Spelling suggestions: "subject:"bimechanical system"" "subject:"bymechanical system""
41 |
Modeling of the Haltere-A Natural Micro-Scale Vibratory GyroscopeParween, Rizuwana January 2015 (has links) (PDF)
Vibratory gyroscopes have gained immense popularity in the microsystem technology
because of their suitability to planar fabrication techniques. With considerable effort in design and fabrication, MEMS (Micro-electro-mechanical-system) vibratory gyroscopes have started pervading consumer electronics apart from their well known applications in aerospace and defence systems. Vibratory gyroscopes operate on the Coriolis principle for sensing rates of rotation of the r tating body. They typically employ capacitive or piezoresistive sensing for detecting the Coriolis force induced motion which is, in turn, used to determine the impressed rate of rotation. Interestingly, Nature also uses vibratory gyroscopes in its designs. Over several years, it has evolved an incredibly
elegant design for vibratory gyroscopes in the form of dipteran halteres. Dipterans are
known to receive mechanosensory feedback on their aerial rotations from halteres for
their flight navigation. Insect biologists have also studied this sensor and continue to be fascinated by the intricate mechanism employed to sense the rate of rotation.
In most Diptera, including the soldier fly, Hermetia illucens, the halteres are simple
cantilever like structures with an end mass that probably evolved from the hind wings of
the ancestral four-winged insect form. The halteres along with their connecting joint with the fly’s body constitute a mechanism that is used for muscle-actuated oscillations of the halteres along the actuation direction. These oscillations occur in the actuation plane such that any rotation of the insect body, induces Coriolis force on the halteres causing their plane of vibration to shift laterally by a small degree. This induced deflection along the sensing plane (out of the haltere’s actuation plane) results in strain variation at the
base of the haltere shaft, which is sensed by the campaniform sensilla. The goal of the
current study is to understand the strain sensing mechanism of the haltere, the nature
of boundary attachments of the haltere with the fly’s body, the reasons of asymmetrical
geometry of the haltere, and the interaction between both wings and the contralateral
wing and haltere.
In order to understand the haltere’s strain sensing mechanism, we estimate the strain
pattern at the haltere base induced due to rotations about the body’s pitch, roll, and yaw axes. We model the haltere as a cantilever structure (cylindrical stalk with a spherical end knob) with experimentally determined material properties from nanoindentation and carry out analytical and numerical (finite element) analysis to estimate strains in the haltere
due to Coriolis forces and inertia forces resulting from various body rotations. From
the strain pattern, we establish a correlation between the location of maximum strain and the position of the campaniform sensilla and propose strain sensing mechanisms.
The haltere is connected to the meta thoracic region of the fly’s body by a complicated
hinge mechanism that actuates the haltere into angular oscillations with a large
amplitude of 170 ◦ in the actuation plane and very small oscillation in the sensing plane.
We aim to understand the reason behind the dissimilar boundary attachments along
the two directions. We carry out bending experiments using micro Newton force sensor
and estimate the stiffness along the actuation and sensing directions. We observe that the haltere behaves as a rigid body in the actuation direction and a flexible body in the sensing direction. We find the haltere to be a resonating structure with two different kinds of boundary attachments in the actuation and sensing directions. We create a finite element model of the haltere joint based on the optical and scanning microscope images, approximate material properties, and stiffness properties obtained from the bending experiments. We subsequently validate the model with experimental results.
The haltere geometry has asymmetry along the length and the cross-section. This
specific design of the haltere is in contrast to the the existing MEMS vibratory gyroscope,
where the elastic beams supporting the proof mass are typically designed with symmetric
cross-sections so that there is a mode matching between the actuation and the sensing vibrations. The mode matching provides high sensitivity and low bandwidth. Hence, we are interested in understanding the mechanical significance of the haltere’s asymmetry.
First, we estimate the location of the maximum stress by using the actual geometry of the haltere. Next, by using the stiffness determined from bending experiments and mass
properties from the geometric model, we find the natural frequencies along both actuation
and sensing directions. We compare these findings with existing MEMS vibratory
gyroscopes.
The dipteran halteres always vibrate at the wing beat frequency. Each wing maintains
180 ◦ phase difference with its contralateral haltere and the opposite wing. Both
wings and the contralateral wing-haltere mechanism exhibit coupled oscillatory motion
through passive linkages. These linkages modulate the frequency and maintain the out- of-phase relationship. We explore the dynamics behind the out-of-phase behaviour and the frequency modulation of the wing-wing and wing-haltere coupled oscillatory motion.
We observe that the linear coupled oscillatory model can explain the out-of-phase relationship between the two wings. However, a nonlinear coupled oscillator model is required to explain both frequency synchronization and frequency modulation of the wing with the haltere. We also carry out a finite element analysis of the wing-haltere
mechanism and show that the out-of-phase motion between the wing and the haltere is
due to the passive mechanical linkage of finite strength and high actuation force.
The results of this study reveal the mechanics of the haltere as a rate sensing gyroscope and show the basis of the Nature’s design of this elegant sensor. This study brings out two specific features— the large amplitude actuated oscillations and the asymmetric geometry of the haltere structure— that are not found in current vibratory gyroscope designs. We hope that our findings inspire new designs of MEMS gyroscopes that have elegance and simplicity of the haltere along with the desired performance.
|
42 |
Desenvolvimento de bancada didatico-experimental de baixo custo para aplicações em controle ativo de vibrações / Design of a didactic ande experimental testbed of low cost for applications in active control of vibrationAmorim, Mauricio Jose 21 February 2006 (has links)
Orientador: Euripedes Guilherme de Oliveira Nobrega / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica / Made available in DSpace on 2018-08-06T09:41:01Z (GMT). No. of bitstreams: 1
Amorim_MauricioJose_M.pdf: 2137966 bytes, checksum: bc8b0e13365a14be8d6bd6c336785b31 (MD5)
Previous issue date: 2006 / Resumo: Este trabalho apresenta uma bancada didática destinada ao ensino nos cursos de engenharia de aplicações em projetos de controle, processamento digital de sinais e programação em tempo real. Bancadas didáticas são ferramentas indispensáveis ao ensino, considerando que os conceitos vistos apenas em sala de aula são muitas vezes abstratos. A bancada em questão foi desenvolvida partindo de projeto mecânico já existente, tendo sido colocados na estrutura sensores extensométricos para obter a resposta do sistema como deformação e projetado o circuito condicionador do sinal para essa resposta. Para a prirneira fase, envolvendo identificação, controle da estrutura e análise dos resultados, foram projetados dois acionadores para os motores que aplicam o distúrbio e o esforço de controle sobre a planta. Após terem sido satisfeitas as etapas da primeira fase, o próximo passo foi transferir o sistema de controle para uma configuração embarcada utilizando um microcontrolador. Para tanto, algumas adaptações e novos projetos emergiram diante da mudança do ambiente de processamento. A necessidade de adaptar os sinais para a nova placa de aquisição exigiu mudança em alguns circuitos. o acionador de motor para uma saída de controle modulada em largura de pulso foi desenvolvido utilizando componentes discretos. Além disso, é detalhadamente abordada a programação em tempo real do sistema de controle em questão / Abstract: This work presents the design of a didactic tesbed intended to teaching control system design, digital processing of signals and real-time programming. Didactic tesbeds are very vaIuabIe tools when applying concepts developed inside the classroom. The testbed developed here is built upon a previous mechanical design. Strain gages were used as measuring devices using a conditioning circuit. FirstIy, system identification, structural control and analysis of the results were proceeded, two motor drives were designed to operate motors performing both disturbance and control inputs. Afterwards, the control system was redesigned to operate using a micracontraller unit in a embedded architeture. Some adaptations on the circuits were needed and are covered here. A DC motor circuit driver using PWM signal was developed using discrete components. Besides, real-time programming of the control system is covered in detail / Mestrado / Mecanica dos Sólidos e Projeto Mecanico / Mestre em Engenharia Mecânica
|
43 |
Une modélisation multi-physique et multi-phasique du contact lubrifié / A multi-physic and multi-phase approach of the lubricated contactBruyère, Vincent 19 November 2012 (has links)
De nombreuses hypothèses sont classiquement utilisées pour décrire le comportement du fluide dans un contact lubrifié : film continu, viscosité constante dans l’épaisseur, film mince, fluide newtonien… Or, certaines s’avèrent erronées dès lors que l’on s’intéresse aux contacts Elasto- HydroDynamiques fortement glissants ou à la répartition du lubrifiant en sortie de contact. Une approche numérique originale, basée sur un retour aux équations de la mécanique des fluides générale et prenant en compte le couplage fluide/solide et les effets thermiques sont proposés ici dans le but d’apporter des éléments physiques supplémentaires aux modélisations usuelles. Dans un premier temps, l’influence des effets thermiques sur l’évolution du frottement dans les contacts Thermo-EHD est mise en évidence. La présence d’un minimum de frottement pour le cas du glissement pur est expliquée par l’analyse des transferts thermiques entre le lubrifiant et les solides. L’origine des modifications locales d’épaisseur de film observées et l’existence même d’une épaisseur de film lubrifiant pour les cas de vitesse d’entraînement nulle sont alors reliées à la présence d’un fort gradient de viscosité dans l’épaisseur de film. Une comparaison qualitative avec des éléments expérimentaux de la littérature est réalisée, validant les tendances obtenues. Dans un second temps, l’écoulement à surface libre du lubrifiant en périphérie du contact est étudié expérimentalement puis numériquement par une méthode à interface diffuse. Le rôle des effets capillaires est analysé et les résultats numériques confrontés à des résultats issus de la littérature. Un bon accord est obtenu tant qualitativement que quantitativement. Validé par l’étude numérique diphasique (air/lubrifiant) réalisée, un modèle analytique simplifié est alors développé, prédisant une loi de répartition du lubrifiant en sortie de contact. La zone de sortie des contacts EHD est ensuite traitée par un modèle de cavitation vaporeuse et la prise en compte nécessaire de l’air environnant est discutée. Enfin, une première modélisation tridimensionnelle de l’écoulement à surface libre du lubrifiant autour d’un contact ponctuel est réalisée mettant en avant l’influence des effets capillaires et la faisabilité d’une telle approche. / Classically, many assumptions are used to model the fluid behaviour in a lubricated contact : continuous film, constant viscosity across the film thickness, film thickness is very thin compared to other contact dimensions, Newtonian lubricant... However, some of them are not well-founded for the study of Elasto-HydroDynamic contacts with high sliding or to estimate the liquid distribution at the exit of the contact. An original numerical approach, based on the general fluid mechanics equations and taking into account the fluid/solid coupling and thermal effects, is developed here in order to give more physical insights to the usual modelling. First of all, the thermal effects are shown on the friction coefficient evolution for Thermo- EHD contacts. A minimum value is found concerning the friction value for the pure sliding case. It is explained by analyzing the heat transfer between the solids and the lubricant. The origin of the resulting local modifications of the film thickness and the existence of a film thickness for zero entrainment velocity cases are related to the presence of a high viscosity gradient through the film. A qualitative comparison is performed with experimental data from literature, validating the results. Second, the free surface flow of the lubricant around the contact is experimentally and numerically studied with a diffuse interface method. The capillary effects on the air/lubricant meniscus position are analyzed and quantitatively compared with experimental data from literature. Good agreements are found. An analytical approach is then developed, based on the numerical study of the two-phase flow. An analytical law predicting the liquid distribution is obtained. The exit area of EHD contacts is then investigated with a vaporous cavitation model highlighting the necessity of taking into account the effects of surrounding air and surface wettabillity. Finally, a first approach of the tri-dimensional two-phase flow is performed, showing the capillary effects on the interface location.
|
44 |
Principes alternatifs pour la détection de masse ultime via la dynamique non linéaire de capteurs résonants M/NEMS / Alternative principles for ultimate mass detection via the nonlinear dynamics of M/NEMS resonant sensorsNguyen, Van-Nghi 11 December 2013 (has links)
Les capteurs résonants de type M/NEMS sont largement utilisés dans l’environnement biologique pour la mesure de masse de biomolécules en raison de leur grande précision combinée à une taille réduite. Classiquement, la détection et la quantification se basent sur le décalage fréquentiel induit par la masse ajoutée. Toutefois, ce décalage devient très faible et difficile à distinguer du bruit de mesure lorsque les masses considérées sont très petites. Il est théoriquement possible de gagner encore un ou plusieurs ordres de grandeur en résolution avec ces méthodes fréquentielles en diminuant encore les tailles et/ou en augmentant le rapport signal sur bruit, c’est-à-dire en actionnant de manière plus importante les résonateurs. Mais, dans ces conditions, les nanorésonateurs ont un comportement très fortement non-linéaire, source d’instabilités et de mixage de bruit basses et hautes fréquences susceptibles de dégrader la fiabilité et la précision des mesures. C’est pourquoi cette thèse a pour objectif de définir des principes de détection alternatifs basés sur l’exploitation des phénomènes non-linéaires, tels que les comportements hystérétiques et les bifurcations des courbes de réponse en fréquence. Pour cela, un modèle réduit de micro/nano-poutre résonante avec actionnement électrostatique est considéré. Les résultats numériques montrent que les brusques sauts d’amplitude à proximité des points de bifurcation permettent la détection de masses très faibles. Contrairement à la détection fréquentielle, ces sauts sont d’autant plus grands que la masse additionnelle est petite, ce qui rend cette technique particulièrement intéressante. De plus, le seuil de détection peut être ajusté avec la valeur de la fréquence de fonctionnement. Un mécanisme de réinitialisation est toutefois indispensable pour rendre la détection à nouveau possible après un saut d’amplitude. Afin d’automatiser la réinitialisation et ainsi permettre la détection en temps réel, un concept totalement innovant de détection de masse par balayage en fréquence des cycles d’hystérésis est proposé, qui permet de détecter, quantifier et localiser la masse ajoutée sur la poutre résonante. La mise en réseau de plusieurs poutres résonantes est également traitée et constitue un premier pas vers la mise en oeuvre de réseaux de milliers de capteurs. Pour cela, des architectures efficaces sont proposées et les modèles numériques sont adaptés en conséquence. Sur des configurations symétriques, l’exploitation des bifurcations de type brisure de symétrie permet là-encore d’améliorer la détection de masse. / Resonant M/NEMS mass sensors are widely used in biological environment for measuring the mass of biomolecules due to their high accuracy combined with a reduced size. Usually, the detection and the quantification are based on the frequency shift induced by an added mass. However, this shift becomes very small and difficult to distinguish from the noise of measurement as the considered masses are tiny. It is theoretically possible to increase further one or several orders of magnitude in resolution with these frequency methods by further reducing size and/or by increasing the signal-to-noise ratio, that is to say by operating more importantly the resonators. But in these conditions, the nanoresonators have a strongly nonlinear behavior, a source of instability and noise mix of low and high frequencies likely to degrade the reliability and the accuracy of measurements. Therefore, the thesis’s objective is to define alternative principles of detection based on exploiting the nonlinear phenomena, such as the hysteretic behavior and the bifurcations of frequency-response curves. To this end, a reduced model of resonant micro/nano-beam with electrostatic actuation is considered. The numerical results show that the sudden jumps in amplitude close to bifurcation points allow the detection of very small masses. Unlike the frequency detection, the smaller the added mass, the larger the increase of the jump, which makes this technique particularly interesting. In addition, the detection threshold can be adjusted with the value of the operating frequency. However, a mechanism of reinitialization is mandatory to make the detection possible again after a jump in amplitude. In order to automate the reinitialization and allow the detection in real-time, a completely innovative concept of mass detection by the frequency sweep of the hysteretic cycles is proposed to detect, quantify and locate the added mass on the resonant beam. An array of several resonant beams is also considered and constitutes a first step toward the implementation of arrays of thousands of sensors. Efficient architectures are proposed for this purpose and the numerical models are adapted accordingly. On symmetric configurations, exploiting the bifurcations of symmetry-breaking type allows here again to improve the mass detection.
|
45 |
[pt] DESENVOLVIMENTO E CONTROLE DE UM ACOPLADOR ELÁSTICO BASEADO EM ELASTÔMEROS PARA SEA / [en] DESIGN AND CONTROL OF AN ELASTOMER-BASED ELASTIC COUPLING FOR SEAFELIPE REBELO LOPES 02 October 2023 (has links)
[pt] Questões de segurança têm sido fatores cruciais para que robôs se tornem
aptos a trabalhar em colaboração com seres humanos. Esse esforço envolve
um controle de força mais refinado e uma certa flexibilidade nas juntas para
que a adaptação dos robôs ao ambiente real e às atividades comuns dos seres
humanos seja efetiva. Uma das tecnologias com esse objetivo é o Atuador
Elástico em Série (SEA - Series Elastic Actuator), que apresenta um bom
desempenho para controle de força, tolerância a impactos causados por agentes
externos, baixa impedância, e a redução de vibrações mecânicas. Em um SEA,
um elemento elástico passivo é adicionado entre o motor e o elo acionado,
a fim de gerar flexibilidade. Este elemento pode ser uma mola, ou outro
elemento deformável com flexibilidade caracterizada por sua geometria e pela
elasticidade do material utilizado. Esta tese propõe um Atuador Elástico em
Série Baseado em Elastômero (eSEA), cuja flexibilidade é obtida a partir de
um elastômero depositado entre dois elementos metálicos: um interno acoplado
ao atuador, e o outro externo acoplado ao elo. O eSEA foi projetado e avaliado
por software de CAD e Elementos Finitos, com o intuito de obter a flexibilidade
desejada para a aplicação. Foram produzidas duas versões do eSEA, com
duas durezas diferentes: 10 e 55 Shore A. Testes estáticos com células de
carga foram executados para caracterizar a rigidez dos eSEA. Os eSEA foram
instalados em manipuladores robóticos especialmente desenvolvidos para essa
tese. Experimentos compararam o desempenho das técnicas de controle com
e sem a influência dos eSEA, mostrando que o uso dos eSEA diminuiu os
erros de posicionamento do manipulador e possibilitou o controle de força sem
a necessidade de sensores específicos. A fim de criar um modelo para que a
estimativa do torque seja mais precisa a partir do eSEA, foram realizadas
técnicas de identificação para estimar uma função de transferência que melhor
representa o alongamento da borracha. E combinados com modelos NARX e
NARMAX do erro de estimativa, gerou-se um modelo híbrido para o elemento
elástico no qual soma-se a função de transferência com o erro modelado. / [en] Safety issues have been crucial factors for robots to become able to work
in collaboration with humans. This effort involves more refined force control
and a certain flexibility at the joints, for the robots to better adapt to real
environments and common human tasks. A technology with this objective is
the Series Elastic Actuator (SEA), which presents good performance for force
control, tolerance to impacts caused by external agents, low impedance, and
dampening of mechanical vibrations. In an SEA, a passive elastic element is
added between the motor and the driven link, in order to generate a desired
flexibility. This element can be a spring, or else another deformable element
with flexibility characterized by its geometry and material elasticity. This thesis
proposes an Elastomer-Based Series Elastic Actuator (eSEA), whose flexibility
is obtained from an elastomer deposited between two metallic elements: an
internal element attached to the actuator, and an external element attached to
the link. The eSEA was designed and evaluated by CAD and Finite Element
software, in order to obtain the desired flexibility for the application. Two
versions of the eSEA were produced, with two different hardnesses: 10 and
55 Shore A. Static tests with load cells were then executed to characterize
the stiffness of the eSEA. The eSEA elements were installed on robotic
manipulators especially developed for this thesis. Experiments compared the
performance of control techniques with and without the influence of eSEA,
showing that the use of the eSEA reduced manipulator positioning errors
and enabled force control without the need for specific sensors. In order to
create a model for more accurate torque estimation from eSEA, identification
techniques were performed to estimate a transfer function that best represents
the rubber elongation. And combined with NARX and NARMAX models of
the estimation error, a hybrid model was generated for the elastic element in
which the transfer function is added together with the modeled error.
|
46 |
Automatic non linear metric learning : Application to gesture recognition / Apprentissage automatique de métrique non linéaire : Application à la reconnaissance de gestesBerlemont, Samuel 11 February 2016 (has links)
Cette thèse explore la reconnaissance de gestes à partir de capteurs inertiels pour Smartphone. Ces gestes consistent en la réalisation d'un tracé dans l'espace présentant une valeur sémantique, avec l'appareil en main. Notre étude porte en particulier sur l'apprentissage de métrique entre signatures gestuelles grâce à l'architecture "Siamoise" (réseau de neurones siamois, SNN), qui a pour but de modéliser les relations sémantiques entre classes afin d'extraire des caractéristiques discriminantes. Cette architecture est appliquée au perceptron multicouche (MultiLayer Perceptron). Les stratégies classiques de formation d'ensembles d'apprentissage sont essentiellement basées sur des paires similaires et dissimilaires, ou des triplets formés d'une référence et de deux échantillons respectivement similaires et dissimilaires à cette référence. Ainsi, nous proposons une généralisation de ces approches dans un cadre de classification, où chaque ensemble d'apprentissage est composé d’une référence, un exemple positif, et un exemple négatif pour chaque classe dissimilaire. Par ailleurs, nous appliquons une régularisation sur les sorties du réseau au cours de l'apprentissage afin de limiter les variations de la norme moyenne des vecteurs caractéristiques obtenus. Enfin, nous proposons une redéfinition du problème angulaire par une adaptation de la notion de « sinus polaire », aboutissant à une analyse en composantes indépendantes non-linéaire supervisée. A l'aide de deux bases de données inertielles, la base MHAD (Multimodal Human Activity Dataset) ainsi que la base Orange, composée de gestes symboliques inertiels réalisés avec un Smartphone, les performances de chaque contribution sont caractérisées. Ainsi, des protocoles modélisant un monde ouvert, qui comprend des gestes inconnus par le système, mettent en évidence les meilleures capacités de détection et rejet de nouveauté du SNN. En résumé, le SNN proposé permet de réaliser un apprentissage supervisé de métrique de similarité non-linéaire, qui extrait des vecteurs caractéristiques discriminants, améliorant conjointement la classification et le rejet de gestes inertiels. / As consumer devices become more and more ubiquitous, new interaction solutions are required. In this thesis, we explore inertial-based gesture recognition on Smartphones, where gestures holding a semantic value are drawn in the air with the device in hand. In our research, speed and delay constraints required by an application are critical, leading us to the choice of neural-based models. Thus, our work focuses on metric learning between gesture sample signatures using the "Siamese" architecture (Siamese Neural Network, SNN), which aims at modelling semantic relations between classes to extract discriminative features, applied to the MultiLayer Perceptron. Contrary to some popular versions of this algorithm, we opt for a strategy that does not require additional parameter fine tuning, namely a set threshold on dissimilar outputs, during training. Indeed, after a preprocessing step where the data is filtered and normalised spatially and temporally, the SNN is trained from sets of samples, composed of similar and dissimilar examples, to compute a higher-level representation of the gesture, where features are collinear for similar gestures, and orthogonal for dissimilar ones. While the original model already works for classification, multiple mathematical problems which can impair its learning capabilities are identified. Consequently, as opposed to the classical similar or dissimilar pair; or reference, similar and dissimilar sample triplet input set selection strategies, we propose to include samples from every available dissimilar classes, resulting in a better structuring of the output space. Moreover, we apply a regularisation on the outputs to better determine the objective function. Furthermore, the notion of polar sine enables a redefinition of the angular problem by maximising a normalised volume induced by the outputs of the reference and dissimilar samples, which effectively results in a Supervised Non-Linear Independent Component Analysis. Finally, we assess the unexplored potential of the Siamese network and its higher-level representation for novelty and error detection and rejection. With the help of two real-world inertial datasets, the Multimodal Human Activity Dataset as well as the Orange Dataset, specifically gathered for the Smartphone inertial symbolic gesture interaction paradigm, we characterise the performance of each contribution, and prove the higher novelty detection and rejection rate of our model, with protocols aiming at modelling unknown gestures and open world configurations. To summarise, the proposed SNN allows for supervised non-linear similarity metric learning, which extracts discriminative features, improving both inertial gesture classification and rejection.
|
47 |
Application des systèmes hétérogènes lyophobes (SHL) au confort des charges utiles / Lyophobic heterogeneous system (LHS) application to payload comfortMichelin-Jamois, Millan 03 December 2014 (has links)
L’existence de concurrence dans l’industrie aérospatiale obligé à une évolution continue des technologies en lien avec une diminution des coûts de lancement et une fiabilité accrue. Ceci passe, entre autre, par l’amélioration des moyens de protection des charges utiles. Le but de cette thèse est de vérifier l’applicabilité des systèmes hétérogènes lyophobes (association d’un matériau nanoporeux et d’un liquide non-mouillant) dans l’amortissement des vibrations pour le confort de celles-ci. L’intrusion de liquide dans des SHL demande une énergie mécanique importante sous forme de pression. En fonction des propriétés du couple solide/liquide cette énergie peut être partiellement dissipée. Cette dissipation, de l’ordre de quelques dizaines de joules par gramme de matériau est bien supérieure à celle des systèmes conventionnels (élastomères, amortisseurs visqueux…) et montre une grande stabilité vis-à-vis de la fréquence, d’où leur intérêt dans l’amortissement des vibrations. Bien que l’eau soit déjà très largement étudié dans le cadre de la recherche sur les SHL, elle ne peut être utilisée que pour des températures comprises entre 0 et 100°C (à pression atmosphérique). Dans le but d’élargir cette gamme de températures jusqu’à -50°C, des mélanges ont été utilisés. L’ajout d’électrolytes dans l’eau permet de baisser la température de solidification du liquide. L’étude des solutions d’électrolytes a permis de mettre en évidence deux phénomènes différents menant à des augmentations de pressions d’intrusion et d’extrusion dans les SHL. Dans les matériaux microporeux (comme les ZIF-8 étudiés dans ce travail), un phénomène d’exclusion totale des ions de la matrice poreuse peut être observé. Cet effet est accompagné de l’apparition d’un terme de pression osmotique menant aux augmentations importantes de pressions d’intrusion et d’extrusion mises en évidence. Dans le cas où les ions peuvent pénétrer les pores, les variations de pressions d’intrusion et d’extrusion sont beaucoup plus faibles et ont été attribuées à des changements dans les propriétés de surface du liquide. Les matériaux mésoporeux (comme les MCM-41 étudiés au cours de ce travail) semblent se comporter de cette manière quels que soient les ions considérés. L’extension de la gamme d’application des SHL vers les hautes températures a été faite grâce à l’utilisation du Galinstan, alliage de gallium, d’indium et d’étain, non-toxique et liquide entre -20 et 1300°C environ. Ce liquide, associé à des verres mésoporeux rendus chimiquement inertes, a permis l’obtention de cycles de dissipation d’énergie reproductibles. Enfin, une étude numérique d’un amortisseur SHL simplifié dans un système mécanique a été menée. La variété des comportements a mis en évidence la complexité de ces systèmes qui nécessitent un dimensionnement très précis. Si cette condition est vérifiée, les amortisseurs SHL s’avèrent très efficaces et adaptables du fait de la grande variété des couples solide/liquide utilisables. / Competition in aerospace industry forces to follow a constant evolution of technologies linked to launching costs decreasing and reliability increasing. An improvement of payload protection systems is a way to achieve these conditions. The main issue of this PhD thesis is to verify the applicability of lyophobic heterogeneous systems (association of a nanoporous material and a non- wetting liquid) in vibrations damping for payload comfort. Intrusion of liquid in LH S requires a high mechanical energy in the form of p res sure. Depending on solid/liquid couple properties this energy can be partly dissipated. This dissipation, of the order of ten joules per gram of material, is far higher than classical systems (elastomeric ones, viscous dampers...) and shows a relative stability regarding to frequency variations. These properties explain their interest in vibrations damping applications. Although water is a very common liquid which is very studied in the research field of LHS, it can only be used in the 0 to 100˚C temperatures range (under atmospheric pressure). In order to broaden this temperatures range to -50˚C, electrolytes have been used. Adding electrolytes to water permits to decrease the liquid melting temperature. The study of electrolyte solutions has highlighted two different phenomena leading to intrusion and extrusion pressures increasing in LHS. In microporous materials (such as ZIF-8 studied here), a total exclusion phenomenon of ions from porous matrix can be observed. This effect leads to the appearance of an osmotic pressure term which explains high increasing of both intrusion and extrusion pressures. If ions can penetrate pores, intrusion and extrusion pressures increasing are smaller and have been explained by liquid surface properties changes. Mesoporous materials (such as MCM-41 studied here) seem to show this last behaviour whatever ion is. Increasing of LHS application range to high temperatures has been made using Galinstan, gallium, indium and tin alloy, which is non-toxic and stays liquid between approximately -20 and 1300˚C. This liquid, associated with chemically inert mesoporous glasses, permits to obtain reproducible energy dissipation cycles. Finally, a numerical study of a simplified LHS damper in a mechanical system has been done. The behaviours variety has brought to light the complexity of such a system which needs a very accurate design. If this condition is verified, LHS dampers can be very effective and adaptable thanks to the numerous solid/liquid couples which can be used.
|
48 |
Modélisation en vue de l'intégration d'un système audio de micro puissance comprenant un haut-parleur MEMS et son amplificateur / Micro power audio system modeling in order to integrate a MEMS loudspeaker and its amplification architectureSturtzer, Eric 25 April 2013 (has links)
Ce manuscrit de thèse propose l'optimisation de l'ensemble de la chaîne de reproduction sonore dans un système embarqué. Le premier axe de recherche introduit les notions générales concernant les systèmes audio embarqués nécessaires à la bonne compréhension du contexte de la recherche. Le principe de conversion de l'ensemble de la chaine est présenté afin de comprendre les différentes étapes qui composent un système audio. Un état de l'art présente les différents types de haut-parleurs ainsi que l'électronique associé les plus couramment utilisées dans les systèmes embarqués. Le second axe de recherche propose une approche globale : une modélisation électrique du haut-parleur (tenant compte d'un nombre optimal de paramètres) permet à un électronicien de mieux appréhender les phénomènes non-linéaires du haut-parleur qui dégradent majoritairement la qualité audio. Il en résulte un modèle viable qui permet d'évaluer la non-linéarité intrinsèque du haut-parleur et d'en connaitre sa cause. Les résultats des simulations montrent que le taux de distorsion harmonique intrinsèque au haut-parleur est supérieur à celui généré par un amplificateur. Le troisième axe de recherche met en avant l'impact du contrôle du transducteur. L'objectif étant de savoir s'il existe une différence, du point de vue de la qualité audio, entre la commande asservie par une tension ou par un courant, d'un micro-haut-parleur électrodynamique. Pour ce type de transducteur et à ce niveau de la modélisation, le contrôle en tension est équivalent à contrôler directement le haut-parleur en courant. Néanmoins, une solution alternative (ne dégradant pas davantage la qualité audio du signal) pourrait être de contrôler le micro-haut-parleur en courant. Le quatrième axe de recherche propose d'adapter les spécifications des amplificateurs audio aux performances des micro-haut-parleurs. Une étude globale (énergétique) démontre qu'un des facteurs clés pour améliorer l'efficacité énergétique du côté de l'amplificateur audio est la minimalisation de la consommation statique en courant, en maximalisant le rendement à puissance nominale. Pour les autres spécifications, l'approche globale se base sur l'étude de l'impact de la spécification d'un amplificateur sur la partie acoustique. Cela nous a par exemple permis de réduire la contrainte en bruit de 300%. Le dernier axe de recherche s'articule autour d'un nouveau type de transducteur : un micro-haut-parleur en technologie MEMS. La caractérisation électroacoustique présente l'amélioration en terme de qualité audio (moins de 0,016% de taux de distorsion harmonique) et de plage de fréquence utile allant de 200 Hz à 20 kHz le tout pour un niveau sonore moyen de 80dB (10cm). La combinaison de tous les efforts présente un réel saut technologique. Enfin, la démarche globale d'optimisation de la partie électrique a été appliquée aux performances du MEMS dans la dernière section, ce qui a notamment permis de réduire la contrainte en bruit de 500%. / This thesis proposes the optimization of the whole sound reproduction chain in an embedded system. The first research axis is introduces the general concepts concerning audio systems necessary for the good understanding of the context of research. The principle of conversion of the entire chain is presented to understand the stages that make up a sound system. A state of the art presents various loudspeakers and the associated electronics most commonly used in embedded systems. The second research axis proposes a global approach: electric modeling of loudspeaker (taking into account an optimum number of parameters) that allows electronics engineer a better understanding of the nonlinear phenomena that degrade mostly audio quality in loudspeakers. It results in a sustainable model which evaluates the intrinsic non-linearity in loudspeakers and to know its cause. The simulation results show that the total harmonic distortion intrinsic to the loudspeaker is higher than that the distortion generated by an amplifier. The third research axis highlights the impact of the control of the transducer. The aim is to find out if there is a difference, in terms of audio quality, between the feedback control by voltage or current, for an electrodynamic micro-speaker. For this type of transducer and at this level of modeling, voltage control is equivalent to directly control the current of the micro-speaker. However, an alternative solution (not further degrading the signal audio quality) could be to control directly the micro-speaker by a current. The fourth research axis proposes to adapt the audio amplifiers specification to the performance of the micro-speakers. A comprehensive study of an energy point of view shows that a key factor for improving the energy efficiency of the audio amplifier is the minimization of the static power consumption and the maximization of the performance at nominal power. For other specifications, the global approach is based on the study of the impact of the specification of an amplifier on the sound pressure level. This has allowed, for example to reduce the stress in output noise voltage by a ratio of 300 %. The last research axis focuses on a new type of transducer: a micro-speaker in MEMS technology. Electroacoustic characterization shows the improvement: in terms of audio quality (less than 0.016 % total harmonic distortion) and the useful frequency range from 200 Hz to 20 kHz, the whole for an average sound level of 80 dB (10 cm). The combination of all the efforts presents a real technological leap. Finally, the overall process of optimization of the electrical part has been applied to the performance of MEMS in this last section, which has resulted, for example, in a reduction in the noise constraint of 500 %.
|
49 |
Fabrication de semiconducteurs poreux pour améliorer l'isolation thermique des MEMS / Fabrication of porous semicondutors for improved thermal insulation in MEMSNewby, Pascal 12 December 2013 (has links)
L'isolation thermique est essentielle dans de nombreux types de MEMS (micro-systèmes électro-mécaniques). Selon le type de dispositif, l'isolation permet de réduire la consommation d'énergie, diminuer le temps de réponse, ou augmenter sa sensibilité. Les matériaux d'isolation thermique actuellement disponibles sont difficiles à intégrer en couche épaisse dans des dispositifs en silicium. À cause de cela, l'approche la plus utilisée pour l'isolation est d'intégrer les zones à isoler sur des membranes minces (~ 1 µm). Cela assure une bonne isolation, mais est restrictif pour la conception du dispositif et la fragilité des membranes complique la fabrication et l'utilisation de celui-ci. Le silicium poreux est facile à intégrer puisqu'il est fabriqué par gravure électrochimique de substrats de Si cristallin. On peut aisément fabriquer des couches épaisses (100 µm) et sa conductivité thermique est 2-3 ordres de grandeur plus faible que celle du Si massif. Par contre sa porosité cause des problèmes : mauvaise résistance chimique, structure instable au-delà de 400°C, et tenue mécanique réduite. La facilité d'intégration des semiconducteurs poreux est un atout majeur, et nous visons donc de réduire les désavantages de ces matériaux afin de favoriser leur intégration dans des dispositifs en silicium. La première approche qui a été développée consiste à amorphiser le Si poreux en l'irradiant avec des ions à haute énergie (uranium, 110 MeV). Nous avons montré que l'amorphisation, même partielle, du Si poreux entraîne une diminution de sa conductivité thermique, sans endommager sa structure poreuse. On peut atteindre ainsi une réduction de conductivité thermique jusqu’à un facteur de trois. La seconde approche est de développer un nouveau matériau. Le SiC poreux a été choisi, puisque le SiC massif a des propriétés physiques exceptionnelles et supérieures à celles du silicium. Nous avons mené une étude systématique de la porosification du SiC en fonction de la concentration en HF et le courant, ce qui nous a permis de fabriquer des couches poreuses uniformes d’une épaisseur d’environ 100 µm. Nous avons implémenté un banc de mesure de la conductivité thermique par la méthode « 3 oméga » et l'avons utilisé pour mesurer la conductivité thermique du SiC poreux. Nos résultats montrent que la conductivité thermique du SiC poreux est environ deux ordres de grandeur plus faible que celle du SiC massif. Nous avons aussi montré que le SiC poreux est résistant à tous les produits chimiques typiquement utilisés en microfabrication et est stable jusqu'à au moins 1000°C. / Thermal insulation is essential in several types of MEMS (Micro electro mechanical systems). Depending on the device, insulation can reduce the device’s power consumption, decrease its response time, or increase its sensitivity. Existing thermal insulation materials are difficult to integrate as thick layers in silicon-based devices. Because of this, the most commonly used approach is to integrate the areas requiring insulation on thin membranes. This provides effective insulation, but restricts the design of the device and the membrane’s fragility makes the device’s fabrication and use more complicated. Poreux silicon is easy to integrate as it is made by electrochemical etching of crystalline silicon substrates. 100 µm thick layers can easily be fabricated and its thermal conductivity is 2-3 orders of magnitude lower than that of bulk silicon. However, its porosity causes other problems : low chemical resistance, its structure is unstable above 400°C, and reduced mechanical stability. The ease of integration of porous semiconductors remains a major advantage, so we aim to reduce the disadvantages of these materials in order to help their integration in microfabricated devices. The first approach we developed was to amorphise porous Si by irradiating it with heavy ions. We have shown that amorphisation of porous Si, even partial, causes a reduction of its thermal conductivity without damaging its porous structure. In this way a reduction in thermal conductivity by up to a factor of three can be achieved. The second approach was to develop a new material. Porous SiC was chosen, as bulk SiC has exceptional physical properties which are superior to those of silicon. We carried out a systematic study of the porosification process of SiC versus HF concentration and current, which enabled us to make thick (100 µm) and uniform layers. We have implemented a system for measuring thermal conductivity using the “3 omega” technique and used it to measure the thermal conductivity of porous SiC. Our results show that the thermal conductivity of porous SiC is about two orders of magnitude lower than that of bulk SiC. We have also shown that porous SiC is resistant to all chemical commonly used in microfabrication, and is stable up to at least 1000°C.
|
50 |
3D-Wafer Level Packaging approaches for MEMS by using Cu-based High Aspect Ratio Through Silicon Vias / Ansätze zum 3D-Wafer Level Packaging für MEMS unter Nutzung von Cu-basierten Si-Durchkontaktierungen mit hohem AspektverhältnisHofmann, Lutz 06 December 2017 (has links) (PDF)
For mobile electronics such as Smartphones, Smartcards or wearable devices there is a trend towards an increasing functionality as well as miniaturisation. In this development Micro Electro- Mechanical Systems (MEMS) are an important key element for the realisation of functions such as motion detection. The specifications given by such devices together with the limited available space demand advanced packaging technologies. The 3D-Wafer Level Packaging (3D-WLP) enables one solution for a miniaturised MEMS package by using techniques such as Wafer Level Bonding (WLB) and Through Silicon Vias (TSV). This technology increases the effective area of the MEMS device by elimination dead space, which is typically required for other approaches based on wire bond assembly. Within this thesis, different TSV technology concepts with respect to a 3D-WLP for MEMS have been developed. Thereby, the focus was on a copper based technology as well as on two major TSV implementation methods. This comprises a Via Middle approach based on the separated TSV fabrication in the cap wafer as well as a Via Last approach with a TSV implementation in either the MEMS or cap wafer, respectively. For each option with its particular challenges, corresponding process modules have been developed. In the Via Middle approach, the wafer-related etch rate homogeneity determines the TSV reveal from the wafer backside Here, a reduction of the TSV depth down to 80 μm is favourable as long as the desired Cu-thermo-compression bonding (Cu-TCB) is performed before the thinning. For the TSV metallisation, a Cu electrochemical deposition method was developed, which allows the deposition of one redistribution layer as well as the bonding patterns for Cu-TCB at the same time. In the Via Last approach, the TSV isolation represents one challenge. Chemical Vapour Deposition processes have been investigated, for which a combination of PE-TEOS and SA-TEOS as well as a Parylene deposition yield the most promising results. Moreover, a method for the realisation of a suitable bonding surface for the Silicon Direct Bonding method has been developed, which does not require any wet pre treatment of the fabricated MEMS patterns. A functional MEMS acceleration sensor as well as Dummy devices serve as demonstrators for the overall integration technology as well as for the characterisation of electrical parameters. / Im Bereich mobiler Elektronik, wie z.B. bei Smartphones, Smartcards oder in Kleidung integrierten Geräten ist ein Trend zu erkennen hinsichtlich steigender Funktionalität und Miniaturisierung. Bei dieser Entwicklung spielen Mikroelektromechanische Systeme (MEMS) eine entscheidende Rolle zur Realisierung neuer Funktionen, wie z.B. der Bewegungsdetektion. Die Anforderungen derartiger Bauteile zusammen mit dem begrenzten zur Verfügung stehenden Platz erfordern neuartige Technologien für die Aufbau- und Verbindungstechnick (engl. Packaging) der Bauteile. Das 3D-Wafer Level Packaging (3D-WLP) ermöglicht eine Lösung für eine miniaturisierte MEMS-Bauform unter Nutzung von Techniken wie dem Waferlevelbonden (WLB) und den Siliziumdurchkontaktierungen (TSV von engl. Through Silicon Via). Diese Technologie erhöht die effektive aktive Fläche des MEMS Bauteils durch die Reduzierung von Toträumen, welche für andere Ansätze wie der Drahtbond-Montage üblich sind. In der vorliegenden Arbeit wurden verschiedene Technologiekonzepte für den Aufbau von 3D-WLP für MEMS erarbeitet. Dabei lag der Fokus auf einer Kupfer-basierten Technologie sowie auf zwei prinzipiellen Varianten für die TSV-Implementierung. Dies umfasst den Via Middle Ansatz, welcher auf der TSV Herstellung auf einem separaten Kappenwafer beruht, sowie den Via Last Ansatz mit einer TSV Herstellung entweder im MEMS-Wafer oder im Kappenwafer. Für beide Varianten mit individuellen Herausforderungen wurden entsprechende Prozessmodule entwickelt. Beim Via Middle Ansatz ist die Wafer-bezogene Ätzratenhomogenität des Siliziumtiefenätzen entscheidend für das spätere Freilegen der TSVs von der Rückseite. Hier hat sich eine Reduzierung der TSV-Tiefe auf bis zu 80 μm vorteilhaft erwiesen insofern, das Kupfer-Thermokompressionsbonden (Cu-TKB) vor dem Abdünnen erfolgt. Zur Metallisierung der TSVs wurde ein Cu Galvanikprozess erarbeitet, welcher es ermöglicht gleichzeitig eine Umverdrahtungsebene sowie die Bondstrukturen für das Cu-TKB zu erzeugen. Beim Via Last Ansatz ist die TSV Isolation eine Herausforderung. Es wurden CVD (Chemische Dampfphasenabscheidung) Prozesse untersucht, wobei eine Kombination aus PE-TEOS und SA-TEOS sowie eine Parylene Beschichtung erfolgversprechende Ergebnisse liefern. Des Weiteren wurde eine Methode zur Erzeugung bondfähiger Oberflächen für das Siliziumdirektbonden erarbeitet, welche eine Nass-Vorbehandlung des MEMS umgeht. Ein realer MEMS-Beschleunigungssensor sowie Testaufbauten dienen zur Demonstration der Gesamtintegrationstechnologie sowie zur Charakterisierung elektrischer Parameter.
|
Page generated in 0.0863 seconds