• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 17
  • 13
  • 2
  • 1
  • Tagged with
  • 64
  • 64
  • 25
  • 24
  • 13
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Géométrie et optimisation riemannienne pour la diagonalisation conjointe : application à la séparation de sources d'électroencéphalogrammes / Riemannian geometry and optimization for approximate joint diagonalization : application to source separation of electroencephalograms

Bouchard, Florent 22 November 2018 (has links)
La diagonalisation conjointe approximée d’un ensemble de matrices permet de résoudre le problème de séparation aveugle de sources et trouve de nombreuses applications, notamment pour l’électroencéphalographie, une technique de mesure de l’activité cérébrale.La diagonalisation conjointe se formule comme un problème d’optimisation avec trois composantes : le choix du critère à minimiser, la contrainte de non-dégénérescence de la solution et l’algorithme de résolution.Les approches existantes considèrent principalement deux critères, les moindres carrés et la log-vraissemblance.Elles sont spécifiques à une contrainte et se restreignent à un seul type d’algorithme de résolution.Dans ce travail de thèse, nous proposons de formuler le problème de diagonalisation conjointe selon un modèle géométrique, qui généralise les travaux précédents et permet de définir des critères inédits, notamment liés à la théorie de l’information.Nous proposons également d’exploiter l’optimisation riemannienne et nousdéfinissons un ensemble d’outils qui permet de faire varier les trois composantes indépendamment, créant ainsi de nouvelles méthodes et révélant l’influence des choix de modélisation.Des expériences numériques sur des données simulées et sur des enregistrements électroencéphalographiques montrent que notre approche par optimisation riemannienne donne des résultats compétitifs par rapport aux méthodes existantes.Elles indiquent aussi que les deux critères traditionnels ne sont pas les meilleurs dans toutes les situations. / The approximate joint diagonalisation of a set of matrices allows the solution of the blind source separation problem and finds several applications, for instance in electroencephalography, a technique for measuring brain activity.The approximate joint diagonalisation is formulated as an optimization problem with three components: the choice of the criterion to be minimized, the non-degeneracy constraint on the solution and the solving algorithm.Existing approaches mainly consider two criteria, the least-squares and the log-likelihood.They are specific to a constraint and are limited to only one type of solving algorithms.In this thesis, we propose to formulate the approximate joint diagonalisation problem in a geometrical fashion, which generalizes previous works and allows the definition of new criteria, particularly those linked to information theory.We also propose to exploit Riemannian optimisation and we define tools that allow to have the three components varying independently, creating in this way new methods and revealing the influence of the choice of the model.Numerical experiments on simulated data as well as on electroencephalographic recordings show that our approach by means of Riemannian optimisation gives results that are competitive as compared to existing methods.They also indicate that the two traditional criteria do not perform best in all situations.
52

Vers des interfaces cérébrales adaptées aux utilisateurs : interaction robuste et apprentissage statistique basé sur la géométrie riemannienne / Toward user-adapted brain computer interfaces : robust interaction and machine learning based on riemannian geometry

Kalunga, Emmanuel 30 August 2017 (has links)
Au cours des deux dernières décennies, l'intérêt porté aux interfaces cérébrales ou Brain Computer Interfaces (BCI) s’est considérablement accru, avec un nombre croissant de laboratoires de recherche travaillant sur le sujet. Depuis le projet Brain Computer Interface, où la BCI a été présentée à des fins de réadaptation et d'assistance, l'utilisation de la BCI a été étendue à d'autres applications telles que le neurofeedback et l’industrie du jeux vidéo. Ce progrès a été réalisé grâce à une meilleure compréhension de l'électroencéphalographie (EEG), une amélioration des systèmes d’enregistrement du EEG, et une augmentation de puissance de calcul.Malgré son potentiel, la technologie de la BCI n’est pas encore mature et ne peut être utilisé en dehors des laboratoires. Il y a un tas de défis qui doivent être surmontés avant que les systèmes BCI puissent être utilisés à leur plein potentiel. Ce travail porte sur des aspects importants de ces défis, à savoir la spécificité des systèmes BCI aux capacités physiques des utilisateurs, la robustesse de la représentation et de l'apprentissage du EEG, ainsi que la suffisance des données d’entrainement. L'objectif est de fournir un système BCI qui peut s’adapter aux utilisateurs en fonction de leurs capacités physiques et des variabilités dans les signaux du cerveau enregistrés.À ces fins, deux voies principales sont explorées : la première, qui peut être considérée comme un ajustement de haut niveau, est un changement de paradigmes BCI. Elle porte sur la création de nouveaux paradigmes qui peuvent augmenter les performances de la BCI, alléger l'inconfort de l'utilisation de ces systèmes, et s’adapter aux besoins des utilisateurs. La deuxième voie, considérée comme une solution de bas niveau, porte sur l’amélioration des techniques de traitement du signal et d’apprentissage statistique pour améliorer la qualité du signal EEG, la reconnaissance des formes, ainsi que la tache de classification.D'une part, une nouvelle méthodologie dans le contexte de la robotique d'assistance est définie : il s’agit d’une approche hybride où une interface physique est complémentée par une interface cérébrale pour une interaction homme-machine plus fluide. Ce système hybride utilise les capacités motrices résiduelles des utilisateurs et offre la BCI comme un choix optionnel : l'utilisateur choisit quand utiliser la BCI et peut alterner entre les interfaces cérébrales et musculaire selon le besoin.D'autre part, pour l’amélioration des techniques de traitement du signal et d'apprentissage statistique, ce travail utilise un cadre Riemannien. Un frein majeur dans le domaine de la BCI est la faible résolution spatiale du EEG. Ce problème est dû à l'effet de conductance des os du crâne qui agissent comme un filtre passe-bas non linéaire, en mélangeant les signaux de différentes sources du cerveau et réduisant ainsi le rapport signal-à-bruit. Par conséquent, les méthodes de filtrage spatial ont été développées ou adaptées. La plupart d'entre elles – à savoir la Common Spatial Pattern (CSP), la xDAWN et la Canonical Correlation Analysis (CCA) – sont basées sur des estimations de matrice de covariance. Les matrices de covariance sont essentielles dans la représentation d’information contenue dans le signal EEG et constituent un élément important dans leur classification. Dans la plupart des algorithmes d'apprentissage statistique existants, les matrices de covariance sont traitées comme des éléments de l'espace euclidien. Cependant, étant symétrique et défini positive (SDP), les matrices de covariance sont situées dans un espace courbe qui est identifié comme une variété riemannienne. Utiliser les matrices de covariance comme caractéristique pour la classification des signaux EEG, et les manipuler avec les outils fournis par la géométrie de Riemann, fournit un cadre solide pour la représentation et l'apprentissage du EEG. / In the last two decades, interest in Brain-Computer Interfaces (BCI) has tremendously grown, with a number of research laboratories working on the topic. Since the Brain-Computer Interface Project of Vidal in 1973, where BCI was introduced for rehabilitative and assistive purposes, the use of BCI has been extended to more applications such as neurofeedback and entertainment. The credit of this progress should be granted to an improved understanding of electroencephalography (EEG), an improvement in its measurement techniques, and increased computational power.Despite the opportunities and potential of Brain-Computer Interface, the technology has yet to reach maturity and be used out of laboratories. There are several challenges that need to be addresses before BCI systems can be used to their full potential. This work examines in depth some of these challenges, namely the specificity of BCI systems to users physical abilities, the robustness of EEG representation and machine learning, and the adequacy of training data. The aim is to provide a BCI system that can adapt to individual users in terms of their physical abilities/disabilities, and variability in recorded brain signals.To this end, two main avenues are explored: the first, which can be regarded as a high-level adjustment, is a change in BCI paradigms. It is about creating new paradigms that increase their performance, ease the discomfort of using BCI systems, and adapt to the user’s needs. The second avenue, regarded as a low-level solution, is the refinement of signal processing and machine learning techniques to enhance the EEG signal quality, pattern recognition and classification.On the one hand, a new methodology in the context of assistive robotics is defined: it is a hybrid approach where a physical interface is complemented by a Brain-Computer Interface (BCI) for human machine interaction. This hybrid system makes use of users residual motor abilities and offers BCI as an optional choice: the user can choose when to rely on BCI and could alternate between the muscular- and brain-mediated interface at the appropriate time.On the other hand, for the refinement of signal processing and machine learning techniques, this work uses a Riemannian framework. A major limitation in this filed is the EEG poor spatial resolution. This limitation is due to the volume conductance effect, as the skull bones act as a non-linear low pass filter, mixing the brain source signals and thus reducing the signal-to-noise ratio. Consequently, spatial filtering methods have been developed or adapted. Most of them (i.e. Common Spatial Pattern, xDAWN, and Canonical Correlation Analysis) are based on covariance matrix estimations. The covariance matrices are key in the representation of information contained in the EEG signal and constitute an important feature in their classification. In most of the existing machine learning algorithms, covariance matrices are treated as elements of the Euclidean space. However, being Symmetric and Positive-Definite (SPD), covariance matrices lie on a curved space that is identified as a Riemannian manifold. Using covariance matrices as features for classification of EEG signals and handling them with the tools provided by Riemannian geometry provide a robust framework for EEG representation and learning.
53

Singularités en géométrie sous-riemannienne / Singularities in sub-Riemannian geometry

Sacchelli, Ludovic 17 September 2018 (has links)
Nous étudions les relations qui existent entre des aspects de la géométrie sous-riemannienne et une diversité de singularités typiques dans ce contexte.Avec les théorèmes de Whitney sous-riemanniens, nous conditionnons l’existence de prolongements globaux de courbes horizontales définies sur des fermés à des hypothèses de non-singularité de l’application point-final dans l’approximation nilpotente de la variété.Nous appliquons des méthodes perturbatives pour obtenir des asymptotiques sur la longueur de courbes localement minimisantes perdant leur optimalité proche de leur point de départ dans le cas des variétés sous-riemanniennes de contact de dimension arbitraire. Nous décrivons la géométrie du lieu singulier et prouvons sa stabilité dans le cas des variétés de dimension 5.Nous introduisons une construction permettant de définir des champs de directions à l’aide de couples de champs de vecteurs. Ceci fournit une topologie naturelle pour analyser la stabilité des singularités de champs de directions sur des surfaces. / We investigate the relationship between features of of sub-Riemannian geometry and an array of singularities that typically arise in this context.With sub-Riemannian Whitney theorems, we ensure the existence of global extensions of horizontal curves defined on closed set by requiring a non-singularity hypothesis on the endpoint-map of the nilpotent approximation of the manifold to be satisfied.We apply perturbative methods to obtain asymptotics on the length of short locally-length-minimizing curves losing optimality in contact sub-Riemannian manifolds of arbitrary dimension. We describe the geometry of the singular set and prove its stability in the case of manifolds of dimension 5.We propose a construction to define line fields using pairs of vector fields. This provides a natural topology to study the stability of singularities of line fields on surfaces.
54

Surfaces à courbure moyenne constante via les champs de spineurs / Constant mean curvature surfaces with spinor fields

Desmonts, Christophe 12 June 2015 (has links)
Les travaux présentés dans cette thèse portent sur le rôle que peuvent jouer les différentes courbures extrinsèques d’une hypersurface dans l’étude de sa géométrie, en particulier dans le cas des variétés spinorielles. Dans un premier temps, nous nous intéressons au cas de la courbure moyenne et construisons une nouvelle famille de surfaces minimales non simplement connexes dans le groupe de Lie Sol3, en adaptant une méthode déjà utilisée par Daniel et Hauswirth dans Nil3 et utilisant les propriétés de l’application de Gauss d’une surface. Ensuite, nous démontrons le Théorème d’Alexandrov généralisé aux Hr-courbures dans l’espace euclidien Rn+1 et dans l’espace hyperbolique Hn+1 en testant un spineur adéquat dans des inégalités de type holographiques établies récemment par Hijazi, Montiel et Raulot. Grâce à ces inégalités, nous démontrons également l'Inégalité de Heintze-Karcher dans l'espace euclidien. Enfin, nous donnons des majorations extrinsèques de la première valeur propre de l’opérateur de Dirac des surfaces de S2 x S1(r) et des sphères de Berger Sb3 (τ) grâce aux restrictions de spineurs ambiants construits par Roth, et nous en caractérisons les cas d’égalité. / In this thesis we are interested in the role played by the extrinsic curvatures of a hypersurface in the study of its geometry, especially in the case of spin manifolds. First, we focus our attention on the mean curvature and construct a new family of non simply connected minimal surfaces in the Lie group Sol3, by adapting a method used by Daniel and Hauswirth in Nil3 based on the properties of the Gauss map of a surface. Then we give a new spinorial proof of the Alexandrov Theorem extended to all Hr-curvatures in the euclidean space Rn+1 and in the hyperbolic space Hn+1, using a well-chosen test-spinor in the holographic inequalities recently obtained by Hijazi, Montiel and Raulot. These inequalities lead to a new proof of the Heintze-Karcher Inequality as well. Finally we use restrictions of particular ambient spinor fields constructed by Roth to give some extrinsic upper bounds for the first nonnegative eigenvalue of the Dirac operator of surfaces immersed into S2 x S1(r) and into the Berger spheres Sb3 (τ), and we describe the equality cases.
55

Classification multilabels à partir de signaux EEG d'imaginations motrices combinées : application au contrôle 3D d'un bras robotique / Multilabel classification of EEG-based combined motor imageries implemented for the 3D control of a robotic arm

Lindig León, Cecilia 10 January 2017 (has links)
Les interfaces cerveau-ordinateur (ou BCI en anglais pour Brain-Computer Interfaces) mettent en place depuis le système nerveux central un circuit artificiel secondaire qui remplace l’utilisation des nerfs périphériques, permettant entre autres à des personnes ayant une déficience motrice grave d’interagir, uniquement à l’aide de leur activité cérébrale, avec différents types d’applications, tels qu’un système d’écriture, une neuro-prothèse, un fauteuil roulant motorisé ou un bras robotique. Une technique répandue au sein des BCI pour enregistrer l’activité cérébrale est l’électroencéphalographie (EEG), étant donné que contrairement à d’autres techniques d’imagerie, elle est non invasif et peu coûteuse. En outre, l’imagination motrice (MI), c’est-à-dire les oscillations des neurones du cortex moteur générées lorsque les sujets imaginent effectuer un mouvement sans réellement l’accomplir, est appropriée car détectable dans l’EEG et liée à l’activité motrice pour concevoir des interfaces comme des neuro-prothèses non assujetties à des stimuli. Cependant, même si des progrès importants ont été réalisés au cours des dernières années, un contrôle 3D complet reste un objectif à atteindre. Afin d’explorer de nouvelles solutions pour surmonter les limitations existantes, nous présentons une approche multiclasses qui considère la détection des imaginations motrices combinées. Le paradigme proposé comprend l’utilisation de la main gauche, de la main droite, et des deux pieds ensemble. Ainsi, par combinaison, huit commandes peuvent être fournies pour diriger un bras robotisé comprenant quatorze mouvements différents qui offrent un contrôle 3D complet. À cette fin, un système de commutation entre trois modes (déplacement du bras, du poignet ou des doigts) a été conçu et permet de gérer les différentes actions en utilisant une même commande. Ce système a été mis en oeuvre sur la plate-forme OpenViBE. En outre, pour l’extraction de caractéristiques une nouvelle approche de traitement d’information fournie par les capteurs a été développée sur la base de l’emplacement spécifique des sources d’activité liées aux parties du corps considérées. Cette approche permet de regrouper au sein d’une seule classe les différentes actions pour lesquelles le même membre est engagé, d’une manière que la tâche multiclasses originale se transforme en un problème équivalent impliquant une série de modèles de classification binaires. Cette approche permet d’utiliser l’algorithme de Common Spatial pattern (CSP) dont la capacité à discriminer des rythmes sensorimoteurs a été largement montrée mais qui présente l’inconvénient d’être applicable uniquement pour différencier deux classes. Nous avons donc également contribué à une nouvelle stratégie qui combine un ensemble de CSP et la géométrie riemannienne. Ainsi des caractéristiques plus discriminantes peuvent être obtenues comme les distances séparant les données des centres des classes considérées. Ces stratégies ont été appliquées sur trois nouvelles approches de classification qui ont été comparées à des méthodes de discrimination multiclasses classiques en utilisant les signaux EEG d’un groupe de sujets sains naïfs, montrant ainsi que les alternatives proposées permettent non seulement d’améliorer l’existant, mais aussi de réduire la complexité de la classification / Brain-Computer Interfaces (BCIs) replace the natural nervous system outputs by artificial ones that do not require the use of peripheral nerves, allowing people with severe motor impairments to interact, only by using their brain activity, with different types of applications, such as spellers, neuroprostheses, wheelchairs, or among others robotics devices. A very popular technique to record signals for BCI implementation purposes consists of electroencephalography (EEG), since in contrast with other alternatives, it is noninvasive and inexpensive. In addition, due to the potentiality of Motor Imagery (MI, i.e., brain oscillations that are generated when subjects imagine themselves performing a movement without actually accomplishing it) to generate suitable patterns for scheming self-paced paradigms, such combination has become a common solution for BCI neuroprostheses design. However, even though important progress has been made in the last years, full 3D control is an unaccomplished objective. In order to explore new solutions for overcoming the existing limitations, we present a multiclass approach that considers the detection of combined motor imageries, (i.e., two or more body parts used at the same time). The proposed paradigm includes the use of the left hand, right hand, and both feet together, from which eight commands are provided to direct a robotic arm comprising fourteen different movements that afford a full 3D control. To this end, an innovative switching-mode scheme that allows managing different actions by using the same command was designed and implemented on the OpenViBE platform. Furthermore, for feature extraction a novel signal processing scheme has been developed based on the specific location of the activity sources that are related to the considered body parts. This insight allows grouping together within a single class those conditions for which the same limb is engaged, in a manner that the original multiclass task is transformed into an equivalent problem involving a series of binary classification models. Such approach allows using the Common Spatial Pattern (CSP) algorithm; which has been shown to be powerful at discriminating sensorimotor rhythms, but has the drawback of being suitable only to differentiate between two classes. Based on this perspective we also have contributed with a new strategy that combines together the CSP algorithm and Riemannian geometry. In which the CSP projected trials are mapped into the Riemannian manifold, from where more discriminative features can be obtained as the distances separating the input data from the considered class means. These strategies were applied on three new classification approaches that have been compared to classical multiclass methods by using the EEG signals from a group of naive healthy subjects, showing that the proposed alternatives not only outperform the existing schema, but also reduce the complexity of the classification task
56

Mesoscopic modelling of the geometry of dislocations and point-defect dynamics in single crystals

Van Goethem, Nicolas 19 January 2007 (has links)
Le travail a consisté, dans une première partie, à modéliser la dynamique des défauts ponctuels dans les mono-cristaux de silicium. Il s'est agi en premier lieu d'analyser en profondeur le modèle physique, pour introduire et comprendre le rôle de la thermodiffusion dans le modèle de transport-diffusion et recombinaison des interstitiels et des lacunes. Par une analyse asymptotique, nous sommes parvenus à prédire la composition du cristal en termes des densités de lacunes ou d'interstitiels. Nous avons également proposé un nouvel ensemble de paramètres matériels tenant compte de résultats d'expériences récentes sur la diffusivité des lacunes. Enfin, nous avons simulé numériquement le calcul des défauts ponctuels dans le procédé Czochralski de croissance de cristaux de silicium et l'avons validé par comparaison avec des résultats expérimentaux. Le travail principal dans cette thèse a consisté en l'élaboration d'une théorie mathématique permettant de décrire de manière rigoureuse la géométrie des dislocations dans les mono-cristaux. Par nature, ces défauts sont concentrés sur des lignes qui sont libres de former des réseaux complexes interagissant à leur tour avec les défauts ponctuels. Il s'est agi de proposer une théorie à l'échelle mésoscopique qui tienne compte à la fois de la multiformité des champs de déplacement et rotation tout en admettant que les effets non-élastiques soient concentrés dans la ligne. Les principaux champs intervenant dans cette théorie sont des densités de dislocations et de disclinations représentés par des tenseurs d'ordre 2 tenant compte à la fois de l'orientation de la ligne et des vecteurs de Frank et Burgers, qui sont des invariants caractérisant respectivement les défauts de rotation et de déplacement dans le cristal. Ces champs sont reliés à l'incompatibilité de la déformation élastique par l'intermédiaire de termes concentrés sur les lignes, qu'il a fallu décrire et formaliser dans un cadre mathématique rigoureux et cohérent. La description de la physique des dislocations a été rendue possible par l'application à la théorie des dislocations de certains nouveaux outils mathématiques tels, par exemple, la théorie des distributions, la théorie géométrique de la mesure, et la géométrie non-riemannienne. Enfin, l'homogénéisation de l'échelle mésoscopique vers l'échelle macroscopique des densités de dislocations, représentées par des tenseurs d'ordre 2, a permis de poser le problème à l'échelle du cristal, où les champs sont réguliers, obéissent à des lois de conservation, de constitution et d'évolution. Le travail de thèse s'est arrêté précisément au moment de modéliser l'échelle macroscopique, notamment les lois de constitution des densités de dislocations. / This thesis comprises two main parts and provides contributions to the fields of point- and line defects in single crystals. The point-defect transport, diffusion and recombination mechanisms are modeled in silicon crystals, whereas a theoretical approach is developped for the description of the geometry of dislocations. Therefore, plasticity, which is caused by the motion of dislocations, is not the topic of the present work. Dislocations are typical line-defects. Once generated during the growth of a silicon or other crystal, they can instantaneously multiply and generate dislocation networks, that render the material unusable for device manufacturing. We develop a theory to represent dislocated single crystals at the mesoscopic scale by considering concentrated effects along the dislocation line, as governed by the distribution theory combined with multiple-valued kinematic fields. Fundamental 2D identities relating the incompatibility tensor to the Frank and Burgers vectors are proved under global assumptions on the elastic strain, relying on the geometric measure theory, thereby giving rise to rigorous homogenisation from mesoscopic to macroscopic scale. The class of point-defects comprises the monoatomic defects which form the fundamental building blocks for grown-in defects in silicon crystals. A general model is build to conduct fully time-dependent and global simulations in order to predict the distribution of point-defects in a growing silicon crystal. Furthermore, the defect governing model is adapted in order to better agree with available measurements of self-interstitial and vacancy diffusion coefficients while respecting the V/G criterion, which characterises the interstitial-vacancy transition in the crystal. It is shown that introducing a thermal drift effect can facilitate the construction of a relevant model satisfying both conditions.
57

Géométrie des surfaces singulières / Geometry of singular surfaces

Debin, Clément 09 December 2016 (has links)
La recherche d'une compactification de l'ensemble des métriques Riemanniennes à singularités coniques sur une surface amène naturellement à l'étude des "surfaces à Courbure Intégrale Bornée au sens d'Alexandrov". Il s'agit d'une géométrie singulière, développée par A. Alexandrov et l'école de Leningrad dans les années 1970, et dont la caractéristique principale est de posséder une notion naturelle de courbure, qui est une mesure. Cette large classe géométrique contient toutes les surfaces "raisonnables" que l'on peut imaginer.Le résultat principal de cette thèse est un théorème de compacité pour des métriques d'Alexandrov sur une surface ; un corollaire immédiat concerne les métriques Riemanniennes à singularités coniques. On décrit dans ce manuscrit trois hypothèses adaptées aux surfaces d'Alexandrov, à la manière du théorème de compacité de Cheeger-Gromov qui concerne les variétés Riemanniennes à courbure bornée, rayon d'injectivité minoré et volume majoré. On introduit notamment la notion de rayon de contractibilité, qui joue le rôle du rayon d'injectivité dans ce cadre singulier.On s'est également attachés à étudier l'espace (de module) des métriques d'Alexandrov sur la sphère, à courbure positive le long d'une courbe fermée. Un sous-ensemble intéressant est constitué des convexes compacts du plan, recollés le long de leurs bords. A la manière de W. Thurston, C. Bavard et E. Ghys, qui ont considéré l'espace de module des polyèdres et polygones (convexes) à angles fixés, on montre que l'identification d'un convexe à sa fonction de support fait naturellement apparaître une géométrie hyperbolique de dimension infinie, dont on étudie les premières propriétés. / If we look for a compactification of the space of Riemannian metrics with conical singularities on a surface, we are naturally led to study the "surfaces with Bounded Integral Curvature in the Alexandrov sense". It is a singular geometry, developed by A. Alexandrov and the Leningrad's school in the 70's, and whose main feature is to have a natural notion of curvature, which is a measure. This large geometric class contains any "reasonable" surface we may imagine.The main result of this thesis is a compactness theorem for Alexandrov metrics on a surface ; a straightforward corollary concerns Riemannian metrics with conical singularities. We describe here three hypothesis which pair with the Alexandrov surfaces, following Cheeger-Gromov's compactness theorem, which deals with Riemannian manifolds with bounded curvature, injectivity radius bounded by below and volume bounded by above. Among other things, we introduce the new notion of contractibility radius, which plays the role of the injectivity radius in this singular setting.We also study the (moduli) space of Alexandrov metrics on the sphere, with non-negative curvature along a closed curve. An interesting subset is the set of compact convex sets, glued along their boundaries. Following W. Thurston, C. Bavard and E. Ghys, who considered the moduli space of (convex) polyhedra and polygons with fixed angles, we show that the identification between a convex set and its support function give rise to an infinite dimensional hyperbolic geometry, for which we study the first properties.
58

Contrôle optimal et métriques de Clairaut-Liouville avec applications / Optimal control and Clairaut-Liouville metrics with applications

Jassionnesse, Lionel 24 November 2014 (has links)
Le travail de cette thèse porte sur l'étude des lieux conjugué et de coupure de métriques riemanniennes ou pseudo-riemanniennes en dimension 2. On se place du point de vue du contrôle optimal pour appliquer le principe du maximum de Pontryagin afin de caractériser les extrémales des problèmes considérés.On va utiliser des méthodes géométriques, numériques et d'intégrabilité pour étudier des métriques de Clairaut-Liouville ou de Liouville sur la sphère. Dans le cas dégénéré de révolution, l'étude de l'ellipsoïde utilise des méthodes géométriques pour déterminer le lieu de coupure et la nature du lieu conjugué dans les cas oblat et prolat. Dans le cas général, les extrémales auront deux types de comportements distincts qui se rapportent à ceux observés dans le cas de révolution, et sont séparés par celles passant par des points ombilicaux. Les méthodes numériques sont utilisées pour retrouver rapidement la dernière conjecture géométrique de Jacobi : le lieu de coupure est un segment et le lieu conjugué contient quatre points de rebroussement.L'étude d'une métrique pseudo-riemannienne vient d'un problème de contrôle quantique où le but est de transférer en temps minimal l'état d'un spin à travers une chaîne de trois spins couplés par des interactions de type Ising. Après réduction, la métrique obtenue possède une intégrale première supplémentaire et on peut donc la mettre sous forme de Liouville, ce qui nous donne les équations des géodésiques. En dehors du cas particulier de Grushin, dont la caustique est décrite, on utilise les méthodes numériques pour étudier le lieu conjugué et le lieu de coupure dans le cas général. / The work of this thesis is about the study of the conjugate and cut loci of 2D riemannian or almost-riemannian metrics. We take the point of view of optimal control to apply the Pontryagin Maximum Principle in the purpose of characterize the extremals of the problem considered.We use geometric, numerical and integrability methods to study some Liouville and Clairaut-Liouville metrics on the sphere. In the degenerate case of revolution, the study of the ellipsoid uses geometric methods to fix the cut locus and the nature of the conjugate locus in the oblate and prolate cases. In the general case, extremals will have two distinct type of comportment which correspond to those observed in the revolution case, and are separated by those which pass by umbilical points. The numerical methods are used to find quickly the Jacobi's Last Geometric Statement : the cut locus is a segment and the conjugate locus has exactly four cusps.The study of an almost-riemannian metric comes from a quantum control problem in which the aim is to transfer in a minimal time the state of one spin through an Ising chain of three spins. After reduction, we obtain a metric with a second first integral so it can be written in the Liouville normal form, which leads us to the equations of geodesics. Outside the particular case of Grushin, of which the caustic is described, we use numerical methods to study the conjugate locus and the cut locus in the general case.
59

Statistical models and stochastic algorithms for the analysis of longitudinal Riemanian manifold valued data with multiple dynamic / Modèles statistiques et algorithmes stochastiques pour l’analyse de données longitudinales à dynamiques multiples et à valeurs sur des variétés riemaniennes

Chevallier, Juliette 26 September 2019 (has links)
Par delà les études transversales, étudier l'évolution temporelle de phénomènes connait un intérêt croissant. En effet, pour comprendre un phénomène, il semble plus adapté de comparer l'évolution des marqueurs de celui-ci au cours du temps plutôt que ceux-ci à un stade donné. Le suivi de maladies neuro-dégénératives s'effectue par exemple par le suivi de scores cognitifs au cours du temps. C'est également le cas pour le suivi de chimiothérapie : plus que par l'aspect ou le volume des tumeurs, les oncologues jugent que le traitement engagé est efficace dès lors qu'il induit une diminution du volume tumoral.L'étude de données longitudinales n'est pas cantonnée aux applications médicales et s'avère fructueuse dans des cadres d'applications variés tels que la vision par ordinateur, la détection automatique d'émotions sur un visage, les sciences sociales, etc.Les modèles à effets mixtes ont prouvé leur efficacité dans l'étude des données longitudinales, notamment dans le cadre d'applications médicales. Des travaux récent (Schiratti et al., 2015, 2017) ont permis l'étude de données complexes, telles que des données anatomiques. L'idée sous-jacente est de modéliser la progression temporelle d'un phénomène par des trajectoires continues dans un espace de mesures, que l'on suppose être une variété riemannienne. Sont alors estimées conjointement une trajectoire moyenne représentative de l'évolution globale de la population, à l'échelle macroscopique, et la variabilité inter-individuelle. Cependant, ces travaux supposent une progression unidirectionnelle et échouent à décrire des situations telles que la sclérose en plaques ou le suivi de chimiothérapie. En effet, pour ces pathologies, vont se succéder des phases de progression, de stabilisation et de remision de la maladie, induisant un changement de la dynamique d'évolution globale.Le but de cette thèse est de développer des outils méthodologiques et algorithmiques pour l’analyse de données longitudinales, dans le cas de phénomènes dont la dynamique d'évolution est multiple et d'appliquer ces nouveaux outils pour le suivi de chimiothérapie. Nous proposons un modèle non-linéaire à effets mixtes dans lequel les trajectoires d'évolution individuelles sont vues comme des déformations spatio-temporelles d'une trajectoire géodésique par morceaux et représentative de l'évolution de la population. Nous présentons ce modèle sous des hypothèses très génériques afin d'englober une grande classe de modèles plus spécifiques.L'estimation des paramètres du modèle géométrique est réalisée par un estimateur du maximum a posteriori dont nous démontrons l'existence et la consistance sous des hypothèses standards. Numériquement, du fait de la non-linéarité de notre modèle, l'estimation est réalisée par une approximation stochastique de l'algorithme EM, couplée à une méthode de Monte-Carlo par chaînes de Markov (MCMC-SAEM). La convergence du SAEM vers les maxima locaux de la vraisemblance observée ainsi que son efficacité numérique ont été démontrées. En dépit de cette performance, l'algorithme SAEM est très sensible à ses conditions initiales. Afin de palier ce problème, nous proposons une nouvelle classe d'algorithmes SAEM dont nous démontrons la convergence vers des minima locaux. Cette classe repose sur la simulation par une loi approchée de la vraie loi conditionnelle dans l'étape de simulation. Enfin, en se basant sur des techniques de recuit simulé, nous proposons une version tempérée de l'algorithme SAEM afin de favoriser sa convergence vers des minima globaux. / Beyond transversal studies, temporal evolution of phenomena is a field of growing interest. For the purpose of understanding a phenomenon, it appears more suitable to compare the evolution of its markers over time than to do so at a given stage. The follow-up of neurodegenerative disorders is carried out via the monitoring of cognitive scores over time. The same applies for chemotherapy monitoring: rather than tumors aspect or size, oncologists asses that a given treatment is efficient from the moment it results in a decrease of tumor volume. The study of longitudinal data is not restricted to medical applications and proves successful in various fields of application such as computer vision, automatic detection of facial emotions, social sciences, etc.Mixed effects models have proved their efficiency in the study of longitudinal data sets, especially for medical purposes. Recent works (Schiratti et al., 2015, 2017) allowed the study of complex data, such as anatomical data. The underlying idea is to model the temporal progression of a given phenomenon by continuous trajectories in a space of measurements, which is assumed to be a Riemannian manifold. Then, both a group-representative trajectory and inter-individual variability are estimated. However, these works assume an unidirectional dynamic and fail to encompass situations like multiple sclerosis or chemotherapy monitoring. Indeed, such diseases follow a chronic course, with phases of worsening, stabilization and improvement, inducing changes in the global dynamic.The thesis is devoted to the development of methodological tools and algorithms suited for the analysis of longitudinal data arising from phenomena that undergo multiple dynamics and to apply them to chemotherapy monitoring. We propose a nonlinear mixed effects model which allows to estimate a representative piecewise-geodesic trajectory of the global progression and together with spacial and temporal inter-individual variability. Particular attention is paid to estimation of the correlation between the different phases of the evolution. This model provides a generic and coherent framework for studying longitudinal manifold-valued data.Estimation is formulated as a well-defined maximum a posteriori problem which we prove to be consistent under mild assumptions. Numerically, due to the non-linearity of the proposed model, the estimation of the parameters is performed through a stochastic version of the EM algorithm, namely the Markov chain Monte-Carlo stochastic approximation EM (MCMC-SAEM). The convergence of the SAEM algorithm toward local maxima of the observed likelihood has been proved and its numerical efficiency has been demonstrated. However, despite appealing features, the limit position of this algorithm can strongly depend on its starting position. To cope with this issue, we propose a new version of the SAEM in which we do not sample from the exact distribution in the expectation phase of the procedure. We first prove the convergence of this algorithm toward local maxima of the observed likelihood. Then, with the thought of the simulated annealing, we propose an instantiation of this general procedure to favor convergence toward global maxima: the tempering-SAEM.
60

Deux problèmes de contrôle géométrique : holonomie horizontale et solveur d'esquisse / Two problems of Geometric Control : Horizontal Holonomy and Solver of Sketch

Hafassa, Boutheina 13 January 2016 (has links)
Nous étudions deux problèmes différents qui ont leur origine dans la théorie du contrôle géométrique. Le Problème I consiste à étendre le concept du groupe d'holonomie horizontale sur une variété affine. Plus précisément, nous considérons une variété connexe lisse de dimension finie M, une connexion affine ∇ avec le groupe d'holonomie H∇ et une distribution lisse ∆ complètement non intégrable. Dans un premier temps, nous définissons le groupe d'holonomie ∆-horizontale H∆∇ comme le sous-groupe de H∇ obtenu par le transport parallèle le long des lacets tangents à ∆. Nous donnons les propriétés élémentaires de H∆∇ et ensuite nous faisons une étude détaillée en utilisant le formalisme de roulement. Il est montré en particulier que H∆∇ est un groupe de Lie. Dans un second temps, nous avons étudié un exemple explicite où M est un groupe de Carnot libre d'ordre 2 avec m ≥ 2 générateurs, et ∇ est la connexion de Levi-Civita associé à une métrique riemannienne sur M. Nous avons montré dans ce cas particulier que H∆∇ est compact et strictement inclus dans H∇ dès que m≥3. Le Problème II étudie la modélisation du problème du solveur d'esquisse. Ce problème est une des étapes d'un logiciel de CFAO. Notre but est d'arriver à une modélisation mathématique bien fondée et systématique du problème du solveur d'esquisse. Il s'agira ensuite de comprendre la convergence de l'algorithme, d'en améliorer les résultats et d'en étendre les fonctionnalités. L'idée directrice de l'algorithme est de remplacer tout d'abord les points de l'espace des sphères par des déplacements (éléments du groupe) et puis d'utiliser une méthode de Newton sur les groupes de Lie ainsi obtenus. Dans cette thèse, nous avons classifié les groupes de déplacements possibles en utilisant la théorie des groupes de Lie. En particulier, nous avons distingué trois ensembles, chaque ensemble contenant un type d'objet: le premier est l'ensemble des points, noté Points , le deuxième est l'ensemble des droites, noté Droites, et le troisième est l'ensemble des cercles et des droites, que nous notons ∧. Pour chaque type d'objet nous avons étudié tous les groupes de déplacements possibles, selon les propriétés souhaitées. Nous proposons finalement d'utiliser les groupes de déplacements suivant: pour le déplacement des points, le groupe des translations, qui agit transitivement sur Points ; pour les droites, le groupe des translations et rotations, qui est de dimension 3 et agit transitivement (globalement mais pas localement) sur Droites ; sur les droites et cercles, le groupe des anti-translations, rotations et dilatations qui est de dimension 4 et agit transitivement (globalement mais pas localement) sur ∧. / We study two problems arising from geometric control theory. The Problem I consists of extending the concept of horizontal holonomy group for affine manifolds. More precisely, we consider a smooth connected finite-dimensional manifold M, an affine connection ∇ with holonomy group H∇ and ∆ a smooth completely non integrable distribution. We define the ∆-horizontal holonomy group H∆∇ as the subgroup of H∇ obtained by ∇-parallel transporting frames only along loops tangent to ∆. We first set elementary properties of H∆∇ and show how to study it using the rolling formalism. In particular, it is shown that H∆∇ is a Lie group. Moreover, we study an explicit example where M is a free step-two homogeneous Carnot group with m≥2 generators, and ∇ is the Levi-Civita connection associated to a Riemannian metric on M, and show in this particular case that H∆∇ is compact and strictly included in H∇ as soon as m≥3. The Problem II is studying the modeling of the problem of solver sketch. This problem is one of the steps of a CAD/CAM software. Our goal is to achieve a well founded mathematical modeling and systematic the problem of solver sketch. The next step is to understand the convergence of the algorithm, to improve the results and to expand the functionality. The main idea of the algorithm is to replace first the points of the space of spheres by displacements (elements of the group) and then use a Newton's method on Lie groups obtained. In this thesis, we classified the possible displacements of the groups using the theory of Lie groups. In particular, we distinguished three sets, each set containing an object type: the first one is the set of points, denoted Points, the second is the set of lines, denoted Lines, and the third is the set of circles and lines, we note that ∧. For each type of object, we investigated all the possible movements of groups, depending on the desired properties. Finally, we propose to use the following displacement of groups for the displacement of points, the group of translations, which acts transitively on Lines ; for the lines, the group of translations and rotations, which is 3-dimensional and acts transitively (globally but not locally) on Lines ; on lines and circles, the group of anti-translations, rotations and dilations which has dimension 4 and acts transitively (globally but not locally) on ∧.

Page generated in 0.0632 seconds