation de récepteurs kinases chez Solanum chacoenseGermain, Hugo January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
7 |
Étude de la régulation des activités transcriptionnelle, réplicative et de l’instabilité de la protéine régulatrice E2 des papillomavirusSénéchal, Hélène 02 1900 (has links)
Les papillomavirus sont de petits virus à ADN double brin qui infectent les cellules de l’épithélium de la peau et des muqueuses d’une variété de vertébrés causant des lésions bénignes telles des verrues. Certains de ces virus sont également associés au développement de lésions malignes, notamment le cancer du col utérin. La protéine régulatrice E2 des papillomavirus est impliquée dans diverses fonctions contribuant à l’établissement de l’infection par ces virus. Entre autre, E2 régule la transcription des gènes viraux, participe à l’initiation de la réplication de l’ADN viral en s’associant à l’hélicase virale E1 et est responsable du maintien et de la ségrégation de l’épisome viral au cours de la division cellulaire. Toutes ces activités sont attribuables à la capacité de E2 à s’associer au génome viral et à interagir avec des protéines virales et cellulaires. De plus, ces fonctions sont elles-mêmes régulées par des modifications post-traductionnelles de la protéine E2. Plusieurs études ont été réalisées afin de découvrir les mécanismes de régulation des fonctions de E2 mais le rôle exact des différents domaines de E2 dans ces contrôles reste à être défini.
En premier lieu, nous nous sommes intéressés à l’interaction entre E2 et Brd4(L) qui avait été définie comme étant essentielle à la ségrégation de l’épisome. Plusieurs caractéristiques associées à la protéine Brd4(L) telles que sa capacité à lier les lysines acétylées des histones, son interaction avec le complexe Mediator et sa participation à l’activation de la transcription en formant un complexe avec pTEFb, nous ont permis d’émettre l’hypothèse que l’interaction E2-Brd4(L) est nécessaire à l’activité transcriptionnelle de E2. Nous avons démontré que la protéine Brd4(L) interagit avec le domaine de transactivation de E2 de divers types de papillomavirus. De plus, cette interaction implique les résidus de E2 essentiels à son activité transcriptionnelle. Ainsi, ces résultats proposent que l’association E2-Brd4(L) serve à la régulation de la transcription des gènes viraux. Dans un second temps, nos recherches se sont concentrées sur l’existence d’une interface de dimérisation au sein du domaine de transactivation de E2 et de son implication dans les activités transcriptionnelles et réplicatives de la protéine. Nos études ont aussi mis en évidence que l’intégrité de la structure de ce domaine contribue au bon fonctionnement de la réplication du génome viral. Cette découverte suggère que la dimérisation de E2 peut réguler l’initiation de la réplication et propose l’existence d’un niveau de régulation additionnel impliquant l’état de la structure quaternaire de la protéine E2 et une modulation de l’interaction entre E1 et E2 à cette étape du cycle viral. Finalement, l’étude de l’instabilité de la protéine E2 nous a permis de définir une région importante dans le domaine flexible de la protéine, nécessaire à sa dégradation par le protéasome. De plus, la présence de résidus conservés localisés dans ce domaine, sont associés à la dégradation et portent la signature d’un signal de localisation nucléaire de type PY-NLS, suggérant que la stabilité de la protéine E2 est régulée par sa localisation au sein de la cellule.
Ces études démontrent l’existence de nouvelles stratégies de régulation des activités transcriptionnelle et réplicative de la protéine E2 des papillomavirus. La compréhension de ces mécanismes nous permet de mieux cerner les étapes favorisant l’établissement et la progression du cycle viral et d’identifier de nouvelles cibles thérapeutiques contre les infections aux papillomavirus. / Papillomaviridae is a family of small double-stranded DNA viruses known as papillomaviruses (PV) which infect skin and mucosal epithelial cells where they cause benign lesions such as warts. A subset of these viruses is associated with the development of malignant lesions and is the causal agent of cervical cancer. Papillomavirus E2 regulatory protein is involved in several functions leading to the establishment of the viral infection. These activities include the regulation of viral genes transcription, it participation to the initiation of viral DNA replication by recruiting the viral helicase E1, and to the maintenance and segregation of the viral episome during cellular division. All these functions are associated to the ability of E2 to bind specifically the viral genome, to interact with viral and cellular proteins and to acquire post-translational modifications.
The first article of this thesis led to the identification of Brd4(L) as the major protein associated to E2 protein of different papillomavirus types. This interaction involves the amino acids associate to the transcription function of E2. The protein Brd4(L) was identified originally as a factor that maintains epigenetic memory by it interaction with acetylated histones during mitosis. This association with the chromatin, it interaction with Mediator complex and it participation to the cellular transcription by recruiting pTEFb complex allowed us to propose that the interaction between Brd4 and E2 is essential to the regulation of viral gene transcription. The second part of this work based on previous characterization of the transactivation domain dimerization interface; investigate the role of this surface in the transcriptional and replicative activities of E2. Our studies demonstrated that the integrity of the TAD dimerization interface may contribute to the DNA replication activity of E2. This discovery suggests that the dimerization interface may regulate the viral DNA replication by the redox state of the E2 protein. A fine characterization of this interface may provide new aspect of the interaction between E1 and E2 in the context of viral cycle. Finally, the third section of this thesis define a region of E2 protein associated to it degradation by the proteasome. This study also demonstrates that the stability of E2 is related to its cellular localization and suggests that the highly conserved residues found in this region may represent a PY-NLS nuclear localization signal signature.
This thesis shows the existence of different approaches to regulate the transcriptional and the replicative activities as well as the stability of the papillomavirus E2 protein to favor the establishment and the progression of viral cycle.
|
8 |
Étude de la régulation des activités transcriptionnelle, réplicative et de l’instabilité de la protéine régulatrice E2 des papillomavirusSénéchal, Hélène 02 1900 (has links)
Les papillomavirus sont de petits virus à ADN double brin qui infectent les cellules de l’épithélium de la peau et des muqueuses d’une variété de vertébrés causant des lésions bénignes telles des verrues. Certains de ces virus sont également associés au développement de lésions malignes, notamment le cancer du col utérin. La protéine régulatrice E2 des papillomavirus est impliquée dans diverses fonctions contribuant à l’établissement de l’infection par ces virus. Entre autre, E2 régule la transcription des gènes viraux, participe à l’initiation de la réplication de l’ADN viral en s’associant à l’hélicase virale E1 et est responsable du maintien et de la ségrégation de l’épisome viral au cours de la division cellulaire. Toutes ces activités sont attribuables à la capacité de E2 à s’associer au génome viral et à interagir avec des protéines virales et cellulaires. De plus, ces fonctions sont elles-mêmes régulées par des modifications post-traductionnelles de la protéine E2. Plusieurs études ont été réalisées afin de découvrir les mécanismes de régulation des fonctions de E2 mais le rôle exact des différents domaines de E2 dans ces contrôles reste à être défini.
En premier lieu, nous nous sommes intéressés à l’interaction entre E2 et Brd4(L) qui avait été définie comme étant essentielle à la ségrégation de l’épisome. Plusieurs caractéristiques associées à la protéine Brd4(L) telles que sa capacité à lier les lysines acétylées des histones, son interaction avec le complexe Mediator et sa participation à l’activation de la transcription en formant un complexe avec pTEFb, nous ont permis d’émettre l’hypothèse que l’interaction E2-Brd4(L) est nécessaire à l’activité transcriptionnelle de E2. Nous avons démontré que la protéine Brd4(L) interagit avec le domaine de transactivation de E2 de divers types de papillomavirus. De plus, cette interaction implique les résidus de E2 essentiels à son activité transcriptionnelle. Ainsi, ces résultats proposent que l’association E2-Brd4(L) serve à la régulation de la transcription des gènes viraux. Dans un second temps, nos recherches se sont concentrées sur l’existence d’une interface de dimérisation au sein du domaine de transactivation de E2 et de son implication dans les activités transcriptionnelles et réplicatives de la protéine. Nos études ont aussi mis en évidence que l’intégrité de la structure de ce domaine contribue au bon fonctionnement de la réplication du génome viral. Cette découverte suggère que la dimérisation de E2 peut réguler l’initiation de la réplication et propose l’existence d’un niveau de régulation additionnel impliquant l’état de la structure quaternaire de la protéine E2 et une modulation de l’interaction entre E1 et E2 à cette étape du cycle viral. Finalement, l’étude de l’instabilité de la protéine E2 nous a permis de définir une région importante dans le domaine flexible de la protéine, nécessaire à sa dégradation par le protéasome. De plus, la présence de résidus conservés localisés dans ce domaine, sont associés à la dégradation et portent la signature d’un signal de localisation nucléaire de type PY-NLS, suggérant que la stabilité de la protéine E2 est régulée par sa localisation au sein de la cellule.
Ces études démontrent l’existence de nouvelles stratégies de régulation des activités transcriptionnelle et réplicative de la protéine E2 des papillomavirus. La compréhension de ces mécanismes nous permet de mieux cerner les étapes favorisant l’établissement et la progression du cycle viral et d’identifier de nouvelles cibles thérapeutiques contre les infections aux papillomavirus. / Papillomaviridae is a family of small double-stranded DNA viruses known as papillomaviruses (PV) which infect skin and mucosal epithelial cells where they cause benign lesions such as warts. A subset of these viruses is associated with the development of malignant lesions and is the causal agent of cervical cancer. Papillomavirus E2 regulatory protein is involved in several functions leading to the establishment of the viral infection. These activities include the regulation of viral genes transcription, it participation to the initiation of viral DNA replication by recruiting the viral helicase E1, and to the maintenance and segregation of the viral episome during cellular division. All these functions are associated to the ability of E2 to bind specifically the viral genome, to interact with viral and cellular proteins and to acquire post-translational modifications.
The first article of this thesis led to the identification of Brd4(L) as the major protein associated to E2 protein of different papillomavirus types. This interaction involves the amino acids associate to the transcription function of E2. The protein Brd4(L) was identified originally as a factor that maintains epigenetic memory by it interaction with acetylated histones during mitosis. This association with the chromatin, it interaction with Mediator complex and it participation to the cellular transcription by recruiting pTEFb complex allowed us to propose that the interaction between Brd4 and E2 is essential to the regulation of viral gene transcription. The second part of this work based on previous characterization of the transactivation domain dimerization interface; investigate the role of this surface in the transcriptional and replicative activities of E2. Our studies demonstrated that the integrity of the TAD dimerization interface may contribute to the DNA replication activity of E2. This discovery suggests that the dimerization interface may regulate the viral DNA replication by the redox state of the E2 protein. A fine characterization of this interface may provide new aspect of the interaction between E1 and E2 in the context of viral cycle. Finally, the third section of this thesis define a region of E2 protein associated to it degradation by the proteasome. This study also demonstrates that the stability of E2 is related to its cellular localization and suggests that the highly conserved residues found in this region may represent a PY-NLS nuclear localization signal signature.
This thesis shows the existence of different approaches to regulate the transcriptional and the replicative activities as well as the stability of the papillomavirus E2 protein to favor the establishment and the progression of viral cycle.
|
9 |
Exploring TERRA (TElomeric Repeat-containing RNA) Expression and Regulation During Cell Growth in Saccharomyces cerevisiaePerez Romero, Carmina Angelica 08 1900 (has links)
Please find the referenced videos attached / The physical ends of eukaryotic chromosomes consist of repetitive DNA sequences, which are associated with specialized proteins forming a nucleoprotein structure essential for the integrity of the linear chromosomes, and are known as telomeres. Telomerase is an enzyme responsible for the maintenance of the telomeric repeats at the end of the chromosomes. Telomerase is a ribonucleoprotein, which contains a catalytic subunit that possesses reverse transcriptase activity, and a RNA subunit that acts as a template, since it possess the telomeric repeat sequences necessary to amplify telomere ends. Telomeres are transcribed in most eukaryotes into a non-coding RNA know as TERRA (Telomeric repeats-containing RNA). It has been proposed that TERRA may act as a regulator of telomere homeostasis, and as an inhibitor of telomerase, however, its specific function is still unknown. In Saccharomyces cerevisiae, TERRA is rapidly degraded by the 5’-3’ Rat1 exonuclease, which has hampered its study by classic biochemical experiments in yeast.
In this thesis, we report the use of cytological approaches to study TERRA in budding yeast. Two different approaches were used for this purpose: the fluorescent in-situ hybridization (FISH) and the labeling of TERRA by the MS2-GFP system, which allow the visualization of TERRA transcripts form a single telomere in living cells. With these two approaches, we observed that TERRA is expressed from a single telomere and accumulates as a single perinuclear foci, in a small percentage of cells population. We also demonstrate that TERRA expression occurs due to telomere shortening.
We demonstrate that TERRA interacts in vivo with the telomerase RNA (TLC1) in yeast. Telomere elongation depends on the action of several telomerase molecules that are visible as clusters, which associate with telomeres in late S phase in yeast, and mammalian cells. In adidition, we show that TERRA stimulates the nucleation of telomerase clusters. By performing time course experiments of TERRA and TLC1 RNA in live cells, we observed that TERRA acts as a scaffold for generating telomerase clusters, which are then recruited in late S phase to the telomere from which TERRA molecules originated. The recruitment of TERRA to its telomere of origin is dependent on factors that control telomerase recruitment at telomeres like: Mre11, Tel1 and the yKu complex. We propose that a short telomere expresses TERRA to assemble and organize telomerase molecules, which later on allows their recruitment at the short telomere, where elongation is needed.
Finally we showed an up-regulation of TERRA, and telomerase RNA TLC1, accompanied by a predominant cytoplasmic localization as cell growth progresses from exponential growth to diauxic shift, and stationary phase. In these conditions, TERRA foci co-localize with TLC1 RNA foci, suggesting that the function of TERRA as a scaffold molecule to generate telomerase cluster is necessary for this yeast cell growth phases. / Les télomères à l’extrémité des chromosomes constituent une structure d’ADN et de protéines essentielle à l’intégrité de ces chromosomes. La télomérase est l’enzyme responsable du maintien des répétitions télomériques à l’extrémité des chromosomes. Cette enzyme est constituée d’une sous-unité catalytique, qui possède une activité de transcriptase réverse, et d’une sous-unité d’ARN, qui fourni la matrice nécessaire à la synthèse des répétitions télomériques. Les ARN contenant des répétions télomériques (ou Telomeric repeats-containing RNA; TERRA) constitue une nouvelle classe d’ARN non-codants transcrits à partir des télomères et conservée chez la plupart des eucaryotes. TERRA a été proposé d’agir comme un régulateur de l‘homéostasie des télomères et comme inhibiteur de la télomérase, mais sa fonction spécifique reste inconnue. De plus, chez la levure Saccharomyces cerevisiae, TERRA est rapidement dégradé par l’exonucléase 5’-3’ Rat1, ce qui complique l’étude de cet ARN par les méthodes biochimiques classiques.
Dans cette thèse, nous rapportons l‘utilisation d’une approche cytologique pour étudier TERRA dans les cellules de levures. Deux approches sont utilisées : l’hybridation in situ en fluorescence (FISH) et l’étiquetage de TERRA à l’aide du système MS2-GFP, qui nous permet de visualiser l’expression de TERRA transcrit d’un seul télomère dans des cellules vivantes. Avec ces deux approches, nous observons que TERRA exprimé à partir d’un seul télomère s’accumule dans un faible nombre de cellules, sous la forme d’un focus périnucléaire. De plus, nous montrons que TERRA est exprimé lorsque son télomère raccourcit.
Par immunoprécipitation, nous montrons que TERRA interagit in vivo avec l’ARN de la télomérase de levure, TLC1. L’élongation des télomères dépend de l‘action de multiples molécules de télomérase, qui sont visibles sous la forme de clusters de télomérases, qui s‘associent en phase S avec les télomères chez la levure et les cellules de mammifère. Nous démontrons que TERRA stimule la nucléation de ces clusters de télomérase. Par imagerie en temps réel de TERRA et de l’ARN TLC1, nous observons que TERRA agit comme molécule d’échafaudage pour générer des clusters de télomérases, qui sont par la suite recrutés, en phase S, au télomère duquel TERRA a été exprimé. Le recrutement d’un focus de TERRA à son télomère d’origine dépend des facteurs contrôlant le recrutement de la télomérase aux télomères : Mre11, Tel1 et le complexe yKu. Nous proposons qu’un télomère court exprime TERRA pour assembler et organiser les molécules de télomérase, afin que celles-ci soit puissent être recrutées au télomère court pour permettre son élongation.
Enfin, nous observons une surexpression de l’ARN de la télomérase TLC1 et de TERRA, ainsi qu’une accumulation cytoplasmique de ceux-ci sous la forme de foci, lorsque la cellule passe de la phase de croissance exponentiel à la phase diauxique, puis à la phase stationnaire. Dans ces conditions, les foci d’ARN TLC1 colocalisent avec les foci de TERRA, suggérant que la fonction de TERRA comme molécule d’échafaudage pour générer des foci de télomérase est aussi nécessaire durant ces phases du cycle de croissance des levures.
|
Page generated in 0.1213 seconds