• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 41
  • 25
  • 18
  • 12
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 265
  • 116
  • 58
  • 51
  • 45
  • 42
  • 33
  • 33
  • 30
  • 27
  • 18
  • 18
  • 18
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Spectral Theory of Modular Operators for von Neumann Algebras and Related Inverse Problems

Boller, Stefan 28 November 2004 (has links)
In dieser Arbeit werden die Modularobjekte zu zyklischen und separierenden Vektoren für von-Neumann-Algebren untersucht. Besondere Beachtung erfahren dabei die Modularoperatoren und deren Spektraleigenschaften. Diese Eigenschaften werden genutzt, um Klassifikationen für Lösungen einiger inverser Probleme der Modulartheorie anzugeben. Im ersten Teil der Arbeit wird zunächst der Zusammenhang zwischen dem zyklischen und separierenden Vektor und seinen Modularobjekten mit Hilfe (verallgemeinerter) Spurvektoren für halbendliche und Typ III lambda Algebren (0 < lambda <1) näher untersucht. Diese Untersuchungen erlauben es, das Spektrum der Modularoperatoren für Typ I Algebren anzugeben. Dazu werden die Begriffe zentraler Eigenwert und zentrale Vielfachheit eingeführt. Weiterhin ergibt sich, dass die Modularoperatoren durch ihre Spektraleigenschaften eindeutig charakterisiert sind. Modularoperatoren für Typ I n Algebren sind genau die n-zerlegbaren Operatoren, die multiplikatives, zentrales Spektrum vom Typ I n besitzen. ähnliche Ergebnisse werden auch für Typ II und III lambda Algebren gewonnen unter der Vorausetzung, dass die zugehörigen Vektoren diagonalisierbar sind. Im zweiten Teil der Arbeit werden diese Ergebnisse exemplarisch auf ein inverses Problem der Modulartheorie angewendet. Dabei stellt sich heraus, dass die Begriffe zentraler Eigenwert und zentrale Vielfachheit Invarianten des inversen Problems sind und eine vollständige Klassifizierung seiner Lösungen unter obigen Voraussetzungen erlauben. Außerdem wird eine Klasse von Modularoperatoren untersucht, für die das inversese Problem nur ein oder zwei Lösungsklassen besitzt. / In this work modular objects of cyclic and separating vectors for von~Neumann~algebras are considered. In particular, the modular operators and their spectral properties are investigated. These properties are used to classify the solutions of some inverse problems in modular theory. In the first part of the work the correspondence between cyclic and separating vectors and their modular objects are considered for semifinite and type III lambda algebras (0 < lambda < 1) in more detail, where (generalized) trace vectors are used. These considerations allow to compute the spectrum of modular operators for type I n algebras. To this end, the notions of central eigenvalue and central multiplicity are introduced. Furthermore, it is stated that modular operators are uniquely determined by their spectral properties. Modular operators for type I n algebras are exactly the n-decomposable operators, which possess multiplicative central spectrum of type I n. Similar results are derived for type II and III lambda algebras under the assumption that the corresponding vectors are diagonalizable. In the second part of this work these results are applied to an inverse problem of modular theory. It comes out, that the central eigenvalues and central multiplicities are invariants of this inverse problem and that they give a complete classification of its solutions. Moreover, a class of modular operators is investigated, whose inverse problem possesses only one or two classes of solutions.
232

Second and Higher Order Elliptic Boundary Value Problems in Irregular Domains in the Plane

Kyeong, Jeongsu, 0000-0002-4627-3755 05 1900 (has links)
The topic of this dissertation lies at the interface between the areas of Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory, with an emphasis on the study of singular integral operators associated with second and higher order elliptic boundary value problems in non-smooth domains. The overall aim of this work is to further the development of a systematic treatment of second and higher order elliptic boundary value problems using singular integral operators. This is relevant to the theoretical and numerical treatment of boundary value problems arising in the modeling of physical phenomena such as elasticity, incompressible viscous fluid flow, electromagnetism, anisotropic plate bending, etc., in domains which may exhibit singularities at all boundary locations and all scales. Since physical domains may exhibit asperities and irregularities of a very intricate nature, we wish to develop tools and carry out such an analysis in a very general class of non-smooth domains, which is in the nature of best possible from the geometric measure theoretic point of view. The dissertation will be focused on three main, interconnected, themes: A. A systematic study of the poly-Cauchy operator in uniformly rectifiable domains in $\mathbb{C}$; B. Solvability results for the Neumann problem for the bi-Laplacian in infinite sectors in ${\mathbb{R}}^2$; C. Connections between spectral properties of layer potentials associated with second-order elliptic systems and the underlying tensor of coefficients. Theme A is based on papers [16, 17, 18] and this work is concerned with the investigation of polyanalytic functions and boundary value problems associated with (integer) powers of the Cauchy-Riemann operator in uniformly rectifiable domains in the complex plane. The goal here is to devise a higher-order analogue of the existing theory for the classical Cauchy operator in which the salient role of the Cauchy-Riemann operator $\overline{\partial}$ is now played by $\overline{\partial}^m$ for some arbitrary fixed integer $m\in{\mathbb{N}}$. This analysis includes integral representation formulas, higher-order Fatou theorems, Calderón-Zygmund theory for the poly-Cauchy operators, radiation conditions, and higher-order Hardy spaces. Theme B is based on papers [3, 19] and this regards the Neumann problem for the bi-Laplacian with $L^p$ data in infinite sectors in the plane using Mellin transform techniques, for $p\in(1,\infty)$. We reduce the problem of finding the solvability range of the integrability exponent $p$ for the $L^{p}$ biharmonic Neumann problem to solving an equation involving quadratic polynomials and trigonometric functions employing the Mellin transform technique. Additionally, we provide the range of the integrability exponent for the existence of a solution to the $L^{p}$ biharmonic Neumann problem in two-dimensional infinite sectors. The difficulty we are overcoming has to do with the fact that the Mellin symbol involves hypergeometric functions. Finally regarding theme C, based on the ongoing work in [2], the emphasis is the investigation of coefficient tensors associated with second-order elliptic operators in two dimensional infinite sectors and properties of the corresponding singular integral operators, employing Mellin transform. Concretely, we explore the relationship between distinguished coefficient tensors and $L^{p}$ spectral and Hardy kernel properties of the associated singular integral operators. / Mathematics
233

Modélisation des phénomènes de films liquides dans les turbines à vapeur / Modelling and simulation for liquid films in steam turbines

Simon, Amélie 11 January 2017 (has links)
Dans la production d'électricité, un des leviers centraux pour réduire les détériorations et les pertes causées par l'humidité dans les turbines à vapeur est l'étude des films liquides. Ces films minces, sont créés par la déposition de gouttes et sont fortement cisaillés. Des gouttes peuvent ensuite être arrachées du film. A l'heure actuelle, aucun modèle complet et valide n'existe pour décrire ce phénomène. Un modèle 2D à formulation intégrale associé à des lois de fermetures a été dérivé pour représenter ce film. Comparé aux équations classiques de Saint-Venant, le modèle prend en compte davantage d'effets : le transfert de masse, l'impact des gouttes, le cisaillement à la surface libre, la tension de surface, le gradient de pression et la rotation. Une analyse des propriétés du modèle (hyperbolicité, entropie, conservativité, analyse de stabilité linéaire, invariance par translation et par rotation) est réalisée pour juger de la pertinence du modèle. Un nouveau code 2D est implémenté dans un module de développement libre du code EDF Code Saturne et une méthode de volumes finis pour un maillage non-structure a été développée. La vérification du code est ensuite effectuée avec des solutions analytiques dont un problème de Riemann. Le modèle, qui dégénère en modèle classique de Saint-Venant pour le cas d'un film tombant sur un plan inclinée, est validé par l'expérience de Liu and Gollub, 1994, PoF et comparé à des modèles de références (Ruyer-Quil and Manneville, 2000, EPJ-B et Lavalle, 2014, PhD thesis). Un autre cas d'étude met en scène un film cisaillé en condition basse-pression de turbine à vapeur et, est validé par l'expérience de Hammitt et al., 1981, I. Enfin, le code film est couplé aux données 3D du champ de vapeur autour d'un stator d'une turbine basse-pression du parc EDF, issues de Blondel, 2014, PhD thesis. Cette application industrielle montre la faisabilité d'une simulation d'un film en condition réelle du turbine à vapeur. / In the electricity production, one central key to reduce damages and losses due to wetness in steam turbines is the study of liquid films. These thin films are created by the deposition of droplets and are highly sheared. This film may then be atomized into coarse water. At the moment, no comprehensive and validated model exists to describe this phenomenon. A 2D model based on a integral formulation associated with closure laws is developed to represent this film. Compared to classical Shallow-Water equation, the model takes into account additional effect : mass transfer, droplet impact, shearing at the free surface, surface tension, pressure gradient and the rotation. The model properties (hyperbolicity, entropy, conservativity, linear stability, Galilean invariance and rotational invariance) has been analyzed to judge the pertinence of the model. A new 2D code is implemented in a free module of the code EDF Code Saturne and a finite volume method for unstructured mesh has been developed. The verification of the code is then carried out with analytical solutions including a Riemann problem. The model, which degenerates into classical Shallow-Water equations for the case of a falling liquid film on a inclined plane, is validated by the experiment of Liu and Gollub, 1994, PoF and compared to reference models (Ruyer-Quil and Manneville, 2000, EPJ-B et Lavalle, 2014, PhD thesis). Another study depicts a sheared film under low-pressure steam turbine conditions and is validated by the experiment of Hammitt et al., 1981, FiI. Lastly, the code film is coupled to 3D steam data around a fixed blade of a BP100 turbine, from Blondel, 2014, PhD thesis. This industrial application shows the feasibility of liquid film's simulation in real steam turbine condition.
234

Ελλειπτικές εξισώσεις με υπερκρίσιμο εκθέτη σε συμπαγείς πολλαπλότητες με σύνορο

Λαμπρόπουλος, Νίκος 30 July 2007 (has links)
Η παρούσα διατριβή ερευνητικά εντάσσεται στην περιοχή της Μη Γραμμικής Ανάλυσης και ειδικότερα στην επίλυση Μη Γραμμικών Ελλειπτικών Μερικών Διαφορικών Εξισώσεων (Μ.Δ.Ε.) με υπερκρίσιμο εκθέτη. Η μη γραμμικότητα δεν επιτρέπει την επίλυση των εξισώσεων αυτών χρησιμοποιώντας τις συμπαγείς εμφυτεύσεις. Αξιοποιώντας τις ιδιότητες συμμετρίας που παρουσιάζει η πολλαπλότητα, αφενός παρακάμπτουμε το εμπόδιο αυτό και αφετέρου επιτυγχάνουμε να επιλύσουμε εξισώσεις αυτού του τύπου με υπερκρίσιμο εκθέτη. Στο πρώτο μέρος της Διατριβής υπολογίζουμε την πρώτη βέλτιστη σταθερά στη γενική ανισότητα Sobolev και στη γενική ανισότητα Sobolev με σύνορο στον στερεό τόρο, μελετάμε το φαινόμενο της συμπύκνωσης και επιλύουμε τα προβλήματα (P1) και (P2). Στο δεύτερο μέρος υπολογίζουμε την πρώτη βέλτιστη σταθερά στη γενική ανισότητα Sobolev και στη γενική ανισότητα Sobolev με σύνορο σε μια λεία, συμπαγή, n-διάστατη, n\geq 3, πολλαπλότητα Riemann (M,g) με σύνορο, που είναι αναλλοίωτη από τη δράση μιας οποιασδήποτε συμπαγούς υποομάδας G της ομάδας των ισομετριών Is(M,g) της Μ και της οποίας όλες οι G-τροχιές έχουν άπειρο πληθάριθμο και κάνουμε μια σύντομη παρουσίαση των λύσεων των προβλημάτων (P3) και (P4). / The present Thesis is incorporated in the research area of Nonlinear Analysis, especially solvability of Nonlinear Elliptic PDE’s with supercritical exponent.The nonlinear nature of the equations makes it impossible to be solved by means of compact imbeddings. Taking advantage of the symmetry properties of the manifold we overcome the obstacle as well as we succeed in solving equations of this type possessing supercritical exponent. In the first part of the Thesis we calculate the first best constant in the general Sobolev inequality and in the general Sobolev trace inequality on the solid torus, we study the phenomenon of concentration and solve problems (P1) and (P2).In the second part we calculate the first best constant in the general Sobolev inequality and in the general Sobolev trace inequality on a smooth, compact, n−dimensional Riemannian manifold (M, g), n _ 3, with boundary, which is invariant under the action of a subgroup G of the isometry group Is(M, g) of M, the orbits of which have infinity cardinality. We also present brief solutions of problems (P3) and (P4).
235

Approximation of center-valued Betti-numbers and the center-valued Atiyah-conjecture / Approximation of center-valued Betti-numbers and the center-valued Atiyah-conjecture

Knebusch, Anselm 19 October 2009 (has links)
No description available.
236

La contrôlabilité frontière exacte et la synchronisation frontière exacte pour un système couplé d’équations des ondes avec des contrôles frontières de Neumann et des contrôles frontières couplés de Robin / Exact boundary controllability and exact boundary synchronization for a coupled system of wave equations with Neumann and coupled Robin boundary controls

Lu, Xing 01 July 2018 (has links)
Dans cette thèse, nous étudions la synchronisation, qui est un phénomène bien répandu dans la nature. Elle a été observée pour la première fois par Huygens en 1665. En se basant sur les résultats de la contrôlabilité frontière exacte, pour un système couplé d’équations des ondes avec des contrôles frontières de Neumann, nous considérons la synchronisation frontière exacte (par groupes), ainsi que la détermination de l’état de synchronisation. Ensuite, nous considérons la contrôlabilité exacte et la synchronisation exacte (par groupes) pour le système couplé avec des contrôles frontières couplés de Robin. A cause du manque de régularité de la solution, nous rencontrons beaucoup plus de difficultés. Afin de surmonter ces difficultés, on obtient un résultat sur la trace de la solution faible du problème de Robin grâce aux résultats de régularité optimale de Lasiecka-Triggiani sur le problème de Neumann. Ceci nous a permis d’établir la contrôlabilité exacte, et, par la méthode de la perturbation compacte, la non-contrôlabilité exacte du système. De plus, nous allons étudier la détermination de l’état de synchronisation, ainsi que la nécessité des conditions de compatibilité des matrices de couplage. / This thesis studies the widespread natural phenomenon of synchronization, which was first observed by Huygens en 1665. On the basis of the results on the exact boundary controllability, for a coupled system of wave equations with Neumann boundary controls, we consider its exact boundary synchronization (by groups), as well as the determination of the state of synchronization. Then, we consider the exact boundary controllability and the exact boundary synchronization (by groups) for the coupled system with coupled Robin boundary controls. Due to difficulties from the lack of regularity of the solution, we have to face a bigger challenge. In order to overcome this difficulty, we take advantage of the regularity results for the mixed problem with Neumann boundary conditions (Lasiecka and Triggiani) to discuss the exact boundary controllability, and by the method of compact perturbation, to obtain the non-exact controllability for the system.
237

Comparaison de valeurs propres de Laplaciens et inégalités de Sobolev sur des variétés riemanniennes à densité / Eigenvalue comparison for Laplacians and Sobolev inequalities on weighed Riemannian manifolds

Shouman, Abdolhakim 03 July 2017 (has links)
Le but de cette thèse est triple : INÉGALITÉS DE SOBOLEV AVEC DES CONSTANTES EXPLICITES SUR DES VARIÉTÉS RIEMANNIENNES À DENSITÉ ET À BORD CONVEXE : On obtient des inégalités de Sobolev à densité, avec des constantes géométriques explicites pour des variétés à courbure de m-Bakry-Émery Ricci minorée par une constante positive et à bord convexe. Ceci permet de généraliser de nombreux résultats connus dans le cas riemannien aux variétés avec densité. Nous montrons aussi comment déduire des inégalités de Sobolev obtenues, un résultat d’isolement pour les applications f -harmoniques. Nous présenterons également une nouvelle et très simple méthode pour la preuve de l’inégalité de Moser-Trudinger-Onofri [Onofri, 1982] dans le cas du disque euclidien. / The purpose of this thesis is threefold: SOBOLEV INEQUALITIES WITH EXPLICIT CONSTANTS ON A WEIGHTED RIEMANNIAN MANIFOLD OF CONVEX BOUNDARY: We obtain weighted Sobolev inequalities with explicit geometric constants for weighted Riemannian manifolds of positive m-Bakry-Emery Ricci curvature and convex boundary. As a first application, we generalize several results of Riemannian manifolds to the weighted setting. Another application is a new isolation result for the f -harmonic maps. We also give a new and elemantry proof of the well-known Moser-Trudinger-Onofri [Onofri, 1982] inequality for the Euclidean disk.
238

A parallel second order Cartesian method for elliptic interface problems and its application to tumor growth model / Une méthode cartésienne parallèle au deuxième ordre pour problèmes elliptiques avec interfaces et son application à une modèle de croissance tumorale

Cisternino, Marco 12 April 2012 (has links)
Cette thèse porte sur une méthode cartésienne parallèle pour résoudre des problèmes elliptiques avec interfaces complexes et sur son application aux problèmes elliptiques en domaine irrégulier dans le cadre d'un modèle de croissance tumorale.La méthode est basée sur un schéma aux différences finies et sa précision est d’ordre deux sur tout le domaine. L'originalité de la méthode consiste en l'utilisation d'inconnues additionnelles situées sur l'interface et qui permettent d’exprimer les conditions de transmission à l'interface. La méthode est décrite et les détails sur la parallélisation, réalisé avec la bibliothèque PETSc, sont donnés. La méthode est validée et les résultats sont comparés avec ceux d'autres méthodes du même type disponibles dans la littérature. Une étude numérique de la méthode parallélisée est fournie.La méthode est appliquée aux problèmes elliptiques dans un domaine irrégulier apparaissant dans un modèle continue et tridimensionnel de croissance tumorale, le modèle à deux espèces du type Darcy . L'approche utilisée dans cette application est basée sur la pénalisation des conditions de transmission à l'interface, afin de imposer des conditions de Neumann homogènes sur le border d'un domaine irrégulier. Les simulations du modèle sont fournies et montrent la capacité de la méthode à imposer une bonne approximation de conditions au bord considérées. / This theses deals with a parallel Cartesian method to solve elliptic problems with complex interfaces and its application to elliptic irregular domain problems in the framework of a tumor growth model.This method is based on a finite differences scheme and is second order accurate in the whole domain. The originality of the method lies in the use of additional unknowns located on the interface, allowing to express the interface transmission conditions. The method is described and the details of its parallelization, performed with the PETSc library, are provided. Numerical validations of the method follow with comparisons to other related methods in literature. A numerical study of the parallelized method is also given.Then, the method is applied to solve elliptic irregular domain problems appearing in a three-dimensional continuous tumor growth model, the two-species Darcy model. The approach used in this application is based on the penalization of the interface transmission conditions, in order to impose homogeneous Neumann boundary conditions on the border of an irregular domain. The simulations of model are provided and they show the ability of the method to impose a good approximation of the considered boundary conditions. / Questa tesi introduce un metodo parallelo su griglia cartesiana per risolvere problemi ellittici con interfacce complesse e la sua applicazione ai problemi ellittici in dominio irregolare presenti in un modello di crescita tumorale.Il metodo è basato su uno schema alle differenze finite ed è accurato al secondo ordine su tutto il dominio di calcolo. L'originalità del metodo consiste nell'introduzione di nuove incognite sull'interfaccia, le quali permettono di esprimere le condizioni di trasmissione sull'interfaccia stessa. Il metodo viene descritto e i dettagli della sua parallelizzazione, realizzata con la libreria PETSc, sono forniti. Il metodo è validato e i risultati sono confrontati con quelli di metodi dello stesso tipo trovati in letteratura. Uno studio numerico del metodo parallelizzato è inoltre prodotto.Il metodo è applicato ai problemi ellittici in dominio irregolare che compaiono in un modello continuo e tridimensionale di crescita tumorale, il modello a due specie di tipo Darcy. L'approccio utilizzato è basato sulla penalizzazione delle condizioni di trasmissione sull'interfaccia, al fine di imporre condizioni di Neumann omogenee sul bordo di un dominio irregolare. Le simulazioni del modello sono presentate e mostrano la capacità del metodo di imporre una buona approssimazione delle condizioni al bordo considerate.
239

Boundary Estimates for Solutions to Parabolic Equations

Sande, Olow January 2016 (has links)
This thesis concerns the boundary behavior of solutions to parabolic equations. It consists of a comprehensive summary and four scientific papers. The equations concerned are different generalizations of the heat equation. Paper I concerns the solutions to non-linear parabolic equations with linear growth. For non-negative solutions that vanish continuously on the lateral boundary of an NTA cylinder the following main results are established: a backward Harnack inequality, the doubling property for the Riesz measure associated with such solutions, and the Hölder continuityof the quotient of two such solutions up to the boundary. Paper 2 concerns the solutions to linear degenerate parabolic equations, where the degeneracy is controlled by a Muckenhoupt weight of class 1+2/n. For non-negative solutions that vanish continuously on the lateral boundary of an NTA cylinder the following main results are established: a backward Harnack inequality, the doubling property for the parabolic measure, and the Hölder continuity of the quotient of two such solutions up to the boundary. Paper 3 concerns a fractional heat equation. The first main result is that a solution to the fractional heat equation in Euclidean space of dimension n can be extended as a solution to a certain linear degenerate parabolic equation in the upper half space of dimension n+1. The second main result is the Hölder continuity of quotients of two non-negative solutions that vanish continuously on the latteral boundary of a Lipschitz domain. Paper 4 concerns the solutions to uniformly parabolic linear equations with complex coefficients. The first main result is that under certain assumptions on the opperator the bounds for the single layer potentials associated to the opperator are bounded. The second main result is that these bounds always hold if the opperator is realvalued and symmetric.
240

沈默螺旋論初探

王婷玉, WANG, TING-YU Unknown Date (has links)
本論文在引介並評析德國社會學家諾爾紐曼(Elisabeth Noelle-Neumann)的「沉默 螺旋論」(the Theory of the Spiral of Silence )。全文凡五萬餘字,共分六章 、廿三節,各章大要如次: 第一章,緒論:說明本研究動機,臚列研究問題,並略述研究方法和限制。 第二章,螺旋論:介紹此理論的概念和變項,在民意、傳播與社會理論領域所衍生的 假設及主要代表模式;界定應用範圍並依理論特質予以定位;摘要諾氏檢驗此理論所 作的研究。 第三章,沉默螺旋論溯源:據諾氏對此理論由來的說明並藉墨頓(R.K.Merton)研究 社會學理論史的方法,來追溯螺旋論的源流。 第四章,沉默螺旋之沉默與迴響:摘要其他學者所作的有關研究;分別述析此理論引 起的共鳴、所面臨的挑戰以及諾氏的回應。 第五章,沉默螺旋「典範」:簡介孔思(Thomass Kunn)的自然科學沿革結構;比較沉默螺旋論發展歷程與此結構之異同;沉默螺旋論 蔚為典範之理由。 第六章,結論:以科學哲學的角度總評沉默螺旋論之得失;建議未來研究的方向。

Page generated in 0.0319 seconds