• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 88
  • 74
  • 10
  • 9
  • 8
  • 6
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 407
  • 79
  • 60
  • 43
  • 36
  • 34
  • 33
  • 30
  • 29
  • 29
  • 27
  • 27
  • 24
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Sistema microemulsionado: caracteriza??o e aplica??o na ind?stria de petr?leo

Silva, Guymmann Clay da 12 August 2011 (has links)
Made available in DSpace on 2014-12-17T15:42:14Z (GMT). No. of bitstreams: 1 GuymmannCS_DISSERT-.pdf: 2904070 bytes, checksum: 4cd1c00978977c422c79766db70f2678 (MD5) Previous issue date: 2011-08-12 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / Alkyl polyethoxylates are surfactants widely used in vastly different fields, from oil exploitation to pharmaceutical applications. One of the most interesting characteristics of these surfactants is their ability to form micellar systems with specific geometry, the so-called wormlike micelle. In this work, microemulsions with three distinct compositions (C/T = 40 %, 30 % and 25 %) was used with contain UNITOL / butanol / water / xylene, cosurfactant / surfactante (C/S) ratio equal to 0,5. The microemulsion was characterized by dynamic light scattering (DLS), capillary viscometry, torque rheometry and surface tensiometry experiments carried out with systems based on xylene, water, butanol (cosurfactant) and nonaethyleneglycolmonododecyl ether (surfactant), with fixed surfactant:cosurfactant:oil composition (with and without oil phase) and varying the overall concentration of the microemulsion. The results showed that a transition from wormlike micelles to nanodrops was characterized by maximum relative viscosity (depending on how relative viscosity was defined), which was connected to maximum effective diameter, determined by DLS. Surface tension suggested that adsorption at the air water interface had a Langmuir character and that the limiting value of the surfactant surface excess was independent of the presence of cosurfactant and xylene. The results of the solubilization of oil sludge and oil recovery with the microemulsion: C/S = 40%, 30% and 25% proved to be quite effective in solubilization of oil sludge, with the percentage of solubilization (%solubilization) as high as 92.37% and enhanced oil recovery rates up to 90.22% for the point with the highest concentration of active material (surfactant), that is, 40%. / Os tensoativos alquil-polietoxilados s?o amplamente utilizados em diferentes campos, desde a explota??o de petr?leo at? aplica??es na ind?stria farmac?utica. Uma das caracter?sticas mais interessantes destes tensoativos ? a sua capacidade de formar sistemas micelares que apresentam uma geometria micelar espec?fica, a chamada micela wormlike, tipo verme . Neste trabalho, foram utilizados tr?s pontos de microemuls?o: C/T = 40 %, C/T = 30 % e C/T = 25 % num sistema contendo UNITOL/xileno/butanol/?gua. Esses pontos de microemuls?o foram caracterizados por espalhamento de luz din?mico (DLS), viscosimetria capilar, reometria de torque e tens?o superficial com composi??es de tensoativo, cotensoativo e ?leo fixo - 5 % (com e sem fase ?leo) e variando a concentra??o total dos pontos de microemuls?o. Os resultados mostraram que a transi??o da geometria de micela wormlike para nanogotas poderia ser caracterizada por um m?ximo na viscosidade relativa (dependendo de como a viscosidade foi definida), que foi vinculado a um m?ximo de di?metro efetivo, determinada por DLS. A tens?o superficial sugeriu que a adsor??o na interface ?gua/ar tinha um car?ter de Langmuir, o limite de excesso da superf?cie do tensoativo ? independente da presen?a de cotensoativo e do xileno, e que o valor limite do excesso superficial foi independente da presen?a de cotensoativo e xileno. Os resultados da solubiliza??o da borra de petr?leo e da recupera??o avan?ada de petr?leo com os pontos de microemuls?o C/T = 40 %, C/T = 30 % e C/T = 25 %, se mostraram bastante eficaz com solubiliza??o da borra de petr?leo, com porcentagem de solubiliza??o (% solubiliza??o) at? 92,37 %, e recupera??o avan?ada de petr?leo de at? 90,22 % para o ponto que apresenta maior concentra??o de mat?ria ativa (tensoativo), ou seja, C/T = 40 %.
382

Auto-assemblages biofonctionnels à base de conjugués polymère-b-peptide / Biofunctional self-assemblies from polymer-b-peptide conjugates

Drappier, Charlotte 22 November 2013 (has links)
La thèse présentée décrit la préparation et l’étude d’auto-assemblages élaborés à partir de conjugués amphiphiles Tat-b-poly(triméthylène carbonate) (Tat-b-PTMC) doués de propriétés d’internalisation cellulaire conférées par le segment peptidique Tat. L’objectif principal de ces travaux était d’établir et de comprendre les liens entre la structure macromoléculaire, les caractéristiques colloïdales et l’activité biologique de ces systèmes. Les efforts de précision moléculaire et de caractérisation fournispour la synthèse des chimères Tat-b-PTMC a permis de corréler finement leurs structures chimiquesaux paramètres physico-chimiques des nanoparticules obtenues. Grâce à une approche expérimentale transverse combinant des études de biologie cellulaire et de biophysique, le mécanisme d’interaction in vitro de ces nanoparticules avec les cellules HeLa a pu être en partie élucidé. Enfin, un camouflage électrostatique pH-sensible a été mis au point pour tenter de moduler leur activité et d’augmenter leur sélectivité vis-à-vis de l’environnement tumoral. / This thesis work deals with preparation and study of cell-penetrating self-assemblies from amphiphilicpolymer-b-peptide Tat-b-poly(trimethylene carbonate) conjugates. Tat-b-PTMC chimeras withtunable hydrophilic fractions were synthesized, thoroughly characterized and self-assembled inaqueous buffer into size-tunable, highly monodisperse core-shell nanoparticles, presenting a full Tatcorona. Their physico-chemical profiles were assessed by complementary imaging (AFM, TEM) andscattering techniques (multiangle DLS, SANS) and correlated with their molecular architectures.Their transduction ability in vitro on HeLa cells and interaction mode with phospholipid membraneswere studied with a view to correlate their physico-chemical profiles with their biological properties.This interdisciplinary approach partially shed light on the interactions at play in the cellular uptakeprocess. With the ultimate goal of improving pharmacological characteristics, we finally endeavoredto develop an ON/OFF PEGylation strategy to harness the cell penetrating power of thosebiomacromolecular self-assembled systems.
383

Macromolecular Interactions in West Nile Virus RNA-TIAR Protein Complexes and of Membrane Associated Kv Channel Peptides

Zhang, Jin 01 July 2013 (has links)
Macromolecular interactions play very important roles in regulation of all levels of biological processes. Aberrant macromolecular interactions often result in diseases. By applying a combination of spectroscopy, calorimetry, computation and other techniques, the protein-protein interactions in the system of the Shaw2 Kv channel and the protein-RNA interactions in West Nile virus RNA-cellular protein TIAR complex were explored. In the former system, the results shed light on the local structures of the key channel components and their potential interaction mediated by butanol, a general anesthetic. In the later studies, the binding modes of TIAR RRM2 to oligoU RNAs and West Nile virus RNAs were investigated. These findings provided insights into the basis of the specific cellular protein–viral RNA interaction and preliminary data for the development of strategies on how to interfere with virus replication
384

Targeted Drug Delivery to Breast Cancer using Polymeric Nanoparticle Micelles

Ho, Karyn 13 December 2012 (has links)
Broad distribution and activity limit the utility of anti-cancer compounds by causing unacceptable systemic toxicity and narrow therapeutic indices. To improve tumour accumulation, drug-loaded macromolecular assemblies have been designed to replace conventional surfactant-based formulations. Their nanoscale size enhances tumour accumulation via hyperpermeable vasculature and reduced lymphatic drainage. Incorporating targeting ligands introduces cell specificity through receptor-specific binding and uptake, enabling drugs to reach intracellular targets. In this work, the targeting properties of polymer nanoparticle micelles of poly(2-methyl-2-carboxytrimethylene carbonate-co-D,L-lactide)-graft-poly(ethylene glycol)-furan (poly(TMCC-co-LA)-g-PEG) were verified using in vitro and in vivo models of breast cancer. To select a relevant mouse model, the vascular and lymphovascular properties of two tumour xenograft models were compared. Greater accumulation of a model nanocarrier was observed in orthotopic mammary fat pad (MFP) tumours than size matched ectopic subcutaneous tumours, suggesting that the organ environment influenced the underlying pathophysiology. Immunostaining revealed greater vascular thickness, density and size, and thinner basement membranes in MFP tumours, likely contributing to greater blood perfusion and vascular permeability. Based on these observations, MFP tumour-bearing mice were used to characterize the pharmacokinetics and biodistribution of a taxol drug, docetaxel, encapsulated in poly(TMCC-co-LA)-g-PEG nanoparticles. The nanoparticle formulation demonstrated longer docetaxel circulation in plasma compared to the conventional surfactant-based formulation. As a result, greater docetaxel retention was uniquely measured in tumour tissue, extending exposure of tumour cells to the active compound and suggesting potential for increased anti-cancer efficacy. Furthermore, active targeting of antibody-modified nanoparticles to live cells was shown to be selective and receptor-specific. Binding isotherms were used to quantify the impact of antibody density on binding strength. The equilibrium binding constant increased linearly with the average number of antibodies per particle, which is consistent with a single antibody-antigen interaction per particle. This mechanistic understanding enables binding behaviour to be adjusted in a predictive manner and guides rational nanoparticle design. These studies validate poly(TMCC-co-LA)-g-PEG nanoparticles as a platform for targeted delivery to cancer on both a tissue and cellular level, forming a compelling justification for further pre-clinical evaluation of this system for safety and efficacy in vivo.
385

Soft Matter : Routes To Rheochaos, Anomalous Diffusion And Mesh Phases

Ganapathy, Rajesh 09 1900 (has links)
Soft condensed matter (SCM) systems are ubiquitous in nature. SCM systems contain mesoscopic structures in the size range 10 nm to 1 am that are held together by weak entropic forces. These materials are therefore easily perturbed by external fields such as shear, gravity and electric and magnetic fields and are novel systems for studying non-equilibrium phenomena. The elastic constants of these materials are ≈ 109 times smaller than conventional atomic fluids and hence it is possible to measure the viscoelastic response of these materials using commercial instruments such as rheometers. The relaxation time in SCM systems are of the order of milliseconds as compared to atomic systems where relaxation times are of the order of picoseconds. It is easy to study the effect of shear on SCM, as the shear rates attainable by commercial rheometers are of the order of the inverse of their relaxation times. The dynamics of SCM systems and their local rheological properties obtained using the method of probe diffusion can be quantified through dynamic light scattering experiments. The structure of SCM systems can be quantified using diffraction techniques such as small angle x-ray scattering. In this thesis we report experimental studies on the linear and nonlinear rheology and the dynamics of surfactant cetyltrimethylammonium tosylate (CTAT), which forms cylindrical wormlike micelles, studied using bulk rheology and dynamic light scattering (DLS) technique, respectively. We have also studied the phase behaviour of the ternary system formed by cetyltrimethylammonium 3-hydroxy-napthalene 2-carboxylate (CTAHN), sodium bromide (NaBr) and water using small angle x-ray scattering (SAXS). In Chapter 1, we discuss why SCM systems are suitable for studying non-equilibrium phenomena such as the effect of shear on the structure and dynamics of condensed matter. This is followed by a discussion on the chemical structure, phase behaviour and self assembling properties of the amphiphilic molecules in water. We then discuss the intermacromolecular forces such as van der Waals interaction, the screened Coulomb repulsion and hydrophobic and hydration forces. The systems that have been the subject of our experimental studies, viz. CTAT and CTAHN/NaBr/water have also been discussed in detail. This is followed by a theoretical background of linear and nonlinear rheology, dynamic light scattering and small angle x-ray scattering techniques. Next we describe the stress relaxation mechanisms in wormlike micelles. This is followed by a discussion on some standard techniques of nonlinear time series analysis, in particular the evaluation of the delay time L, the embedding dimension m, the correlation dimension ν and the Lyapunov exponent λ. We have also mentioned a few examples of experimental systems where chaos has been observed. We have also discussed in detail the various routes to chaos namely, the period-doubling route, the quasiperiodic route and the intermittency route. The concluding part of this chapter summarises the main results of the thesis. Chapter 2 discusses the experimental apparatus used in our studies. We have discussed the different components of the MCR-300 stress-controlled rheometer (Paar Physica, Germany). The rheo-small angle light scattering experiments and the direct visualisation experiments done using a home-made shear cell are also discussed. Next we describe the various experiments that can be done using a commercial rheometer. The frequency response and flow experiments have been discussed with some examples from our own work on entangled, cylindrical micelles. This is followed by a discussion on the various components of our dynamic light scattering (DLS) setup (Brookhaven Instruments, USA). Particle sizing of submicrometer colloidal spheres using our DLS setup has been discussed with an example of an angle-resolved DLS study of 0.05µm polystyrene colloids. Next we describe the various components of the SAXS setup (Hecus M. Braun, Austria). As an example application of SAXS we have quantified the structure of the lamellar phase formed by the surfactant CTAHN/water. We finally describe the sample preparation methods employed by us for the different experiments. Our nonlinear rheology experiments on viscoelastic gels of surfactant CTAT (cCT AT= 2wt%) in the presence of salt sodium chloride (NaCl) at various concentrations has been discussed in Chapter 3. We observe a plateau in the measured flow curve and this is attributed to a mechanical instability of the shear banding type. The slope of this plateau can be tuned by the addition of salt NaCl. This slope is due to a concentration difference between the shear bands arising from a Helfand-Fredrickson mechanism. This is confirmed by the presence of a “Butterfly” light scattering pattern in SALS experiments performed simultaneously with rheological measurements. We have carried out experiments at six different salt concentrations 10mM < cN aCl<1M, which yield plateau slopes (α) ranging from 0.07 < α < 0.4. We find that a minimum slope of 0.12, corresponding to a salt concentration of 25mM NaCl, is essential to see a “Butterfly” pattern indicating the onset of flow-concentration coupling at this α value. After this we turn our attention to stress/shear rate relaxation experiments. The remainder of this chapter is split in four parts. We show in Part-I that the routes to rheochaos in stress relaxation experiments is via Type-II intermittency. Interestingly in shear rate relaxation, the route is via Type-III intermittency. We also show that flow-concentration coupling is essential to see the route to rheochaos. This section also brings out the crucial role played by orientational ordering of the nematics during rheochaos using SALS measurements performed simultaneously with rheological measurements. In part-II, we study the spatio-temporal dynamics of the shear induced band en route to rheochaos. Our direct visualisation experiments show that the complex dynamics observed in stress/shear rate relaxation measurements during the route to rheochaos is a manifestation of the spatio-temporal dynamics of the high shear band. In part-III, we describe the results of our stress/shear rate relaxation measurements at a fixed shear rate/stress with temperature as the control parameter and thereby control the micellar length. We see the Type-II intermittency route to rheochaos in stress relaxation measurements and the Type-III intermittency route to rheochaos in shear rate relaxation measurements. We conclude this section by showing the results of linear rheology measurements carried out at different temperatures. We estimate the mean micellar length ¯L, reptation time τrepand the breaking time τbreak. We show that L¯ increases by ≈ 58%, as the sample goes through the route to rheochaos. In Part-I of this chapter we had only qualitatively discussed the correlations between the measured time series of stress and the VH scattered intensity during the Type-II intermittency route to rheochaos. In part-IV we have attempted to quantify the correlations between the two time series using the technique of linear and nonlinear Granger causality. We have also studied the phase space dynamics of the two time series using the technique of Cross Recurrence Plots. We show that there exists a causal feedback mechanism between the stress and the VH intensity with the latter having a stronger causal effect. We have also shown that the bivariate time series share similar phase space dynamics using the method of Cross Recurrence Plots. In chapter 4, we have studied the dynamics of wormlike micellar gels of surfactant CTAT using the DLS technique. We report an interesting result in the dynamics of these systems: concentration fluctuations in semidilute wormlike-micelle solutions of the cationic surfactant Cetyltrimethylammonium Tosylate (CTAT) at wavenumber q have a mean decay rate α qz, with z -̃1.8, for a wide range of surfactant concentrations just above the overlap value c∗. The process we are seeing is thus superdiffusive, like a L´evy flight, relaxing on a length scale L in a time of order less than L2 . The rheological behaviour of this system is highly non-Maxwellian and indicates that the micelle-recombination kinetics is diffusion-controlled (DC) (micelles recombine with their original partners). With added salt (100mM NaCl) the rheometric behaviour turns Maxwellian, indicating a crossover to a mean-field (MF) regime (micelles can recombine with any other micellar end). The concentration fluctuations, correspondingly, show normal diffusive behaviour. The stress relaxation time, moreover is about twenty times slower without salt than with 100mM NaCl. Towards the end of this chapter, we propose an explanation of these observations based on the idea that stress due to long-lived orientational order enhances concentration fluctuations in DC regime. In the previous chapter we had studied the dynamics of wormlike micellar gels of pure CTAT 2wt% and found superdiffusive relaxation of concentration fluctuations due to a nonlinear coupling of long-lived stress and orientational fluctuations to the con- centration. In chapter 5 we present results from dynamic light scattering experiments to quantify the diffusive motion of polystyrene (PS) colloids in the same system. This chapter is split in two parts. In Part-I, we discuss dynamics of PS particles of radius 115 nm and 60 nm in CTAT 2wt%. The radius of the colloidal spheres is comparable to the mesh size ξ = 80 nm of the wormlike micellar network and hence we are probing the network dynamics. We find that ∆r2(t) is wavevector independent at small and large lag times. However at intermediate times, we find an anomalous wavevector dependence which we believe arises from the rapid restructuring of the gel network. This anomalous wavevector dependence of ∆r2(t) disappears as the temperature is increased. In Part-II we discuss the dynamics of PS particles of radius 25 nm and 10 nm, smaller than ξ, in CTAT 1wt% & 2wt%. We once again find an anomalous wavevector dependence of ∆r2(t) at intermediate times for the 2wt% sample. Surprisingly, at large times the particle motion is not diffusive, rather ∆r2(t) saturates. We do not have a clear understanding of this as yet. Also for the 10 nm particle, the motion at small lag times is superdiffusive. The motion of these particles is probably influenced by the superdiffusion of concentration fluctuations observed in pure CTAT 2wt% system (chapter 4). In chapter 6, we report the observation of an intermediate mesh phase with rhom- bohedral symmetry, corresponding to the space group R¯3m, in the ternary system consisting of CTAHN/NaBr/water. It occurs at lower temperatures between a random mesh phase (LDα ) and a lamellar phase (Lα) on increasing the surfactant concentration φs. The micellar aggregates, both in the intermediate and random mesh phases, are found to be made up of a two-dimensional network of rod-like segments, with three rods meeting at each node. SAXS studies also show the presence of small angle peaks corresponding to ad−spacing of 25 nm. Freeze fracture electron microscopy results shows that this peak may correspond to the presence of nodule like structures with no long-range correlations. The thesis concludes with a summary of main results and a brief discussion of the scope for future work in Chapter 7.
386

Soft Materials Derived From Bile Acid Analogues

Bhat, Shreedhar 04 1900 (has links)
Chapter 1. Introduction This chapter is an overview on the literature of self-association of small organic molecules. The chapter is presented in four parts. First, an introduction to aggregation of small molecules is given with the emphasis on micelles and gels(Parts 1 and 2) In part 3, a short overview is given on bile acid based aggregates and their applications. Lastly, the content of the thesis is outlined. Chapter 2. Solution properties of novel cationic bil salts: A structure-aggregation property study Scheme 1: Structures of Cationic bile salts(Refer PDF File) Bile Salts are biosurfactants and they are known to form micelles in aqueous medium. We studied the micellar properties of cationic bile salts(Scheme 1) and compared with their natural (anionic) counterparts. A serendipitous discovery of the gelation of a cationic bile salt(4) led us to investigate the aggregation properties of this new class of cationic hydrogelators. This chapter highlights the recent efforts on the study of side chain structure-aggregation property relationship of cationic bile salts. Bile acid analogues with a quaternary ammonium group(Scheme 1, compounds 2, 3, 4, 6, 8 and 12) on the side chain were found to efficiently gel aqueous salt solutions. Some of the cationic bile salts gelled water alone and many of them gelled aqueous salt solutions even in the presence of organic co-solvents(≤ 20%) such as ethanol, methanol, DMSO and DMF. A strong counter ion dependent gelation was observed. These gels showed interconnected fibrous networks. Unlike natural anionic bile salt gels(reported for NaDC, NaLC), the cationicgels reported here are pH independent. Cationic gels derived from DCA showed more solid-like rheological response compared to natural NaDC gels studied earlier by Tato et al. A strong structure(side-chain) andcounter-ion dependent flow of the cationic bile salt gels was seen. Chapter 3. Applications of cationic bile salts and their aggregates Cationic bile salts are useful in many ways. We have studied some of the applications of cationic bile salts(discussed in chapter 2) and their aggregates in this chapter. The chapter is presented in three parts. Part 1. Interaction of Cationic bile salts and DNA The bile acid amphiphilicity is believed to help the DNA binding process of polyamines. This has prompted us to study the DNA-bile salt binding interaction of bile salts. The binding of cationic bile salts has been expressed in terms of C50 values, which were determined from the plot of fluorescence of ethidium bromide bound DNA vs. bile salt concentration(Fig 1) The C50 values for cationic bile salts were estimated to be about 1.2 mM. Fig1: A plot of fluorescene of ethidium bromide bound DNA against bile salt concentration (Refer PDF File) Part 2. Cholesterol solubilization and crystallization studies in aqueous bile salt solutions. Dihydroxy bile salt micelles are well known for cholesterol dissolution(e.g. UDCA and CDCA). We studied the dissolution of cholesterol in the cationic bile salt micelles(of 21-25) and the results are discussed in this part. Scheme 2: Cationic bile salt chlorides studied for cholesterol dissolution (Refer PDF File) A powder dissolution method was used to study the solubility of anhydrous cholesterol in cationic bile salt solution. These cationic bile salt micelles can dissolve cholesterol to the same extent as the taurine conjugates of bile acids, but lesser than the natural anionic bile salts(Fig.2) Addition of PC(Phosphatidylcholine) to cationic bile salt micelles enhanced the micellar cholesterol solubilization. Fig 2:Cholesterol dissolution in cationic bile salt solutions(Refer PDF File) The crystal nucleation time of cholesterol did not change significantly by adding 5-30 mM of the cationic bile salts. The bile salt analogues did, however, attenuate cholesterol crystallization to a similar extent at all concentrations studied. All these effects wer comparable to those fo cholic acid. Part 3. Hydrogels as a reaction vessel for photodimerization Bile salt micelles have been shown to control the product selectivity in photochemical reactions. The dynamic nature of the bile salt micelles results in differential effects on reaction selectivity. The photodimerization of acenaphthylene(sheme 3) was studied in micellar and hydrogel medium(e.g. NaDC, 22, 28, etc.) The ratio of anti- to synphotodimer was found to be greater in gel bound state than in solution. Substitution on the CAN ring did not show larger variation on the product distribution from solution gel. Scheme 3: Photodimerization of acenaphthylene(Refer PDF File) Chapter 4. Bile acid derived sulfur analogues in designing novel materials. Part 1. A simple approach towards nanoparticle-gel hybrid material. Scheme 4: Scheme for the synthesis of thiols derived from bile acids (Refer PDF File) Our interest in bile acid based gelator molecules led us to explore the synthesis and properties of bile analogues with the side chain carboxylic acid replaced by a thiol(Scheme 4) to stabilize metal NPs. We reasoned that the specific self-aggregation modes of facially amphiphilic bile units would enable a metal NP capped by such a thiol to “lock” onto a gel fiber derived from a structurally related gelator molecule. AuNPs stabilized by 38-40 were obtained by the NaBH4 reduction of homogeneous methanolic solutions of the thiol and gold salt. These steroid capped nanoparticles were found to stay dispersed in a gel of 28, thus providing a simple approach to obtain gel-nanoparticle hybrid. A photograph of the hybrid material and their morphology are shown in Fig 3.(Refer PDF File) Chart 1: Structure of the gelator used for designing a hybrid material(Refer PDF File) Part 2. Gelation of aromatic solvents using sulfur analogues of bile acid A few of the sulfur derivatives were serendipitously fouond to gel organic solvents (Fig 4). Thiol 38 formed stable gels at room temperatures while the disulphide 36 formed stable gels below 5º C. The aggregation properties, morphology, and the melting profiles of gels of disulfides and thiols derived from bile acids have been highlighted in this part. Fig 4: A photograph of the gels derived from 38(Refer PDF File) (For Figures and Molecular Formula Pl refer the Original Thesis)
387

Structure, Dynamics and Phase Behaviors of Cationic Micellar Solutions: / Raman and Neutron Scattering Study of Alkyltrimethylammonium Bromides / Struktur, Dynamik und Phasenverhalten von Kationischen Mizellaren Lösungen / Raman-und Neutronenstreustudies von Alkyltrimethylammoniumbromiden

Rajashekara Haramagatti, Chandrashekara 01 November 2006 (has links)
No description available.
388

Imagerie ultrasonore dans les matériaux mous

Perge, Christophe 03 July 2014 (has links) (PDF)
La matière molle se consacre à l'étude des propriétés de fluides complexes. Ces fluides diffèrent des fluides simples à cause de l'existence d'une microstructure qui provient de l'arrangement particulier des éléments mésoscopiques constitutifs du matériau (agrégats de particules de noir de carbone, enchevêtrements de polymères, micelles de molécules tensioactives). C'est le couplage entre microstructure et déformation qui confère aux fluides complexes des comportements singuliers et qui engendre des écoulements hétérogènes. Comprendre ces états hors-équilibre et les dynamiques associées présente un intérêt à la fois industriel et fondamental. La rhéologie en cellule de Taylor-Couette est une technique très répandue pour l'étude de la déformation et de l'écoulement de fluides complexes. Cependant, cette méthode n'est pas adaptée à l'étude des écoulements hétérogènes car elle ne fournit qu'une description globale de l'écoulement. Pour pallier ce problème, une technique de vélocimétrie ultrasonore à deux dimensions a été couplée à la rhéologie classique. Cette visualisation locale nous a permis d'étudier l'instabilité inertielle de Taylor-Couette dans les fluides newtoniens, les instabilités élastiques de fluides viscoélastiques (polymères et solutions micellaires), la fluidification de fluides à seuil (gels de noir de carbone, microgels de carbopol et émulsions) et enfin la rupture de gels de protéine soumis à une contrainte de cisaillement. Tous ces exemples montrent des coexistences entre différents états induits par l'écoulement et permettent de revisiter les approches rhéologiques à partir de caractérisations locales des champs de déformation et de vitesse.
389

Targeted Drug Delivery to Breast Cancer using Polymeric Nanoparticle Micelles

Ho, Karyn 13 December 2012 (has links)
Broad distribution and activity limit the utility of anti-cancer compounds by causing unacceptable systemic toxicity and narrow therapeutic indices. To improve tumour accumulation, drug-loaded macromolecular assemblies have been designed to replace conventional surfactant-based formulations. Their nanoscale size enhances tumour accumulation via hyperpermeable vasculature and reduced lymphatic drainage. Incorporating targeting ligands introduces cell specificity through receptor-specific binding and uptake, enabling drugs to reach intracellular targets. In this work, the targeting properties of polymer nanoparticle micelles of poly(2-methyl-2-carboxytrimethylene carbonate-co-D,L-lactide)-graft-poly(ethylene glycol)-furan (poly(TMCC-co-LA)-g-PEG) were verified using in vitro and in vivo models of breast cancer. To select a relevant mouse model, the vascular and lymphovascular properties of two tumour xenograft models were compared. Greater accumulation of a model nanocarrier was observed in orthotopic mammary fat pad (MFP) tumours than size matched ectopic subcutaneous tumours, suggesting that the organ environment influenced the underlying pathophysiology. Immunostaining revealed greater vascular thickness, density and size, and thinner basement membranes in MFP tumours, likely contributing to greater blood perfusion and vascular permeability. Based on these observations, MFP tumour-bearing mice were used to characterize the pharmacokinetics and biodistribution of a taxol drug, docetaxel, encapsulated in poly(TMCC-co-LA)-g-PEG nanoparticles. The nanoparticle formulation demonstrated longer docetaxel circulation in plasma compared to the conventional surfactant-based formulation. As a result, greater docetaxel retention was uniquely measured in tumour tissue, extending exposure of tumour cells to the active compound and suggesting potential for increased anti-cancer efficacy. Furthermore, active targeting of antibody-modified nanoparticles to live cells was shown to be selective and receptor-specific. Binding isotherms were used to quantify the impact of antibody density on binding strength. The equilibrium binding constant increased linearly with the average number of antibodies per particle, which is consistent with a single antibody-antigen interaction per particle. This mechanistic understanding enables binding behaviour to be adjusted in a predictive manner and guides rational nanoparticle design. These studies validate poly(TMCC-co-LA)-g-PEG nanoparticles as a platform for targeted delivery to cancer on both a tissue and cellular level, forming a compelling justification for further pre-clinical evaluation of this system for safety and efficacy in vivo.
390

Estudo da formação de micelas e microemulsões contendo nifedipina : influência das fases na estrutura dos sistemas

Oliveira, Dayane Xavier de 03 February 2014 (has links)
Micelles (MIs) and microemulsions (MEs) are classified as stabilized systems by surfactants and are very similar with respect to their structure and physico-chemical properties. As for the applicability, they have been deployed by being able to carry drugs which have a limited systemic bioavailability by oral route. The formation of these systems is mainly dependent on the types of components used, making it important to study its influence on the structure. The goal of this study was to obtain and characterize micellar and microemulsion systems (containing essential oil of Citrus sinensis (L.) Osbeck as oil phase) stabilized by a nonionic surfactant (Tween 80) and short-chain cosurfactant (alcohol ethyl) which may be used as a delivery system for nifedipine (NFD a model drug) seeking to verify the influence of the phases and the interaction of the drug in the structure of these systems. Ternary and pseudoternary phase diagrams for MIs and MEs, respectively, and were obtained from the formation regions, formulations were selected for physico-chemical characterization and incorporation of NFD. The macro and microscopic aspects were evaluated using polarized light microscopy (MLP), measures pH, electrical conductivity and surface tension. The average droplet size was measured by dynamic light scattering (DLS) and small angle x-ray scattering (SAXS). The results demonstrated that such systems are stable, optically isotropic and transparent in the absence and presence of drug. The droplet size decreases with increasing amount of surfactant to MIs and the mixture surfactant/cosurfactant to the MEs. The influence of the cosurfactant in MIs was negligible. The increase of the amount of oily phase in MEs caused an increase in the droplet size. The presence of NFD no influence on the structure of MIs, but for the MEs increased droplet size, suggesting that the NFD is the internal phase of the MEs. The modeling by SAXS curves for MIs and MEs most diluted were made and showed the interaction between the NFD and systems, confirming the previous results. Studies by Fourier Transformed Infra Red (FTIR) confirmed the interaction between MIs and MEs with the stratum corneum (EC) , which allows the use of these systems as permeation enhancers of NFD. / As micelas (MIs) e as microemulsões (MEs) são classificadas como sistemas estabilizados por tensoativos e se assemelham bastante com relação a sua estrutura e propriedades físico-químicas. Quanto a sua aplicabilidade, elas têm sido destacadas por serem capazes de veicular fármacos que possuem uma biodisponibilidade sistêmica limitada por via oral. A formação destes sistemas é dependente principalmente dos tipos de componentes utilizados, tornando-se relevante o estudo da sua influência na estrutura. O objetivo do presente trabalho foi a obtenção e caracterização de sistemas micelares e microemulsionados (contendo óleo essencial de Citrus sinensis (L.) Osbeck como fase oleosa), estabilizados por um tensoativo não iônico (Tween 80) e um cotensoativo de cadeia curta (álcool etílico), que possam ser utilizados como sistema de liberação para a nifedipina (NFD, um fármaco modelo), buscando verificar a influência das fases e a interação do fármaco na estrutura desses sistemas. Diagramas de fase ternário e pseudoternário para MIs e MEs, respectivamente, foram obtidos e a partir das regiões de formação, formulações foram selecionadas para caracterização físico-química e incorporação da NFD. Os aspectos macro e microscópicos foram avaliados utilizando microscopia de luz polarizada (MLP), medidas de pH, condutividade elétrica e tensão superficial. O tamanho médio de gotículas foi avaliado por espalhamento dinâmico de luz (DLS) e espalhamento de raios-x a baixos ângulos (SAXS). Os resultados demonstraram que esses sistemas são estáveis, isotrópicos e opticamente transparentes na ausência e presença de fármaco. O tamanho das gotículas diminuiu com o aumento da quantidade de tensoativo para as MIs e de mistura de tensoativo/cotensoativo para as MEs. A influência do cotensoativo nas MIs foi praticamente desprezível. O aumento da quantidade de fase oleosa nas MEs ocasionou um aumento do tamanho das gotículas. A presença da NFD não exerceu influência na estrutura das MIs, entretanto para as MEs aumentou o tamanho de gotículas, sugerindo que a NFD se encontra na fase interna das MEs. Os modelamentos das curvas de SAXS para as MIs e MEs mais diluídas foram realizados e mostraram a interação existente entre a NFD e os sistemas, corroborando com os resultados anteriores. Estudos por espectrofotometria de absorção na região do infravermelho com transformada de Fourier (FTIR) comprovaram a interação das MIs e das MEs com o estrato córneo (EC), o que possibilita o uso destes sistemas como promotores de permeação da NFD.

Page generated in 0.7692 seconds