• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 156
  • 33
  • 26
  • 11
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 256
  • 256
  • 108
  • 58
  • 57
  • 56
  • 45
  • 29
  • 28
  • 28
  • 27
  • 24
  • 22
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Pattern Formation in Cellular Automaton Models - Characterisation, Examples and Analysis / Musterbildung in Zellulären Automaten Modellen - Charakterisierung, Beispiele und Analyse

Dormann, Sabine 26 October 2000 (has links)
Cellular automata (CA) are fully discrete dynamical systems. Space is represented by a regular lattice while time proceeds in finite steps. Each cell of the lattice is assigned a state, chosen from a finite set of "values". The states of the cells are updated synchronously according to a local interaction rule, whereby each cell obeys the same rule. Formal definitions of deterministic, probabilistic and lattice-gas CA are presented. With the so-called mean-field approximation any CA model can be transformed into a deterministic model with continuous state space. CA rules, which characterise movement, single-component growth and many-component interactions are designed and explored. It is demonstrated that lattice-gas CA offer a suitable tool for modelling such processes and for analysing them by means of the corresponding mean-field approximation. In particular two types of many-component interactions in lattice-gas CA models are introduced and studied. The first CA captures in abstract form the essential ideas of activator-inhibitor interactions of biological systems. Despite of the automaton´s simplicity, self-organised formation of stationary spatial patterns emerging from a randomly perturbed uniform state is observed (Turing pattern). In the second CA, rules are designed to mimick the dynamics of excitable systems. Spatial patterns produced by this automaton are the self-organised formation of spiral waves and target patterns. Properties of both pattern formation processes can be well captured by a linear stability analysis of the corresponding nonlinear mean-field (Boltzmann) equations.
232

Modèles cinétiques de particules en interaction avec leur environnement / Kinetics models of particles interacting with their environment

Vavasseur, Arthur 24 October 2016 (has links)
Dans cette thèse, nous étudions la généralisation à une infinité de particules d'un modèle hamiltonien décrivant les interactions entre une particule et son environnement. Le milieu est considéré comme une superposition continue de membranes vibrantes. Au bout d'un certain temps, tout se passe comme si la particule était soumise à une force de frottement linéaire. Les équations obtenus pour un grand nombre de particules sont proches des équations de Vlasov. Dans un premier chapitre, on montre d'abord l'existence et l'unicité des solutions puis on s'intéresse à certains régimes asymptotiques; en faisant tendre la vitesse des ondes dans le milieu vers l'infini et en redimensionnant les échelles, on obtient à la limite une équation de Vlasov, on montre que si l'on modifie en plus une fonction paramètrisant le système, on obtient l'équation de Vlasov-Poisson attractive. Dans un deuxième chapitre, on ajoute un terme de diffusion à l'équation. Cela correspond à prendre en compte une agitation brownienne et un frottement linéaire sur les particules. Le principal résultat de ce chapitre est la convergence de la distribution de particules vers une unique distribution stationnaire. On montre la limite de diffusion pour ce nouveau système en faisant tendre simultanément la vitesse de propagation vers l'infini. On obtient une équation plus simple pour la densité spatiale. Dans le chapitre 3, nous montrons la validité des équations déjà étudiées par une limite de champ moyen. Dans le dernier chapitre, on étudie l'asymptotique en temps long de l'équation décrivant l'évolution de la densité spatiale obtenue dans le chapitre 2, des résultats faibles de convergence sont obtenus / The goal of this PhD is to study a generalisation of a model describing the interaction between a single particle and its environment. We consider an infinite number of particles represented by their distribution function. The environment is modelled by a vibrating scalar field which exchanges energy with the particles. In the single particle case, after a large time, the particle behaves as if it were subjected to a linear friction force driven by the environment. The equations that we obtain for a large number of particles are close to the Vlasov equation. In the first chapter, we prove that our new system has a unique solution. We then care about some asymptotic issues; if the wave velocity in the medium goes to infinity, adapting the scaling of the interaction, we connect our system with the Vlasov equation. Changing also continuously a function that parametrizes the model, we also connect our model with the attractive Vlasov-Poisson equation. In the second chapter, we add a diffusive term in our equation. It means that we consider that the particles are subjected to a friction force and a Brownian motion. Our main result states that the distribution function converges to the unique equilibrium distribution of the system. We also establish the diffusive limit making the wave velocity go to infinity at the same time. We find a simpler equation satisfied by the spatial density. In chapter 3, we prove the validity of both equations studied in the two first chapters by a mean field limit. The last chapter is devoted to studying the large time asymptotic properties of the equation that we obtained on the spatial density in chapter 2. We prove some weak convergence results
233

A microscopic treatment of correlated nucleons : collective properties in stable and exotic nuclei / Description microscopique de nucléons corrélés : propriétés collectives dans les noyaux stables et exotiques

Vasseur, Olivier 18 September 2019 (has links)
Ce travail de doctorat s'inscrit dans le cadre des techniques adaptées à la résolution du problème à N corps nucléaire. Il a été motivé par la perspective d'utiliser des méthodes allant au-delà de l'approximation de champ moyen pour améliorer la description des spectres d'excitation des noyaux stables et exotiques, notamment les états de basse énergie et les résonances géantes. À cette fin, l'approche choisie est le développement de modèles basés sur la second random-phase approximation (SRPA) utilisée avec une procédure de soustraction. Ces développements ont pour but d'étendre le champ d'applicabilité du modèle initial et d'inclure des corrélations dans l'état fondamental.Une première partie consiste en l'application de la SRPA avec une méthode de soustraction à l'étude de la réponse dipolaire (comprenant la polarisabilité électrique dipolaire) et quadrupolaire de noyaux de masse moyenne à lourds. Nous vérifions que la SRPA avec soustraction corrige les problèmes observés avec la SRPA standard et améliore la description des spectres d'excitation, comparativement à la random-phase approximation (RPA). Nous étudions également les effets au-delà du champ moyen dûs à la SSRPA avec soustraction, en exploitant la relation entre les modes de respiration axiaux des noyaux et la masse effective de la matière nucléaire.Une seconde partie est dédiée à des extensions.Premièrement, nous étendons les outils numérique initiaux en utilisant l'approximation equal-filling (EFA) afin de permettre les applications aux noyaux ayant une orbitale partiellement occupée. Nous proposons ensuite une méthode d'estimation partielle des effets d'appariement en utilisant des nombres d'occupation corrélés.Une étude des moyens de renormaliser la SRPA avec soustraction est menée en employant un modèle allant au-delà de l'approximation de quasiboson. Cette extension est également basée sur l'utilisation de nombres d'occupation comme moyen d'inclure des corrélations dans l'état fondamental. Nous montrons que les corrélations obtenues par le calcul itératif en RPA des nombres d'occupation ne sont pas suffisantes pour corriger les problèmes de la SRPA standard. / This Ph.D. work falls within the scope of theoretical techniques tailored to the solution of the nuclear many-body problem. It was motivated by the perspective of using beyond-mean-field methods to improve the description of excitation spectra of stable and exotic nuclei, especially the low-energy states and the giant resonances. The chosen path in this direction is the development of models based on the second random-phase approximation (SRPA) used with a subtraction procedure. These developments aim to extend the range of applicability of the initial model and to include correlations in the ground state.A first part consists in applying the SRPA used with a subtraction method to the study of the dipole and quadrupole response in medium to heavy-mass nuclei, including the electric dipole polarizability. We verify that the subtracted SRPA corrects the problems observed with the standard SRPA model and improves the description of excitation spectra compared to the random-phase approximation (RPA). We also study beyond-mean-field effects that arise in the subtracted SRPA by exploiting the relation between the axial breathing modes in nuclei and the effective mass in nuclear matter.A second part is dedicated to extensions.As a first step, we extend the initial numerical tools by employing the equal-filling approximation (EFA), to enable the applications to nuclei with partially-occupied orbitals. We next propose a method to estimate part of the pairing effects using correlated occupation numbers.A study of possible ways to renormalize the subtracted SRPA is carried out by employing a model which goes beyond the quasiboson approximation. This extension also relies on the use of occupation numbers as a means to include ground state correlations. We show that correlations obtained from the computation of occupation numbers in iterative RPA calculations are not sufficient to address the standard SRPA drawbacks.
234

Applications of the Fokker-Planck Equation in Computational and Cognitive Neuroscience

Vellmer, Sebastian 20 July 2020 (has links)
In dieser Arbeit werden mithilfe der Fokker-Planck-Gleichung die Statistiken, vor allem die Leistungsspektren, von Punktprozessen berechnet, die von mehrdimensionalen Integratorneuronen [Engl. integrate-and-fire (IF) neuron], Netzwerken von IF Neuronen und Entscheidungsfindungsmodellen erzeugt werden. Im Gehirn werden Informationen durch Pulszüge von Aktionspotentialen kodiert. IF Neurone mit radikal vereinfachter Erzeugung von Aktionspotentialen haben sich in Studien die auf Pulszeiten fokussiert sind als Standardmodelle etabliert. Eindimensionale IF Modelle können jedoch beobachtetes Pulsverhalten oft nicht beschreiben und müssen dazu erweitert werden. Im erste Teil dieser Arbeit wird eine Theorie zur Berechnung der Pulszugleistungsspektren von stochastischen, multidimensionalen IF Neuronen entwickelt. Ausgehend von der zugehörigen Fokker-Planck-Gleichung werden partiellen Differentialgleichung abgeleitet, deren Lösung sowohl die stationäre Wahrscheinlichkeitsverteilung und Feuerrate, als auch das Pulszugleistungsspektrum beschreibt. Im zweiten Teil wird eine Theorie für große, spärlich verbundene und homogene Netzwerke aus IF Neuronen entwickelt, in der berücksichtigt wird, dass die zeitlichen Korrelationen von Pulszügen selbstkonsistent sind. Neuronale Eingangströme werden durch farbiges Gaußsches Rauschen modelliert, das von einem mehrdimensionalen Ornstein-Uhlenbeck Prozess (OUP) erzeugt wird. Die Koeffizienten des OUP sind vorerst unbekannt und sind als Lösung der Theorie definiert. Um heterogene Netzwerke zu untersuchen, wird eine iterative Methode erweitert. Im dritten Teil wird die Fokker-Planck-Gleichung auf Binärentscheidungen von Diffusionsentscheidungsmodellen [Engl. diffusion-decision models (DDM)] angewendet. Explizite Gleichungen für die Entscheidungszugstatistiken werden für den einfachsten und analytisch lösbaren Fall von der Fokker-Planck-Gleichung hergeleitet. Für nichtliniear Modelle wird die Schwellwertintegrationsmethode erweitert. / This thesis is concerned with the calculation of statistics, in particular the power spectra, of point processes generated by stochastic multidimensional integrate-and-fire (IF) neurons, networks of IF neurons and decision-making models from the corresponding Fokker-Planck equations. In the brain, information is encoded by sequences of action potentials. In studies that focus on spike timing, IF neurons that drastically simplify the spike generation have become the standard model. One-dimensional IF neurons do not suffice to accurately model neural dynamics, however, the extension towards multiple dimensions yields realistic behavior at the price of growing complexity. The first part of this work develops a theory of spike-train power spectra for stochastic, multidimensional IF neurons. From the Fokker-Planck equation, a set of partial differential equations is derived that describes the stationary probability density, the firing rate and the spike-train power spectrum. In the second part of this work, a mean-field theory of large and sparsely connected homogeneous networks of spiking neurons is developed that takes into account the self-consistent temporal correlations of spike trains. Neural input is approximated by colored Gaussian noise generated by a multidimensional Ornstein-Uhlenbeck process of which the coefficients are initially unknown but determined by the self-consistency condition and define the solution of the theory. To explore heterogeneous networks, an iterative scheme is extended to determine the distribution of spectra. In the third part, the Fokker-Planck equation is applied to calculate the statistics of sequences of binary decisions from diffusion-decision models (DDM). For the analytically tractable DDM, the statistics are calculated from the corresponding Fokker-Planck equation. To determine the statistics for nonlinear models, the threshold-integration method is generalized.
235

Mean-Variance Portfolio Selection Accounting for Financial Bubbles: A Mean-Field Type Approach / Portföljoptimering av medelfältstyp med hänsyn till finansiella bubblor

Häggbom, Marcus, Nafar, Shayan January 2019 (has links)
The phenomenon of financial bubbles is known to have impacted various markets since the seventeenth century. Such bubbles are known to form when the market drastically overvalues the price of an asset, causing its market value to increase hyperbolically, only to suddenly collapse once the untenable perceived future prospects of the asset are realized. Hence, it remains crucial for investors to be able to sell off assets residing within a bubble before they burst and their value is significantly diminished. Thus, portfolio optimization methods capable of accounting for financial bubbles in stock dynamics is a field of great value and interest for market participants. Portfolio optimization with respect to the mean-field is a relatively novel approach to accounting for the bubble-phenomenon. Hence, this paper investigates a previously unattempted method of portfolio optimization, providing a mean-field solution to the mean-variance trade-off problem, as well as providing new definitions of stock dynamics capable of diverting investors from bubbles. / Finansiella bubblor är ett fenomen som har påverkat marknader sedan 1600-talet. Bubblor tenderar att skapas när marknaden kraftigt övervärderar en tillgång vilket orsakar en hyperbolisk tillväxt i marknadspriset. Detta följs av en plötslig kollaps. Därför är det viktigt för investerare att kunna minska sin exponering mot aktier som befinner sig i en bubbla, så att risken för stora plötsliga förluster reduceras. Således är portföljoptimering där aktiedynamiken tar hänsyn till bubblor av högt intresse för marknadsdeltagare. Portföljoptimering med avseende på medelfältet är ett relativt nytt tillvägagångssätt för att behandla bubbelfenomen. Av denna anledning undersöks i detta arbete en hittills oprövad lösningsmetod som möjliggör en medelfältslösning till avvägningen mellan förväntad avkastning och risk. Där-utöver presenteras även ett antal nya modeller för aktier som kan bortleda investerare från bubblor.
236

Approximate Action Selection For Large, Coordinating, Multiagent Systems

Sosnowski, Scott T. 27 May 2016 (has links)
No description available.
237

[pt] TEORIA DE REGULARIDADE PARA MODELOS COMPLETAMENTE NÃO-LINEARES / [en] TOWARDS A REGULARITY THEORY FOR FULLY NONLINEAR MODELS

PEDRA DARICLEA SANTOS ANDRADE 28 December 2020 (has links)
[pt] Neste trabalho examinamos equações completamente não-lineares em dois contextos distintos. A princípio, estudamos jogos de campo médio completamente não-lineares. Aqui, examinamos ganhos de regularidade para as soluções do problema, existência de soluções, resultados de relaxação e aspectos particulares de um example explícito. A segunda metade da tese dedica-se à regularidade ótima das soluções de um modelo completamente não-linear que degenera-se com respeito ao gradiente das soluções. A pergunta fundamental subjacente a ambos os tópicos diz respeito aos efeitos da elipticidade sobre propriedades intrínsecas das soluções de equações não-lineares. Mais precisamente, no caso dos jogos de campo médio, a elipticidade parece magnificada pelos efeitos do acoplamento, enquanto no caso dos problemas degenerados, esta quantidade colapsa em sub-regiões do domínio, dando origem a delicados fenômenos. Nossa análise inclui um breve contexto da inserção do trabalho. / [en] In this thesis, we examine fully nonlinear problems in two distinct contexts. The first part of our work focuses on fully nonlinear mean-field games. In this context, we examine gains of regularity, the existence of solutions, relaxation results, and particular aspects of a one-dimensional problem. The second half of the thesis concerns a (sharp) regularity theory for fully nonlinear equations degenerating with respect to the gradient of the solutions. The fundamental question underlying both topics regards the effects of ellipticity on the intrinsic properties of solutions to nonlinear equations. To be more precise, in the case of mean-field game systems, ellipticity seems to be magnified through the coupling structure. On the other hand, in the degenerate setting, ellipticity collapses, giving rise to intricate regularity phenomena. Our analysis is preceded by some context on both topics.
238

Phases, Transitions, Patterns, And Excitations In Generalized Bose-Hubbard Models

Kurdestany, Jamshid Moradi 05 1900 (has links) (PDF)
This thesis covers most of my work in the field of ultracold atoms loaded in optical lattices. This thesis can be divided into five different parts. In Chapter 1, after a brief introduction to the field of optical lattices I review the fundamental aspects pertaining to the physics of systems in periodic potentials and a short overview of the experiments on ultracold atoms in an optical lattice. In Chapter 2 we develop an inhomogeneous mean-field theory for the extended Bose-Hubbard model with a quadratic, confining potential. In the absence of this poten¬tial, our mean-field theory yields the phase diagram of the homogeneous extended Bose-Hubbard model. This phase diagram shows a superfluid (SF) phase and lobes of Mott-insulator(MI), density-wave(DW), and supersolid (SS) phases in the plane of the chemical potential and on-site repulsion ; we present phase diagrams for representative values of , the repulsive energy for bosons on nearest-neighbor sites. We demonstrate that, when the confining potential is present, superfluid and density-wave order parameters are nonuniform; in particular, we obtain, for a few representative values of parameters, spherical shells of SF, MI ,DW ,and SSphases. We explore the implications of our study for experiments on cold-atom dipolar con¬densates in optical lattices in a confining potential. In Chapter3 we present an extensive study of Mottinsulator( MI) and superfluid (SF) shells in Bose-Hubbard (BH) models for bosons in optical lattices with har¬monic traps. For this we develop an inhomogeneous mean-field theory. Our results for the BH model with one type of spinless bosons agrees quantitatively with quan¬tum Monte Carlo(QMC) simulations. Our approach is numerically less intensive than such simulations, so we are able to perform calculations on experimentally realistic, large three-dimensional(3D) systems, explore a wide range of parameter values, and make direct contact with a variety of experimental measurements. We also generalize our inhomogeneous mean-field theory to study BH models with har¬monic traps and(a) two species of bosons or(b) spin-1bosons. With two species of bosons we obtain rich phase diagrams with a variety of SF and MI phases and as¬sociated shells, when we include a quadratic confining potential. For the spin-1BH model we show, in a representative case, that the system can display alternating shells of polar SF and MI phases; and we make interesting predictions for experi¬ments in such systems. . In Chapter 4 we carry out an extensive study of the phase diagrams of the ex-tended Bose Hubbard model, with a mean filling of one boson per site, in one dimension by using the density matrix renormalization group and show that it contains Superfluid (SF), Mott-insulator (MI), density-wave (DW) and Haldane ¬insulator(HI) phases. We show that the critical exponents and central charge for the HI-DW,MI-HI and SF-MI transitions are consistent with those for models in the two-dimensional Ising, Gaussian, and Berezinskii-Kosterlitz-Thouless (BKT) uni¬versality classes, respectively; and we suggest that the SF-HI transition may be more exotic than a simple BKT transition. We show explicitly that different bound¬ary conditions lead to different phase diagrams.. In Chapter 5 we obtain the excitation spectra of the following three generalized of Bose-Hubbard(BH) models:(1) a two-species generalization of the spinless BH model, (2) a single-species, spin-1 BH model, and (3) the extended Bose-Hubbard model (EBH) for spinless interacting bosons of one species. In all the phases of these models we show how to obtain excitation spectra by using the random phase approximation (RPA). We compare the results of our work with earlier studies of related models and discuss implications for experiments.
239

Modélisation au sein de la DFT des propriétés des structures électronique et magnétique et de liaison chimique des Hydrures d’Intermétalliques / DFT modeling of the electronic and magnetic structures and chemical bonding properties of intermetallic hydrides

Al Alam, Adel F. 26 June 2009 (has links)
Cette thèse présente une étude modélisatrice de différentes familles d'intermétalliques et de leurs hydrures qui présentent un intérêt à la fois fondamental et appliqué. Deux méthodes complémentaires construites au sein de la théorie de la fonctionnelle densité (DFT) ont été choisies : d'une part celle à base de pseudo potentiels (VASP) pour l'optimisation géométrique, la recherche structurale et la cartographie de localisation électronique (ELF), d'autre part celle de type "tous-électrons" (ASW), pour une description détaillée de la structure électronique, des propriétés de liaison chimique suivant différents schémas et des quantités impliquant les électrons de c\oe ur comme le champ hyperfin. Un accent particulier est mis sur les rôles compétitifs des effets magnétovolumiques par rapport à ceux chimiques (liaison métal-H) dans les phases hydrurées, binaires de Laves (ex. ScFe2) et de Haucke (ex. LaNi5) et ternaires à base de cérium (ex. CeRhSn) et d'uranium (ex. U2Ni2Sn). / This thesis presents an ab initio study of several classes of intermetallics and their hydrides. These compounds are interesting from both a fundamental and an applied points of view. To achieve this aim two complementary methods, constructed within the DFT, were chosen : (i) pseudo potential based VASP for geometry optimization, structural investigations and electron localization mapping (ELF), and (ii) all-electrons ASW method for a detailed description of the electronic structure, chemical bonding properties following different schemes as well as quantities depending on core electrons such as the hyperfine field. A special interest is given with respect to the interplay between magnetovolume and chemical interactions (metal-H) effects within the following hydrided systems : binary Laves (e.g. ScFe2) and Haucke (e.g. LaNi5) phases on one hand, and ternary cerium based (e.g. CeRhSn) and uranium based (e.g. U2Ni2Sn) alloys on the other hand.
240

Pathological synchronization in neuronal populations : a control theoretic perspective / Vision Automatique de la synchronisation neuronale pathologique

Franci, Alessio 06 April 2012 (has links)
Dans la première partie de cette thèse, motivée par le développement de la stimulation cérébrale profonde comme traitement des symptômes moteurs de la maladie de Parkinson, nous considérons le problème de réduire la synchronie d'une population neuronale par l'intermédiaire d'une stimulation électrique en boucle fermée. Ceci, sous les contraintes que seule la tension de membrane moyenne de l'ensemble est mesurée et qu'un seul signal de stimulation est disponible (retour du champ moyen). La population neuronale est modélisée comme un réseau d'oscillateurs de Landau-Stuart contrôlé par un dispositif de rétroaction mono-entrée mono-sortie. En nous basant sur la dynamique de phase associée au système, nous analysons l'existence et la robustesse des solutions à verrouillage de phase, modélisant l'état pathologique, et nous dérivons des conditions nécessaires à une désynchronisation efficace par retour du champ moyen. Des conditions suffisantes sont ensuite dérivées pour deux objectifs de contrôle: l'inhibition et la désynchronisation neuronale. Notre analyse suggère que, en fonction de l'intensité du gain de rétroaction, le retour du champ moyen peut soit bloquer l'oscillation collective (inhibition neuronale) soit désynchroniser l'ensemble.Dans la deuxième partie, nous explorons deux voies possibles pour l'analyse des problèmes similaires dans des modèles biologiquement plus plausibles. Dans la première, la population est modélisée comme une interconnexion d'opérateurs entrée-sortie non-linéaires et la synchronisation neuronale est analysée en s'appuyant sur une approche entré-sortie récemment développée. Dans la seconde, les propriétés d'excitabilité et de synchronisabilité des neurones sont analysées via les bifurcations sous-jacentes. En nous basant sur la théorie des formes normales, un nouveau modèle réduit est dérivé pour capturer les comportements d'une grande classe de neurones qui restent inexpliqués dans les modèles réduits existants. / In the first part of this thesis, motivated by the development of deep brain stimulation for Parkinson's disease, we consider the problem of reducing the synchrony of a neuronal population via a closed-loop electrical stimulation. This, under the constraints that only the mean membrane voltage of the ensemble is measured and that only one stimulation signal is available (mean-field feedback). The neuronal population is modeled as a network of interconnected Landau-Stuart oscillators controlled by a linear single-input single-output feedback device. Based on the associated phase dynamics, we analyze existence and robustness of phase-locked solutions, modeling the pathological state, and derive necessary conditions for an effective desynchronization via mean-field feedback. Sufficient conditions are then derived for two control objectives: neuronal inhibition and desynchronization. Our analysis suggests that, depending on the strength of feedback gain, a proportional mean-field feedback can either block the collective oscillation (neuronal inhibition) or desynchronize the ensemble.In the second part, we explore two possible ways to analyze related problems on more biologically sound models. In the first, the neuronal population is modeled as the interconnection of nonlinear input-output operators and neuronal synchronization is analyzed within a recently developed input-output approach. In the second, excitability and synchronizability properties of neurons are analyzed via the underlying bifurcations. Based on the theory of normal forms, a novel reduced model is derived to capture the behavior of a large class of neurons remaining unexplained in other existing reduced models.

Page generated in 0.0339 seconds