• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 31
  • 17
  • 10
  • 6
  • 6
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 228
  • 105
  • 72
  • 50
  • 49
  • 35
  • 32
  • 31
  • 30
  • 28
  • 28
  • 26
  • 26
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Senzor pro měření průtoku / Flow sensor

Symerský, Tomáš January 2011 (has links)
This diploma thesis is divided into two parts - theoretical and practical. In its first, theoretical part, deals with the theory of fluid and gas flow, heat transfer and diversification of sensors for flow measurement working on the electrical principle. It also deals with thermodynamic principle, which can be used for measuring very small flow and low-temperature ceramics that is used to implement microcanals for sensing very low flows. The practical part of the thesis deals with the very simulation of the entire structure in the program “COMSOL Multiphysics” - both in 2D and 3D views. Then there is shown the implementation and measurement of the flow sensor in a low-temperature ceramics, working on a thermodynamic principle.
202

Simulace proudění vody v jímce / The water flow simulation in the cesspit

Šrámková, Dagmar January 2013 (has links)
This diploma thesis consists of two parts, part research and part attachments. The first section describes the literary problems of today's way of cleaning wastewater from small producers and characteristics of wastewater. The work is focused on the aspect of nature and all of these methods are directed towards this direction. The literary section is devoted to anaerobic environment, which is just one of the natural ways of treatment of waste water, in our case in a septic tank. The second part of the thesis deals with modeling of flow and behavior of sludge and water mixture in the cesspit septic tank sludge with variable densities and flow speeds. Modeling and calculations are made using COMSOL Multhiphysics. The conclusion is then summarized findings from the flow cesspit septic tank with the results and the assessment of whether a septic tank still has its place among the modern methods of wastewater treatment.
203

Modeling The Position-Dependent Inner Drop Velocity For A Millimeter-Size Core-Shell Drop As It Approaches Failure At Low Reynolds Numbers

Brandon J Wells (11108403) 16 June 2022 (has links)
<p>Co-axial dripping is one of the many ways to make drops with a core-shell structure for encapsulated materials. However, in systems where the capsule components are not density matched or surfactants are not used, the shell will eventually thin and break if not solidified in time. If the shell fails before solidifying, the core will leak out and result in a non-functional capsule. This study assumes that all capsules will fail once the core has reached 80% eccentricity, meaning a shell region has thinned to 20% of its original thickness (~70 µm). In reality, rupture of the shell depends more on stochastic defects and disturbances, but locally decreasing the shell thickness will increase the probability of capsule rupture. With this assumption, the survival time of a core-shell drop is inversely proportional to the relative velocity of the inner drop, where the greater this relative velocity, the faster the shell phase will thin. Stoke's law is generally used to approximate the speed of a sphere in a fluid. However, this study demonstrates that Stoke's law is insufficient for predicting the inner drop's motion for a compound drop. This is due to internal flows that develop within all fluid drops because of shear forces on the drop’s external face during freefall. For core-shell drops, prior studies report how the inner drop velocity can change in magnitude and direction as a function of its eccentricity, meaning its position within the outer drop. Since previous studies did not analyze this core-shell drop relationship with a 50 vol% core and a high viscosity shell, a model was built in COMSOL Multiphysics to understand how the claims from literature would apply to a previous encapsulation study (Betancourt, 2021). The model was also put through a series of validation tests that confirmed the model’s ability to accurately represent the speed and direction of inner drop motion. The final model configuration was then used to identify the transition point between buoyancy-driven and internal flow-driven failure modes observed during the production of core-shell drops in a previous encapsulation study for phase change materials (Betancourt, 2021). The model results showed how the estimated inner drop velocity was significantly reduced once accounting for the internal flows within the shell phase of a compound drop. While this study does help characterize the motion of an inner drop and could be used to find a material system with a favorable velocity profile, it is still recommended to use an in-air curing system to produce concentric capsules. Achieving a concentric capsule would still require this co-axial dripping setup to be modified significantly. </p> <p>Betancourt-Jimenez, D., Wells, B., Youngblood, J. P., & Martinez, C. J. (2021). Encapsulation of biobased fatty acid amides for phase change material applications. <em>Journal of Renewable and Sustainable Energy</em>, <em>13</em>(6), 064101. https://doi.org/10.1063/5.0072105</p>
204

Automatic data processing of traction motor measured data and vibration analysis of test bench

Dhangekar, Arshey January 2021 (has links)
One of the goals of ABB AB is to develop highly efficient electric motors for traction application. The demand for traction motors is increasing due to the rise in electric vehicles sale and railway locomotive engines. Highly efficient traction motors will assist in reducing the pollution caused by fossil fuels and help make the earth a better place to live by leveraging sustainable energy. The electrical and mechanical characteristics of electric motors are measured and analyzed in the lab. The measured data of the electric motor in the lab are analyzed using the conventional way. One of the significant challenges in a conventional way is to isolate the system with various limitations, and it offers very few choices for measurement. The data management of measured observation readings is affected severely due to this, and it is then risky to determine and analyze the characteristics of electric motors. The first aim is to develop an automatic data processing algorithm for the measurement data collected from the specific setup of the electrical machine. The data processing is done using the MATLAB tool. Statistical methods such as mean, median, moving mean, moving median, Gaussian model for handling missing data, outliers, and data smoothing methods have been implemented to get accurately measured datasets as a part of this thesis. In addition, a study of vibrational analysis of the test bench assembly was performed for the traction motor. The natural frequency of test bench assembly is computed on the Finite Element Method (FEM) tool. All the natural frequencies of the test bench assembly with the traction motor are analyzed, and some of them were closed to the excitation frequency of the traction motor.  This study found that the resonance frequency of the test bench assembly has to be prevented while operating the traction motor during lab to strengthen the life of the test bench.
205

Plasma Burner: Numerical Modeling of Plasma Generation and Flow

Colmenares, Julian, Ghazi, Diyar January 2021 (has links)
Technological evolution and mass production is impacting the Earth daily due to global warming caused by greenhouse gas emissions, where the biggest factor is the emission of carbon dioxide mostly caused by the burning of fossil fuel and industrial processes. Therefore, alternatives for substituting the use of fossil fuel in industries are extremely important. This thesis project investigates the method of using plasma technology using a plasma burner  which is electrically generated and could be an ideal solution for industrial metallurgical, chemical and mechanical processes due to its unique characteristics such as high energy densities, extremely high temperatures, rapid heating of surfaces and melting materials with a small installation size. Using the software COMSOL Multiphysics, a 2D model geometry is set up to simulate and investigate the behavior of the plasma burner by varying different parameters to improve the performance of the plasma burner. The results are based on simulations and no experiments were performed. However, we visited RISE ETC to observe and learn about the plasma burner model. At last, a geometry investigation was done by calculating the thermal efficiency to designate the most efficient geometry.
206

An Investigation of Cavitation Phenomena in Axial Piston Machines Through Experimental Study and Simulated Scaling Effects

Hannah Mcclendon Boland (16615293) 19 July 2023 (has links)
<p>  </p> <p>Cavitation is one of the most common causes of failures in axial piston machines. Due to the detrimental effects that cavitation has on unit performance, it is of important consideration both in the design of new units and in defining the operational limits of existing market products. The work in this thesis aimed to contribute to the current knowledge in both areas, with a focus on design considerations with respect to cavitation scalability, and on operating conditions by measuring cavitation severity under separate and combined inciting parameters. Though the application of unit scaling is common in industry for the design of pump families, there have been no comprehensive attempts to quantify whether cavitation in fluid power units may be adequately accounted for in published scaling laws. In this thesis, the scalability of cavitation phenomena was examined through a CFD scaling study performed using a modified version of the Full Cavitation Model.  Results indicate that linear scaling is consistent in maintaining volumetric efficiency performance within 1% across scaled units up to eight times larger or smaller than the baseline. However, the gas and vapor volume distributions vary significantly between scaled units, due largely to the linear non-scalability of fluid inertia and turbulent factors. Physical exchange between phases within a working fluid was shown to be time-dependent, such that the scaled-down unit exhibits bubble collapse rates up to 30% and 150% greater than the baseline and scaled-up units, respectfully. Considering these effects, the presented work demonstrates a potential for increased cavitation damage area when downscaling a unit and reduced risk in upscaling, despite the scaling law being a reliable indicator for volumetric efficiency. </p> <p>To define a more complete study of cavitation under a variety of operating conditions and inciting parameters, this a new experimental procedure and testing circuit was proposed with focus on repeatability by controlled pressure drops and preliminary quantification of inlet fluid quality. By measuring cavitation conditions under pressure starvation, incomplete filling, and combinations thereof, the direct effect of different inception methods on unit performance was shown to be readily identifiable. Through visualization of the inlet flow, reduction in inlet pressure levels was correlated to fluid cloudiness levels and bubble size, with transparency loss at 0.0 bar<sub>g</sub> and transition from bubbly to plug flow at -0.4 bar<sub>g</sub>. Incomplete filling-induced cavitation was also shown to be detectable by inlet flow conditions, with a distinct change in bubble coalescence rate when operating under shaft speeds greater than or equal to fill speed for a given inlet pressure. </p>
207

MULTISCALE MULTIPHYSICS THERMO-MECHANICAL MODELING OF AN MGB<sub>2</sub> BASED CONDUCTION COOLED MRI MAGNET SYSTEM

Amin, Abdullah Al 01 February 2018 (has links)
No description available.
208

Dimensional Analysis of Electromagnetic Particle Transport in a Fluid Flow under an Electromagnetic Field inspired by Biomedical Applications

Wonseok Heo (13171947) 29 July 2022 (has links)
<p>This study, motivated by biomedical applications such as drug delivery and adsorption, is aimed at describing magneto- and dielectro-phoretic systems via dimensional analysis to quantitatively assess the relative contribution of hydrodynamics, electromagnetism, and particle dynamics. Magnetophoresis and dielectrophoresis, phenomena of magnetic and dielectric particle transports, respectively, have been used in various applications requiring selective collecting or separating magnetic particles, especially in microfluidic systems.</p> <p>A multiphysics computational model for a magnetophoretic system was developed to assess magnetophoretic characteristics. The magnetically induced mobility of the magnetic particles was simulated for a range of parameters relevant in biomedical applications, including the particle and fluid properties, fluid velocity, and geometries of the particle, flow channel, and magnet. With the help of dimensional analysis, dimensionless numbers were introduced to reduce the number of parameters characterizing the transport of the particles suspended in an electrically non-conducting fluid exposed to an external magnetic field. As a result, 14 relevant variables determining the particle capture were reduced to only 3 dimensionless numbers describing the magnetophoretic system. The results from multiphysics models supported this analysis, suggesting a scaling law. The functional relationship among the dimensionless numbers resulted in prediction curves to assess the particle capture. The performance of the magnetophoretic system predicted with the dimensional analysis was verified in comparison with the available experimental data. In addition, the dimensionless numbers introduced here were compared with established numbers in magnetohydrodynamics (MHD).</p> <p>These theoretical and parametrical analyses of the magnetophoretic system were applied to the novel magnetic filter proposed to capture the drug-loaded small magnetic particles (MPs) from the bloodstream during the Intra-Arterial Chemotherapy (IAC). The IAC is a preferred treatment for unresectable hepatocellular carcinoma (HCC), the primary liver cancer. In the IAC procedure, chemotherapeutic agents, e.g. doxorubicin (Dox), are administered via a catheter placed in an artery supplying the tumor. The effectiveness of the IAC, however, is limited due to the passage of excessive chemotherapy agents to the blood circulation after their effect on the tumor, causing systemic toxicity. To remove the excessive drugs, the endovascular filtration devices have been developed. The proposed magnetic filtration device could be deployed from a catheter placed in the hepatic vein or inferior vena cava (IVC) to remove the excessive Dox from the bloodstream. The Ferumoxytol approved by the FDA is one of the types of the ultrasmall superparamagnetic iron oxide (USPIO) particles. The excessive Dox-coated USPIO can be filtered by a magnetic catheter-based device generating an external magnetic field. The filter utilizing magnetic fields is a promising method for therapeutic applications since an influence of magnetic field reaches comparatively wide ranges and magnetic fields do not affect biological tissues. To optimize the design, efficacy, and performance of the proposed magnetic filtration device, numerical models were developed based on the proposed dimensionless numbers characterizing drug transport and binding. Drug adsorption can be optimized by modifying magnetic field distribution and device configuration. To enhance the filtering up to 70-80 % of the excessive drug, multi-stage filters were developed by optimizing magnet configuration and flow patterns. By decreasing the concentration of toxins in the cardiovascular system, the drug dosage can be increased while reducing side effects, thus improving the effectiveness of the IAC treatment.</p> <p>In addition, new dimensionless numbers for dielectrophoresis analogous to magnetophoresis were introduced for a range of applications. The proposed dimensionless numbers for dielectrophoresis were evaluated for several conditions and compared with the previously established numbers in electrohydrodynamics (EHD). </p> <p>This study provides a promising framework for analyzing and predicting performance of various magneto- and dielectro-phoretic systems for a range of applications, particularly in biomedicine such as –drug filtering, targeted drug delivery, or small particle separation–, thus providing a reliable methodology for predicting particle manipulation. </p>
209

Fuktkontroll av en ventilerad platta på mark : Modellering i COMSOL Multiphysics 5.5

Liljestrand, Simon, Lundell, Viktor January 2020 (has links)
Krypgrunder i någon form har använts som grundkonstruktion i Sverige under långtid. Förr var det torpargrunder som med tiden blev isolerade krypgrunder och plintgrunder. Gemensamt för krypgrundskonstruktioner som är ventilerade med utomhusluft är att under sommarhalvåret blir det förhöjda relativa ånghalter. Syftet med fallstudien är att studera en uteluftsventilerad konstruktion med välisolerat bjälklag och markisolering. Konstruktionen är nedgrävd och ventilationen i grunden sker via en tunn spalt under marknivå. Luftspaltens temperatur och relativa ånghalt är av intresse för att avgöra om det finns risken för mögel i konstruktionen. En simulering av värmeflödet mellan byggnad och mark genomförs i COMSOLMultiphysics 5.5 för att avgöra temperaturfördelningen i konstruktionen. Temperaturfördelningen ligger som grund för fastställandet av relativ ånghalt i konstruktionens luftspalt. Simuleringen använder klimatdata för ett typår i Gävle. Simuleringen visar att det är höga temperaturer i luftspalten året runt. Detta ger enrelativ ånghalt som månadsmedel på 37–77% under ett år. Den höga temperaturen iluftspalten bidrar till att hålla konstruktionen torr då kritisk relativ ånghalt, 75–80%, inte överstigs under en längre period. Resultat är förvånansvärt positivt med en låg risk för mögeltillväxt i konstruktionen.Det finns många antaganden framförallt vilket luftflöde som återfinns i luftspalten.För att validera resultaten i arbetet så bör mätningar genomföras på de två prototyphus som existerar. / Crawl spaces in some form have been used as foundations in Sweden for a long time.In the past, it was uninsulated crawl spaces that eventually evolved into insulatedcrawl spaces and open plinth foundations. An increased relative humidity during thesummer is a common problem for crawl spaces that are ventilated with outdoor air. The purpose of the case study is to study an outdoor ventilated structure with wellinsulated floor and ground insulation. The construction is below ground level andthe ventilation takes place via a thin air gap below ground level. The temperatureand relative humidity in the air gap are of interest to determine if there is a risk ofmould growth in the design. A simulation of the heat flow between the building and the ground is carried out inCOMSOL Multiphysics 5.5 to determine the temperature distribution in the design.The temperature distribution is the basis for the determination of relative vaporcontent in the air gap of the structure.The simulation uses climate data for a typicalyear in Gävle. The simulation shows a high temperature in the air gap which gives a relative vaporcontent as a monthly average of 37–77% during a year. The high temperature in theair gap contributes to keeping the structure dry when critical relative humidity, 75–80%, is not exceeded for a longer period of time. The results are surprisingly positive with a low risk of mold growth in the construction.There are many assumptions, in particular, which airflow is found in the airgap. In order to validate the results in the work, measurements should be made onthe two prototype houses that exist.
210

Effektives Kraftstoffdampfmanagement für PKW durch multiphysikalische Modellierung eines mit Phasenwechselmaterialien optimierten Adsorbers

Hedwig, Michael 25 May 2016 (has links) (PDF)
Das Kraftstoffdampfmanagement in PKW dient der Reduzierung von Kraftstoffdampfemissionen und umfasst deren Entstehung im Tank, sowie Verarbeitung im Adsorber. Im Hinblick auf eine effektive Emissionsreduzierung erfolgt in dieser Arbeit die Entwicklung eines multiphysikalischen Berechnungsmodells, das die Erschließung der Kraftstoffdampfmenge im Tank sowie der Adsorbercharakteristik erlaubt. Gleichzeitig wird eine Methode zur thermischen Adsorberoptimierung durch Phasenwechselmaterialien (PCM) vorgestellt. Letztere nutzen für ihren fest/flüssig-Phasenübergang im Adsorber umgesetzte Prozesswärmen und können damit dessen Arbeitskapazität erhöhen. Die Modellierung der tankinternen Kraftstoffdampfproduktion erfolgt basierend auf der Berechnung des Dampf-Flüssigkeit-Gleichgewichtes von Mehrstoffsystemen mit realen Fluidmodellen. Zudem wird eine thermodynamische Datenbank erstellt, die es erlaubt, reale ottomotorische Kraftstoffgemische durch Modellkraftstoffsysteme mit deutlich reduzierter Komponentenanzahl abzubilden. Es wird ein detailliertes nicht-isothermes 2D-rotationssymmetrisches Mehrkammeradsorbermodell für kompressible Fluidgemische entwickelt, das die temperaturabhängige Polyschichtsorption in porösen Festbetten wiedergibt und direkt über transiente Randbedingungen mit der instationären Kraftstoffverdampfung im Tank gekoppelt ist. Darin berücksichtigt sind unter anderem anisotrope Wärme- und Stofftransportprozesse innerhalb der Festbetten sowie Randeffekte infolge einer nicht-linearen Porositätsverteilung. Zwischen den Sorptionskammern wird eine dünnwandige Aluminium-Trennwand aus makroverkapseltem PCM integriert, die zur Temperierung der umliegenden Festbetten dient. Hierzu wird auf Basis einer diskontinuierlichen Form der Enthalpy-Porosity-Methode der nicht-isotherme Phasenwechsel im Latentwärmespeicher unter Berücksichtigung der konvektiven Schmelzbewegung modelliert und in Ort und Zeit mit dem Adsorbermodell gekoppelt. Das daraus resultierende partielle Differenzialgleichungssystem wird örtlich über eine Finite-Elemente-Methode und bzgl. der Zeit in Form eines impliziten Mehrschrittverfahrens diskretisiert. Die entsprechende numerische Lösung erfolgt mit Hilfe eines automatisch gedämpften Newton-Verfahrens. Anhand des Adsorbermodells lässt sich der Einfluss von Randeffekten auf das Ad- und Desorptionsverhalten erschließen, die eine Abhängigkeit von der Festbettgeometrie und des temperaturabhängigen Beladungszustandes zeigen. Diese Sorptionsprozesse werden durch experimentelle Versuchs- reihen an einem hierzu entwickelten Adsorber-Prototyp validiert. Als Ergebnis der numerischen Simulation anwendungsrelevanter Prüfzyklen zur Adsorber-Typisierung resultiert durch den Einsatz von PCM eine Effizienzsteigerung in der Arbeitskapazität des Adsorbers von ca. 14 − 19 %. Zudem kann gezeigt werden, dass auch in Betriebszuständen ohne latenten Phasenwechsel im PCM infolge der konvektiven Bewegung der Schmelze die Sorptionsfähigkeit teilweise um mehr als 11 % ansteigt. Gleichzeitig ist im Vergleich zu der einfachen Vergrößerung des chemischen Sorptionsspeichers der Effekt einer Festbetttemperierung durch PCM partiell bis zu 10 % höher. Durch das einfache Substituieren der klassischen Kunststofftrennwände zwischen den Festbetten durch dünnwandige PCM-Kammern wird die Kraftstoffdampfnachbehandlung ohne relevante Gewichts- und Volumenzunahme des Adsorbers bedeutend verbessert.

Page generated in 0.0425 seconds