• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dimensionnement d'un tomographe à haute énergie pour le contrôle non-destructif d'objets massifs / Design of a high-energy tomograph for non-destructive characterisation of massive objects

Kistler, Marc 02 October 2019 (has links)
Dans le cadre de ses actions de R&D sur la caractérisation non destructive, le CEA dispose d’un système d'imagerie photonique de haute énergie. Ce dispositif, unique en France, permet de réaliser des radiographies et des tomographies sur des objets de grands volumes, tels que des colis de déchets radioactifs. Le Laboratoire de Mesures Nucléaires, qui mène les projets de recherche sur cette installation, a engagé une évolution majeure du système en lançant l'approvisionnement d'une nouvelle source X d'énergie augmentée et d'un banc mécanique de positionnement d'une capacité de 5 tonnes afin de pouvoir caractériser des objets de grande épaisseur : jusqu'à 140 cm de béton. Les travaux qui ont fait l'objet de cette thèse s'inscrivent dans ce contexte de caractérisation et de mise en service du nouveau tomographe, qui permet la mise en place de nouvelles modalités d'examen telles que la tomographie bi-énergie.La première partie de la thèse consiste en une étude approfondie des performances du nouveau tomographe en termes de capacité de pénétration et de résolution spatiale. Elle concerne à la fois la source X et le système de détection. La source X est un accélérateur linéaire Saturne reconditionné pour atteindre des énergies comprises entre 15 et 20 MeV pour des débits de dose supérieurs à 100 Gy/min. Les caractéristiques attendues de cette source sont évaluées par simulation : spectres, taches focales et débits de dose. En parallèle, la recherche d'un système de détection adapté conduit à mettre en compétition trois détecteurs : une série de semi-conducteurs CdTe non jointifs, une caméra linéaire à scintillateur CdWO4 segmenté et des écrans horizontaux de CsI filmés par des caméras bas bruit. Tous trois font l'objet d'une analyse par comptage de quanta (Quantum Accounting Diagram) permettant de mettre en lumière les qualités et limites de chacun à travers l'évaluation et la comparaison d'indicateurs complémentaires de leurs performances : efficacité quantique de détection, rapport signal sur bruit, résolution spatiale et gamme dynamique. Cette étude théorique est complétée, corrigée et validée par des campagnes de mesures expérimentales et permet finalement de prévoir les performances attendues avec l'accélérateur Saturne, et ainsi définir le meilleur détecteur pour l'imagerie des objets ciblés.La seconde partie de la thèse concerne le développement d'une nouvelle méthode de caractérisation des matériaux par tomographie bi-énergie afin d’identifier au mieux le numéro atomique effectif du matériau et sa densité. L'état de l'art sur les techniques actuelles fait ressortir une méthode potentiellement intéressante pour les besoins de la caractérisation de colis de déchets nucléaires : la décomposition en double effet. Initialement développée pour l'imagerie de plus basse énergie, elle a été adaptée à la gamme d’énergie du tomographe en modifiant les interactions photon-matière prises en compte dans le procédé. La méthode a été testée et validée sur des simulations d'examens tomographiques obtenues avec le code de simulation MODHERATO.Il ressort de ces travaux de thèse que le nouveau système d'imagerie du CEA Cadarache devrait être en mesure à la fois d'accueillir et caractériser des objets massifs avec une qualité d'image satisfaisante et une résolution spatiale submillimétrique, mais également de mettre en œuvre des examens de tomographie bi-énergie permettant d'évaluer le numéro atomique et la densité des matériaux composant les objets examinés. / As part of its research and development activities on non-destructive characterisation, CEA utilizes a high-energy photonic imaging system. This instrument, unique in France, allows radiographic and tomographic analyses on large objects (e.g., nuclear waste drums). The "Laboratoire de Mesures Nucléaires", responsible for running research projects in the facility, has launched a major upgrade of the system by providing a new higher energy X-ray source and a new mechanical bench possessing a 5 t load, which allows the characterisation of thick objects (up to 140 cm concrete thickness). This PhD thesis concerns the characterisation and commissioning of the new computed tomography (CT) system and introduces new examination modalities, such as dual-energy CT.The first part of the thesis is a comprehensive study of the performance of the upgraded CT system, specifically regarding penetration capacity and spatial resolution and concerning both the X-ray source and the detection system. The X-ray source is a linear accelerator called Saturne, which has been repackaged to reach energies between 15 and 20 MeV with dose rates greater than 100 Gy/min. Simulation is used to assess the expected features of this source: spectra, focal spots and dose rates. Parallel comparison among three detectors -a series of non-abutting CdTe semiconductor sensors, a linear camera with segmented CdWO4 scintillators and horizontal screens of CsI filmed by low noise cameras - assessed the most suitable detection system. All three detection systems are studied using a quantum accounting analysis that highlights potentials and limitations of each system and enables measurement of complementary indicators of their performance: detector quantum efficiency, signal to noise ratio, spatial resolution and dynamic range. This theoretical study is completed, corrected and validated by experimental measurement campaigns. This extensive study predicts the expected performance when combined with the Saturne accelerator, allowing selection of the most appropriate detector for the imaging of large objects.The second part of the thesis concerns the development of a new method for the characterisation of materials by dual-energy CT, allowing a better assessment of the effective atomic number and the density of the material. The state of the art of current techniques highlights the potential interesting method for the characterising nuclear waste: the double effect decomposition. Initially developed for lower energy X-ray imaging, it has been adapted to match the energy range of the CT system by adapting the photon/matter interactions taken into account in the process. The method has been tested and validated on tomographic simulations obtained with the simulation code MODHERATO.This PhD work has shown that the new CT system of the CEA Cadarache has the potential to characterise massive objects with a satisfactory image quality and milli-scale spatial resolution. It also opens opportunities for the execution of dual-energy CT evaluations allowing the assessment of the atomic number and density of materials composing the examined objects.
2

Computed radiography system modeling, simulation and optimization / Modélisation, simulation et optimization d'une chaîne d'imagerie de radiographie numérique avec écrans photo-stimulables

Yao, Min 12 December 2014 (has links)
Depuis plus d’un siècle, la radiographie sur film est utilisée pour le contrôle non destructif (CND) de pièces industrielles. Avec l’introduction de méthodes numériques dans le domaine médical, la communauté du CND industriel a commencé à considérer également les techniques numériques alternatives au film. La radiographie numérique (en anglais Computed radiography -CR) utilisant les écrans photostimulables (en anglais imaging plate -IP) est une voie intéressante à la fois du point de vue coût et facilité d’implémentation. Le détecteur (IP) utilisé se rapproche du film car il est flexible et réutilisable. L’exposition de l’IP aux rayons X génère une image latente qui est ensuite lue et numérisée grâce à un système de balayage optique par laser. A basse énergie, les performances du système CR sont bonnes ce qui explique son utilisation importante dans le domaine médical. A haute énergie par contre, les performances du système CR se dégradent à la fois à cause de la mauvaise absorption de l’IP mais également de la présence de rayonnement diffusé par la pièce qui, étant d’énergie plus faible, est préférentiellement absorbée par l’IP. Les normes internationales préconisent l’utilisation d’écrans métalliques pour améliorer la réponse des systèmes CR à haute énergie. Néanmoins, la nature et l’épaisseur de ces écrans n’est pas clairement définie et la gamme des configurations possibles est large. La simulation est un outil utile pour prévoir les performances d’une expérience et déterminer les meilleures conditions opératoires. Les méthodes Monte Carlo sont communément admises comme étant les plus précises pour simuler les phénomènes de transport de rayonnement, et ainsi comprendre les phénomènes physiques en jeu. Cependant, le caractère probabiliste de ces méthodes implique des temps de calcul importants, voire prohibitifs pour des géométries complexes. Les méthodes déterministes au contraire, peuvent prendre en compte des géométries complexes avec des temps de calcul raisonnables, mais l’estimation du rayonnement diffusé est plus difficile. Dans ce travail de thèse, nous avons tout d’abord mené une étude de simulation Monte Carlo afin de comprendre le fonctionnement des IP avec écrans métalliques à haute énergie pour le contrôle de pièces de forte épaisseur. Nous avons notamment suivi le trajet des photons X mais également des électrons. Quelques comparaisons expérimentales ont pu être menées à l’ESRF (European Synchrotron Radiation Facility). Puis nous avons proposé une approche de simulation hybride, qui combine l'utilisation de codes déterministe et Monte Carlo pour simuler l'imagerie d'objets de forme complexe. Cette approche prend en compte la dégradation introduite par la diffusion des rayons X et la fluorescence dans l'IP ainsi que la diffusion des photons optiques dans l'IP. Les résultats de différentes configurations de simulation ont été comparés. / For over a century, film-based radiography has been used as a nondestructive testing technique for industrial inspections. With the advent of digital techniques in the medical domain, the NDT community is also considering alternative digital techniques. Computed Radiography (CR) is a cost-efficient and easy-to-implement replacement technique because it uses equipment very similar to film radiography. This technology uses flexible and reusable imaging plates (IP) as a detector to generate a latent image during x-ray exposure. With an optical scanning system, the latent image can be readout and digitized resulting in a direct digital image. CR is widely used in the medical field since it provides good performance at low energies. For industrial inspection, CR application is limited by its poor response to high energy radiation and the presence of scattering phenomena. To completely replace film radiography by such a system, its performance still needs to be improved by either finding more appropriate IPs or by optimizing operating conditions. Guidelines have been addressed in international standards to ensure a good image quality supplied by CR system, where metallic screens are recommended for the case of using high energy sources. However, the type and thickness of such a screen are not clearly defined and a large panel of possible configurations does exist. Simulation is a very useful tool to predict experimental outcomes and determine the optimal operating conditions. The Monte Carlo (MC) methods are widely accepted as the most accurate method to simulate radiation transport problems. It can give insight about physical phenomena, but due to its random nature, a large amount of computational time is required, especially for simulations involving complex geometries. Deterministic methods, on the other hand, can handle easily complex geometry, and are quite efficient. However, the estimation of scattering effects is more difficult with deterministic methods. In this thesis work, we have started with a Monte Carlo simulation study in order to investigate the physical phenomena involved in IP and in metallic screens at high energies. In particular we have studied separately the behavior of X-ray photons and electrons. Some experimental comparisons have been carried out at the European Synchrotron Radiation Facility. Then, we have proposed a hybrid simulation approach, combining the use of deterministic and Monte Carlo code, for simulating the imaging of complex shapes objects. This approach takes into account degradation introduced by X-ray scattering and fluorescence inside IP, as well as optical photons scattering during readout process. Different simulation configurations have been compared.
3

X-ray computed tomography reconstruction on non-standard trajectories for robotized inspection / Reconstruction 3D en tomographie X sur trajectoires non-standards

Banjak, Hussein 10 November 2016 (has links)
La tomographie par rayons X ou CT pour "Computed Tomography" est un outil puissant pour caractériser et localiser les défauts internes et pour vérifier la conformité géométrique d’un objet. Contrairement au cas des applications médicales, l’objet inspecté en Contrôle Non Destructif (CND) peut être très grand et composé de matériaux de haute atténuation, auquel cas l’utilisation d’une trajectoire circulaire pour l’inspection est impossible à cause de contraintes dans l’espace. Pour cette raison, l’utilisation de bras robotisés est l’une des nouvelles tendances reconnues dans la CT, car elle autorise plus de flexibilité dans la trajectoire d’acquisition et permet donc la reconstruction 3D de régions difficilement accessibles dont la reconstruction ne pourrait pas être assurée par des systèmes de tomographie industriels classiques. Une cellule de tomographie X robotisée a été installée au CEA. La plateforme se compose de deux bras robotiques pour positionner et déplacer la source et le détecteur en vis-à-vis. Parmi les nouveaux défis posés par la tomographie robotisée, nous nous concentrons ici plus particulièrement sur la limitation de l’ouverture angulaire imposée par la configuration en raison des contraintes importantes sur le mouvement mécanique de la plateforme. Le deuxième défi majeur est la troncation des projections qui se produit lorsque l’objet est trop grand par rapport au détecteur. L’objectif principal de ce travail consiste à adapter et à optimiser des méthodes de reconstruction CT pour des trajectoires non standard. Nous étudions à la fois des algorithmes de reconstruction analytiques et itératifs. Avant d’effectuer des inspections robotiques réelles, nous comptons sur des simulations numériques pour évaluer les performances des algorithmes de reconstruction sur des configurations d’acquisition de données. Pour ce faire, nous utilisons CIVA, qui est un outil de simulation pour le CND développé au CEA et qui est capable de simuler des données de projections réalistes correspondant à des configurations d’acquisition définies par l’utilisateur. / X-ray computed tomography (CT) is a powerful tool to characterize or localize inner flaws and to verify the geometric conformity of an object. In contrast to medical applications, the scanned object in non-destructive testing (NDT) might be very large and composed of high-attenuation materials and consequently the use of a standard circular trajectory for data acquisition would be impossible due to constraints in space. For this reason, the use of robotic arms is one of the acknowledged new trends in NDT since it allows more flexibility in acquisition trajectories and therefore could be used for 3D reconstruction of hardly accessible regions that might be a major limitation of classical CT systems. A robotic X-ray inspection platform has been installed at CEA LIST. The considered system integrates two robots that move the X-ray generator and detector. Among the new challenges brought by robotic CT, we focus in this thesis more particularly on the limited access viewpoint imposed by the setup where important constraints control the mechanical motion of the platform. The second major challenge is the truncation of projections that occur when only a field-of-view (FOV) of the object is viewed by the detector. Before performing real robotic inspections, we highly rely on CT simulations to evaluate the capability of the reconstruction algorithm corresponding to a defined scanning trajectory and data acquisition configuration. For this purpose, we use CIVA which is an advanced NDT simulation platform developed at CEA and that can provide a realistic model for radiographic acquisitions and is capable of simulating the projection data corresponding to a specific CT scene defined by the user. Thus, the main objective of this thesis is to develop analytical and iterative reconstruction algorithms adapted to nonstandard trajectories and to integrate these algorithms in CIVA software as plugins of reconstruction.
4

Full-field X-ray orientation imaging using convex optimization and a discrete representation of six-dimensional position - orientation space / Imagerie de l'orientation en utilisant les rayons-X et illumination complète, grâce à la minimisation d'un fonctionnelle convexe et à une représentation échantillonné de l'espace sis-dimensionnel position-orientation

Vigano, Nicola Roberto 02 November 2015 (has links)
Cette thèse de doctorat introduit un modèle et un algorithme six-dimensions pour la reconstruction des orientations cristallines locales dans les matériaux polycristallins. Le modèle s’applique actuellement aux données obtenues avec un rayonnement synchrotron (faisceau parallèle et monochromatique), mais il est également possible d’envisager des extensions aux instruments et sources de laboratoire (polychromatique et divergent). Le travail présenté est principalement une extension de la technique connue sous le nom de “Diffraction Contrast Tomography” (DCT) qui permet la reconstruction de la forme et de l’orientation cristalline des grains dans des matériaux polycristallins (avec certaines restrictions concernant la taille et le nombre total de grains ainsi que la mosaicité intragranulaire). / This Ph.D. thesis is about the development and formalization of a six-dimensional tomography method, for the reconstruction of local orientation in poly-crystalline materials. This method is based on a technique known as diffraction contract tomography (DCT), mainly used in synchrotrons, with a monochromatic and parallel high energy X-ray beam. DCT exists since over a decade now, but it was always employed to analyze undeformed or nearly undeformed materials, described by “grains” with a certain average orientation. Because an orientation can be parametrized by the used of only three num- bers, the local orientation in the grains is modelled by a six-dimensional space X6 = R3 ⊗ O3, that is the outer product between a three-dimensional real- space and another three-dimensional orientation-space. This means that for each point of the real-space, there could be a full three-dimensional orientation- space, which however in practice is restricted to a smaller region of interest called “local orientation-space”. The reconstruction problem is then formulated as a global minimisation prob- lem, where the reconstruction of a single grain is the solution that minimizes a functional. There can be different choices for the functionals to use, and they depend on the type of reconstructions one is looking for, and on the type of a priori knowledge is available. All the functionals used include a data fidelity term which ensures that the reconstruction is consistent with the measured diffraction data, and then an additional regularization term is added, like the l1-norm minimization of the solution vector, that tries to limit the number of orientations per real-space voxel, or a Total Variation operator over the sum of the orientation part of the six-dimensional voxels, in order to enforce the homogeneity of the grain volume. When first published, the results on synthetic data from the third chapter high- lighted some key features of the proposed framework, and showed that it was in principle possible to extend DCT to the reconstruction of moderately de- formed materials, but it was unclear whether it could work in practice. The following chapters instead confirm that the proposed framework is viable for reconstructing moderately deformed materials, and that in conjunction with other techniques, it could also overcome the limitations imposed by the grain indexing, and be applied to more challenging textured materials.
5

Scattering correction in cone beam tomography using continuously thickness-adapted kernels / Correction du diffusé en tomographie par une méthode de convolution par noyaux continus

Bhatia 1990-...., Navnina 29 September 2016 (has links)
La tomodensitométrie intégrant une source de rayons X à faisceau divergent et un détecteur grand champ est une technique bien connue dans le domaine de la tomographie industrielle. La nature des matériaux et les épaisseurs traversées conduisent inévitablement à la génération de rayonnement diffusé. Ce dernier est généré par l’objet mais également par le détecteur. La présence de rayonnement parasite conduit à ne plus respecter l’hypothèse de la loi de Beer-Lambert. Par conséquent, on voit apparaitre sur les coupes tomographiques des artefacts de reconstruction comme des streaks, des effets ventouses ou des valeurs d’atténuation linéaire erronée. Par conséquence, on retrouve dans la littérature de nombreuses méthodes de correction du diffusé. Ce travail vise à mettre en point et tester une méthode originale de correction du diffusé. Le premier chapitre de cette étude, dresse un état de l’art de la plupart des méthodes de corrections existantes. Nous proposons, dans le deuxième chapitre, une évolution de la méthode de superposition des noyaux de convolution (Scatter Kernel Superposition). Notre méthode repose sur une description continue des noyaux en fonction de l’épaisseur traversée. Dans cette méthode, les noyaux de diffusion sont paramétrés analytiquement sur toute la plage d'épaisseur. Le procédé a été testé pour des objets à la fois mono-matériaux et poly-matériaux, ainsi que sur des données expérimentales et simulées. Nous montrons dans le troisième chapitre l’importance de la contribution du diffusé détecteur dans la qualité de l’image reconstruite. Mais également l’importance de décrire les noyaux de convolution à l'aide d'un modèle à quatre gaussienne. Les résultats obtenus à partir de données expérimentales prouvent que la correction du diffusé de l'objet seul ne suffit pas pour obtenir une image de reconstruite sans artefacts. Afin de disposer d’une meilleur modélisation du diffusé du détecteur, nous décrivons, dans le dernier chapitre, une méthode basée sur la combinaison de données expérimentales et simulées permettant d’améliorer l’estimation des noyaux de diffusé. / Advanced Cone Beam Computed Tomography (CBCT) typically uses a divergent conebeam source and a large area detector. As a result, there an inevitable increase in the size area of illumination causing an increase in the intensity of X-ray scatter signal, both from the object and the detector. This leads to the violation of prime assumption of reconstruction process which is based on straight line integrals path followed by the photons. Consequently scatter artifacts appear in the reconstruction images as steaks, cupping effect and thus produce wrong reconstruction values. Due to the severity of the reconstruction artifact caused by scatter, many scatter corrections methods have been adopted in literature. The first part of this study, reviews most of the existing scatter correction methods. The effect of scattering becomes more prominent and challenging in case of X-ray source of high energy which is used in industrial Non Destructive Testing (NDT), due to higher scatter to primary ratio (SPR). Therefore, in this study, we propose a continuously thickness-adapted deconvolution approach based on improvements in the Scatter Kernel Superposition (SKS) method. In this method, the scatter kernels are analytically parameterized over the whole thickness range of the object under study to better sample the amplitude and shape of kernels with respect to the thickness. The method is tested for both homogeneous and heterogeneous objects as well as simulated and experimental data. Another important aspect of this study is the comprehensive evaluation of contribution of the detector scatter performed using continuous method by separating the contribution of scatter due to the object and the detector. This is performed by modeling the scatter kernels using a four-Gaussian model. In the first approach, we performed this evaluation based on simulation of kernels from Monte Carlo simulations and the corrections are performed on typical industrial experimental data. The results obtained prove that the scatter correction only due to the object is not sufficient to obtain reconstruction image, free from artifacts, as the detector also scatters considerably. In order to prove this point experimentally and to have a better modeling of the detector, we describe a method based on combination of experiments and simulations to calculate the scatter kernels. The results obtained also prove, the contribution of the detector scattering becomes important and the PSF of the detector is not constant as considered in the studies so far, but it varies to a great extend with the energy spectrum.
6

Etude d'un système d'identification de matériaux par diffraction de rayons X à partir d'acquisitions spectrométriques multi pixels / Study of a system for the identification of materials by energy dispersive X-ray diffraction

Ghammraoui, Bahaa 20 September 2012 (has links)
La diffraction des rayons X apparait comme une modalité prometteuse pour l'inspection non invasive de bagages. Par comparaison aux techniques traditionnelles d'imagerie par transmission, cette technique permet de révéler davantage d'informations caractéristiques sur les matériaux, comme les distances inter-réticulaires pour les matériaux cristallins ou la fonction d'interférence moléculaire pour les matériaux amorphes. La méthode de diffraction par énergie dispersive (EDXRD), qui travaille à angle fixe avec un faisceau polychromatique et un détecteur résolu en énergie, est plus particulièrement adaptée à la problématique de contrôle de bagages, car elle permet d'envisager une architecture parallélisée pour imager un bagage complet en un temps raisonnable. Les travaux proposés dans cette thèse ont donc pour but d'étudier un système EDXRD utilisant un détecteur spectrométrique CdZnTe multi pixels pour l'identification des matériaux illicites dans les bagages. Une première étape a consisté à prendre en main cette technique à la fois expérimentalement avec un banc de diffraction mis à disposition et théoriquement par le biais du développement d'un outil de simulation élaboré. La confrontation entre l'expérimentation et la simulation a permis de bien comprendre la physique d'un tel système et de mieux analyser ses faiblesses pour pouvoir les corriger. En nous appuyant sur ces deux outils, nous avons ensuite étudié et mis en oeuvre de nouveaux concepts pour améliorer les performances du système EDXRD, en termes de résolution, d'intensité et de stabilité des pics de diffraction. Ainsi, une architecture novatrice, s'appuyant sur un traitement des signaux transitoires délivrés par les détecteurs CdZnTe, est proposée afin d'améliorer le compromis entre la résolution des pics de diffraction et leur intensité. Cette architecture est basée sur la sur-pixellisation du détecteur par la méthode de localisation barycentrique et sur une adaptation géométrique du système collimateur/détecteur. Enfin, le problème d'instabilité des pics de diffraction, due à l'effet d'orientation des grains des matériaux cristallins, est également traité. / X-ray diffraction is becoming a prevailing technique for non invasive inspection of luggage. Compared to traditional techniques of transmission imaging, the diffraction technique can extract more characteristic information of materials, such as the Bragg peaks for crystalline materials or the molecular interference function for amorphous materials. The method of energy dispersive X Ray diffraction (EDXRD), which works at a fixed low scatter angle but with a polychromatic X-ray beam and a energy resolved detector, is particularly suited to the problem of luggage control as it allows parallelized architectures to inspect an entire object in a reasonable time. The work proposed in this thesis is to study an EDXRD system using a multi-pixelated CdZnTe detector to identify illicit materials in baggage. A first step has been to take control of this technique both experimentally with a diffraction bench and theoretically through the development of an elaborate simulation tool. The comparison between experiment and simulation has allowed to understand the physics of such a system and to better analyze its weaknesses to correct them. Relying on these two tools, we studied and implemented new concepts to improve performances of EDXRD systems, in terms of resolution, intensity and stability of the diffraction peaks. Thus, an innovative architecture, based on a dedicated treatment of transient signals delivered by the CdZnTe detectors, is proposed to significantly improve the compromise between the resolution of the diffraction peaks and their intensity. This architecture is based on an over-pixelation (1D) of the detector by an electronic positioning method and on a geometric adaptation of the system collimator/detector. The problem of instability of the diffraction peaks due to the effect of grain orientation in crystals is also handled.

Page generated in 0.1866 seconds