• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 12
  • 3
  • 2
  • Tagged with
  • 33
  • 33
  • 20
  • 17
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Schémas numériques d'advection et de propagation d'ondes de gravité dans les modèles de circulation océanique / Advection and gravity waves propagation numerical schemes for oceanic circulation models

Demange, Jérémie 21 October 2014 (has links)
Les modèles numériques d'océans régionaux tridimensionnels sont basés sur la résolution des équations primitives et utilisent pour la plupart des méthodes de résolution eulérienne de type différences finies sur des grilles décalées. Ces modèles doivent représenter fidèlement les transports et transferts d'énergie. L'amélioration de ces modèles numériques exige donc (i) l'identification des processus prépondérants, notamment en terme de dissipation, dans ces transferts et (ii) la construction de méthodes numériques respectant un certain nombre d'équilibres. La première partie du travail se concentre sur la propagation des ondes externes et internes de gravité. Nous nous intéresserons en premier lieu à la stabilité de la séparation en mode rapide (barotrope) et lents (baroclines) et montrons qu'elle peut être ameliorée en levant certaines hypothèses traditionnellement effectuées. Dans un second temps, nous étudions l'impact de la discrétisation (ordre des schémas, grilles décalées ou non) sur la propagation des ondes internes de gravité provenant du couplage vitesse pression. Une décomposition en modes verticaux nous permet également de proposer un schéma espace temps très efficace. La seconde partie étudie en détail les schémas d'advection de quantité de mouvement et de traceurs, tout particulièrement dans l'objectif d'une réduction de la diffusion diapycnale (diffusion dans les directions orthogonales aux couches de densité constante). Ce travail nous amène tout d'abord à porter notre attention sur les schémas d'advection verticaux souvent négligés au regard de la dimension horizontale. Les bonnes propriétés d'un schéma compact (et de ses variantes espace temps et monotones) sont mises en avant. Enfin nous analysons le comportement multidimensionnel de ces schémas d'advection. / Three-dimensional regional ocean numerical models are based on solving the primitive equations and mostly use Eulerian finite differences methods of resolution on staggered grids. These models must accurately represent transports and energy transfers. Improving these numerical models therefore requires (i) the identification of predominant process, particularly in terms of dissipation in these transfers and (ii) the construction of numerical methods respecting a number of balances. The first part of the work focuses on the propagation of external and internal gravity waves. We focus primarily on the stability of the separation in fast mode (barotropic) and slow (baroclinic) and show that it can be improved by removing certain assumptions traditionally made. In a second step, we study the impact of the discretization (order of schemes, staggered grids or not) on the propagation of internal gravity waves coming from the coupling velocity pressure. A decomposition into vertical modes also allows us to offer a highly effective space-time scheme. The second part examines in detail the numerical advection schemes of momentum and tracers, especially with the aim of reducing the diapycnal diffusion (diffusion in the orthogonal direction of constant density layers). This work leads us first to focus our attention on the vertical advection schemes often overlooked in front of the horizontal dimension. The good properties of a compact schema (and its space-time and monotonous variants ) are highlighted. Finally we analyze the multidimensional behavior of these advection schemes.
22

Etude numérique et modélisation du modèle d'Euler bitempérature : point de vue cinétique. / Numerical approximation and modelling of the bitemperature Euler model : a kinetic viewpoint.

Prigent, Corentin 24 October 2019 (has links)
Dans divers domaines de la physique, certains phénomènes sont modélisés par des systèmes hyperboliques non-conservatifs. En particulier, dans le domaine de la physique des plasmas, dont l'un des champs d'application majeur est la Fusion par Confinement Inertiel, le système d'Euler bi-température, modélisant les phénomènes de transport de particules chargées, en est un exemple. La difficulté de l'étude de ces systèmes réside dans la présence de termes non-conservatifs, qui empêchent la définition classique des solutions faibles. Pour parvenir à une définition de ce type de solutions, on a recours à l'emploi de systèmes cinétiques sous-jacents. Dans ce manuscrit, on s'intéresse à l'étude numérique de ces systèmes cinétiques pour la résolution du système d'Euler bi-température.Ce manuscrit se divise en deux parties. La première partie contient l'étude numérique du système d'Euler bi-température. Dans un premier chapitre, on résout numériquement les équations en dimension 1 d'espace par le biais d'un système sous-jacent issu de la physique des plasmas: le système de Vlasov-BGK-Ampère. On présente une méthode numérique préservant l'asymptotique pour ce système sous-jacent et on montre, par des simulations numériques, que le schéma limite obtenu donne des résultats consistants avec Euler bi-température. Dans un second chapitre, on résout le même modèle en dimension 2 d'espace par un système sous-jacent de type BGK discret. On démontre une inégalité d'entropie pour les solutions issues du modèle sous-jacent, ainsi qu'une inégalité discrète de dissipation d'entropie pour le schéma.Dans la deuxième partie de ce manuscrit, on s'intéresse au développement de méthodes numériques pour quelques modèles cinétiques. On considère ici le cas des écoulements raréfiés de mélanges de gaz, dans l'optique d'une application aux cas des plasmas. Premièrement, on présente un schéma cinétique adaptatif et dynamique en vitesse pour les gaz inertes. Par l'emploi de lois de conservation discrètes, la solution est approchée sur un ensemble de vitesses discrètes local et dynamique. Dans un second temps, on propose une extension de cette méthode visant à améliorer les performances de celle-ci. Puis, ces deux versions de la méthode sont comparées à la méthode classique sur grille fixe uniforme sur une série de cas tests.Enfin, dans le dernier chapitre, on propose une méthode numérique pour la résolution d'une extension de ces équations, prenant en compte la présence de réactions chimiques au sein du mélange. Le contexte considéré est celui des réactions chimiques bi-moléculaires réversibles lentes. La méthode proposée, de type implicite-explicite, est linéaire, stable et conservative. / In various domains of physics, several phenomena can be modeled via the use of nonconservative hyperbolic systems. In particular, in plasma physics, in the process of developping and understanding the phenomena leading to Inertial Confinement Fusion, the bi-temperature Euler sytem can be used to model particle transport phenomena in a plasma. The difficulty of the mathematical study of such systems dwells in the presence of so-called non-conservative products, which prevent the classical definition of weak solutions via distribution theory. To attempt to define these quantities, it is useful to supplement the hyperbolic system with an underlying kinetic model. In this work, the objective is the numerical study of such kinetic systems in order to solve the bi-temperature Euler system.This manuscript is split in two parts. The first one contains the study of the bi-temperature Euler system. In the first chapter, this system in dimension 1 is solved by the use of an underlying kinetic model sprung from plasma physics: the Vlasov-BGK-Ampère system. An asymptotic-preserving numerical method is introduced, and it is shown that the scheme obtained in the limit is consistant with a scheme for teh bi-temperature Euler system. In the following chapter, the same hyperbolic model in dimension 2 is studied, this time via a discrete-BGK type underlying model. An entropy inequality is proved for solutions coming from the kinetic model, as well as a discrete entropy dissipation inequality.In the second part of the manuscript, we are interested in the development of numerical schemes for gas mixture rarefied flows. Firstly, an adaptive kinetic scheme is introduced for inert gas mixtures. By the use of discrete conservation laws, the solution is approximated on a set of discrete velocities that depends on space, time and species. Secondly, an extension of the method is proposed in order to improve the efficiency of the first method. Finally, the two methods are compared to the classical fixed grid method on a series of test cases.In the last chapter, a numerical method is proposed for rarefied flows of reacting mixtures. The setting considered is the case of slow bimolecular reversible chemical reactions. The method introduced is an explicit-implicit treatment of the relaxation operator, which is shown to be stable, linear and conservative.
23

Modèles eulériens et simulation numérique de la dispersion turbulente de brouillards qui s'évaporent / Eulerian modeling and evaporating spray turbulent dispersion simulation

Chaisemartin, Stéphane de 20 March 2009 (has links)
Le modèle multi-fluide permet de décrire par une approche Eulérienne les sprays polydispersés et apparaît donc comme une méthode indiquée pour les applications de combustion diphasique. Sa pertinence pour la simulation à l’échelle d’applications industrielles est évaluée dans ce travail, par sa mise en oeuvre dans des configurations bi-dimensionnelle et tri-dimensionnelle plus représentatives de ce type de simulations. Cette évaluation couple une étude de faisabilité en terme de coût de calcul avec une analyse de la précision obtenue, par des comparaisons avec les résultats de méthodes de références pour la description des sprays. Afin de définir une telle référence, une hiérarchisation des modèles de spray est proposée dans ce travail, soulignant les niveaux de modélisation associée aux diverses méthodes. Une première configuration d’écoulements tourbillonnaires est utilisée pour caractériser la méthode multi-fluide. L’étude de la structure mathématique du système de lois de conservation permet d’analyser la formation de singularités et de fournir les outils permettant d’évaluer leur impact sur la modélisation. Cette étude permet également de dériver un schéma numérique robuste et efficace pour des configurations bi- et tri-dimensionnelle. La description des dynamiques de gouttes conditionnées par la taille est évaluée dans ces configurations tourbillonnaires au moyen de comparaisons quantitatives, sur des champs instantanés, où le multi-fluide est confronté à une méthode Lagrangienne, ainsi qu’à des résultats expérimentaux. Afin d’évaluer le comportement de la méthode multi-fluide dans des configurations plus représentatives des problématiques industrielles, le solveur MUSES3D est développé, permettant, entre autres, une évaluation fine des méthodes de résolution des sprays. Une implémentation originale de la méthode multi-fluide, conciliant généricité et efficacité pour le calcul parallèle, est réalisée. Le couplage de ce solveur avec le code ASPHODELE, développé au CORIA, permet d’effectuer une évaluation opérationnelle des approches Euler/Lagrange et Euler/Euler pour la description des écoulements diphasiques à inclusions dispersées. Finalement, le comportement de la méthode multi-fluide dans des jets bi-dimensionnels et dans une turbulence homogène isotrope tri-dimensionnelle permet de montrer sa précision pour la description de la dynamique de sprays évaporant dans des configurations plus complexes. La résolution de la polydispersion du spray permet de décrire précisément la fraction massique de combustible en phase vapeur, un élément clé pour les applications de combustion. De plus, l’efficacité du calcul parallèle par décomposition de domaine avec la méthode multi-fluide permet d’envisager son utilisation à l’échelle d’applications industrielles. / The multi-fluid model, providing a Eulerian description of polydisperse sprays, appears as an interesting method for two-phase combustion applications. Its relevance as a numerical tool for industrial device simulations is evaluated in this work. This evaluation assesses the feasibility of multi-fluid simulations in terms of computational cost and analyzes their precision through comparisons with reference methods for spray resolution. In order to define such a reference, the link between the available methods for spray resolution is provided, highlighting their corresponding level of modeling. A first framework of 2-D vortical flows is used to assess the mathematical structure of the multi-fluid model governing system of equations. The link between the mathematical peculiarities and the physical modeling is provided, and a robust numerical scheme efficient for 2-D/3-D configurations is designed. This framework is also used to evaluate the multi-fluid description of evaporating spray sizeconditioned dynamics through quantitative, time-resolved, comparisons with a Lagrangian reference and with experimental data. In order to assess the multi-fluid efficiency in configurations more representative of industrial devices, a numerical solver is designed, providing a framework devoted to spray method evaluation. An original implementation of the multifluid method, combining genericity and efficiency in a parallel framework, is achieved. The coupling with a Eulerian/Lagrangian solver for dispersed two-phase flows, developed at CORIA, is conducted. It allows a precise evaluation of Euler/Lagrange versus Euler/Euler approaches, in terms of precision and computational cost. Finally, the behavior of the multi-fluid model is assessed in 2D-jets and 3-D Homogeneous Isotropic Turbulence. It illustrates the ability of the method to capture evaporating spray dynamics in more complex configurations. The method is shown to describe accurately the fuel vapor mass fraction, a key issue for combustion applications. Furthermore, the method is shown to be efficient in domain decomposition parallel computing framework, a key issue for simulations at the scale of industrial devices.
24

Kinetic Theory Based Numerical Schemes for Incompressible Flows

Ruhi, Ankit January 2016 (has links) (PDF)
Turbulence is an open and challenging problem for mathematical approaches, physical modeling and numerical simulations. Numerical solutions contribute significantly to the understand of the nature and effects of turbulence. The focus of this thesis is the development of appropriate numerical methods for the computer simulation of turbulent flows. Many of the existing approaches to turbulence utilize analogies from kinetic theory. Degond & Lemou (J. Math. Fluid Mech., 4, 257-284, 2002) derived a k-✏ type turbulence model completely from kinetic theoretic framework. In the first part of this thesis, a numerical method is developed for the computer simulation based on this model. The Boltzmann equation used in the model has an isotropic, relaxation collision operator. The relaxation time in the collision operator depends on the microscopic turbulent energy, making it difficult to construct an efficient numerical scheme. In order to achieve the desired numerical efficiency, an appropriate change of frame is applied. This introduces a stiff relaxation source term in the equations and the concept of asymptotic preserving schemes is then applied to tackle the stiffness. Some simple numerical tests are introduced to validate the new scheme. In the second part of this thesis, alternative approaches are sought for more efficient numerical techniques. The Lattice Boltzmann Relaxation Scheme (LBRS) is a novel method developed recently by Rohan Deshmukh and S.V. Raghuram Rao for simulating compressible flows. Two different approaches for the construction of implicit sub grid scale -like models as Implicit Large Eddy Simulation (ILES) methods, based on LBRS, are proposed and are tested for Burgers turbulence, or Burgulence. The test cases are solved over a largely varying Reynolds number, demonstrating the efficiency of this new ILES-LBRS approach. In the third part of the thesis, as an approach towards the extension of ILES-LBRS to incompressible flows, an artificial compressibility model of LBRS is proposed. The modified framework, LBRS-ACM is then tested for standard viscous incompressible flow test cases.
25

Couplages instationnaires de la vapeur humide dans les écoulements de turbines à vapeur

Blondel, Frédéric 17 January 2014 (has links)
Le bon fonctionnement et les performances des turbines à vapeur sont liés à l’état de la vapeur et notamment au taux d’humidité qu’elle contient. EDF souhaite pouvoir maîtriser les phénomènes spécifiques à ces problématiques afin d’améliorer l’utilisation et l’évolution de ses turbines. Le sujet de recherche concerne la modélisation de la formation de l’humidité dans un corps de turbine et l’étude des couplages entre la phase liquide et les instationnarités. Dans ce contexte, la démarche adoptée est la suivante : la présence d’humidité est prise en compte à l’aide d’un modèle homogène, couplé à des modèles de condensation permettant de prendre en compte les phénomènes hors-équilibre thermodynamique : le grossissement et la nucléation des gouttes d’eau dans la vapeur. Pour mener à bien les calculs, des méthodes numériques adaptées aux gaz réels ont été utilisées et testées à l’aide d’un code monodimensionnel avant d’être intégrées dans le code 3D elsA. Deux types de modèles de condensation ont été mis en œuvre, considérant ou non la polydispersion des gouttes dans la vapeur. Les couplages instationnaires entre la condensation et l’écoulement principal ont été étudiés à différents niveaux d’observations (1D, 1D − 3D, 3D). Il a été montré que la méthode des moments apporte une richesse supplémentaire par rapport à un modèle mono-dispersé, et permet de mieux capter les couplages instationnaires entre l’humidité et le champ principal. / In addition to conventional turbomachinery problems, both the behavior and performances of steam turbines are highly dependent on the vapour thermodynamic state and the presence of a liquid phase. EDF, the main French electricity producer, is interested in further developing its’ modelling capabilities and expertise in this area to allow for operational studies and long-term planning. This PhD thesis explores the modelling of wetness formation and growth in a steam turbine and an analysis of the coupling between the liquid phase and the main flow unsteadiness. To this end, the work in this thesis took the following approach. Wetness was accounted for using a homogeneous model coupled with transport equations to take into account the effects of non-equilibrium phenomena, such as the growth of the liquid phase and nucleation. The real gas attributes of the problem demanded adapted numerical methods. Before their implementation in the 3D elsA solver, the accuracy of the chosen models was tested using a developed one-dimensional nozzle code. In this manner, various condensation models were considered, including both polydispersed and monodispersed behaviours of the steam. Finally, unsteady coupling effects were observed from several perspectives (1D, 1D − 3D, 3D), demonstrating the ability of the method of moments to sustain unsteady phenomena which were not apparent in a simple monodispersed model.
26

Schémas volumes finis pour des problèmes multiphasiques / Finite-volume schemes for multiphasic problems

Nabet, Flore 08 December 2014 (has links)
Ce manuscrit de thèse porte sur l'analyse numérique de schémas volumes finis pour la discrétisation de deux systèmes particuliers d'équations. Dans un premier temps nous étudions l'équation de Cahn-Hilliard associée à des conditions aux limites dynamiques dont l'une des principales difficultés est que cette condition aux limites est une équation parabolique, non linéaire, posée sur le bord et couplée avec l'intérieur du domaine. Nous proposons une discrétisation de type volumes finis en espace qui permet de coupler naturellement l'équation dans le domaine et celle sur sa frontière par un terme de flux et qui s'adapte facilement à la géométrie courbe du domaine. Nous montrons l'existence et la convergence des solutions discrètes vers une solution faible du système. Dans un second temps nous étudions la stabilité Inf-Sup du problème de Stokes pour un schéma volumes finis de type dualité discrète (DDFV). Nous donnons une analyse complète de la stabilité Inf-Sup inconditionnelle dans certains cas et de la stabilité de codimension 1 dans le cas de maillages cartésiens. Nous mettons également en place une méthode numérique permettant de calculer la constante Inf-Sup associée à ce schéma pour un maillage donné. On peut ainsi observer le comportement stable ou instable selon les cas en fonction de la géométrie des maillages. Dans une dernière partie nous proposons un schéma DDFV pour un modèle couplé Cahn-Hilliard/Stokes ce qui nécessite l'introduction de nouveaux opérateurs discrets. Nous démontrons la décroissance de l'énergie au niveau discret ainsi que l'existence d'une solution au problème discret. L'ensemble de ces travaux est validé par de nombreux résultats numériques. / This manuscript is devoted to the numerical analysis of finite-volume schemes for the discretization of two particular equations. First, we study the Cahn-Hilliard equation with dynamic boundary conditions whose one of the main difficulties is that this boundary condition is a non-linear parabolic equation on the boundary coupled with the interior of the domain. We propose a spatial finite-volume discretization which is well adapted to the coupling of the dynamics in the domain and those on the boundary by the flux term. Moreover this kind of scheme accounts naturally for the non-flat geometry of the boundary. We prove the existence and the convergence of the discrete solutions towards a weak solution of the system. Second, we study the Inf-Sup stability of the discrete duality finite volume (DDFV) scheme for the Stokes problem. We give a complete analysis of the unconditional Inf-Sup stability in some cases and of codimension 1 Inf-Sup stability for Cartesian meshes. We also implement a numerical method which allows us to compute the Inf-Sup constant associated with this scheme for a given mesh. Thus, we can observe the stable or unstable behaviour that can occur depending on the geometry of the meshes. In a last part we propose a DDFV scheme for a Cahn-Hilliard/Stokes phase field model that required the introduction of new discrete operators. We prove the dissipation of the energy in the discrete case and the existence of a solution to the discrete problem. All these research results are validated by extensive numerical results.
27

Modèles euleriens et méthodes numériques pour la description des sprays polydisperses turbulents. / Eulerian modeling and numerical methods for the description of turbulent polydisperse sprays

Sabat, Macole 03 November 2016 (has links)
De nos jours, la simulation des écoulements diphasiques a de plus en plus d’importance dans les chambres de combustion aéronautiques en tant qu’un des éléments requis pour analyser et maîtriser le processus complet de combustion, afin d’améliorer la performance du moteur et de mieux prédire les émissions polluantes. Dans les applications industrielles, la modélisation du combustible liquide trouvé en aval de l’injecteur sous forme de brouillard de gouttes polydisperse, appelé spray, est de préférence faite à l’aide de méthodes Eulériennes. Ce choix s’explique par les avantages qu’offrent ces méthodes par rapport aux méthodes Lagrangiennes, notamment la convergence statistique intrinsèque, le couplage aisé avec la phase gazeuse ainsi que l’efficacité pour le calcul haute performance. Dans la présente thèse, on utilise une approche Eulérienne basée sur une fermeture au niveau cinétique de type distribution Gaussienne Anisotrope (AG). L’AG résout des moments de vitesse jusqu’au deuxième ordre et permet de capter les croisements des trajectoires (PTC) à petite échelle de manière statistique. Le système d’équations obtenu est hyperbolique, le problème est bien-posé et satisfait les conditions de réalisabilité. L’AG est comparé au modèle monocinétique (MK) d’ordre 1 en vitesse. Il est approprié pour la description des particules faiblement inertielles. Il mène à un système faiblement hyperbolique qui peut générer des singularités. Plusieurs schémas numériques, utilisés pour résoudre les systèmes hyperboliques et faible- ment hyperboliques, sont évalués. Ces schémas sont classifiés selon leur capacité à traiter les singularités naturellement présentes dans les modèles Eulériens, sans perdre l’ordre global de la méthode ni rompre les conditions de réalisabilité. L’AG est testé sur un champ turbulent 3D chargé de particules dans des simulations numériques directes. Le code ASPHODELE est utilisé pour la phase gazeuse et l’AG est implémenté dans le code MUSES3D pour le spray. Les résultats sont comparés aux de simulations Lagrangiennes de référence et aux modèle MK. L’AG est validé pour des gouttes modérément inertielles à travers des résultats qualitatifs et quantitatifs. Il s’avère prometteur pour les applications complexes comprenant des PTC à petite échelle. Finalement, l’AG est étendu à la simulation aux grandes échelles nécessaire dans les cas réels turbulents dans le domaine industriel en se basant sur un filtrage au niveau cinétique. Cette stratégie aide à garantir les conditions de réalisabilités. Des résultats préliminaires sont évalués en 2D pour tester la sensibilité des résultats LES sur les paramètres des modèles de fermetures de sous mailles. / In aeronautical combustion chambers, the ability to simulate two-phase flows gains increasing importance nowadays since it is one of the elements needed for the full understanding and prediction of the combustion process. This matter is motivated by the objective of improving the engine performance and better predicting the pollutant emissions. On the industrial scale, the description of the fuel spray found downstream of the injector is preferably done through Eulerian methods. This is due to the intrinsic statistical convergence of these methods, their natural coupling to the gas phase and their efficiency in terms of High Performance Computing compared to Lagrangian methods. In this thesis, the use of Kinetic-Based Moment Method with an Anisotropic Gaussian (AG) closure is investigated. By solving all velocity moments up to second order, this model reproduces statistically the main features of small scale Particles Trajectories Crossing (PTC). The resulting hyperbolic system of equations is mathematically well-posed and satisfies the realizability properties. This model is compared to the first order model in the KBMM hierarchy, the monokinetic model MK which is suitable of low inertia particles. The latter leads to a weakly hyperbolic system that can generate δ-shocks. Several schemes are compared for the resolution of the hyperbolic and weakly hyperbolic system of equations. These methods are assessed based on their ability to handle the naturally en- countered singularities due to the moment closures, especially without globally degenerating to lower order or violating the realizability constraints. The AG is evaluated for the Direct Numerical Simulation of 3D turbulent particle-laden flows by using ASPHODELE solver for the gas phase, and MUSES3D solver for the Eulerian spray in which the new model is implemented. The results are compared to the reference Lagrangian simulation as well as the MK results. Through the qualitative and quantitative results, the AG is found to be a predictive method for the description of moderately inertial particles and is a good candidate for complex simulations in realistic configurations where small scale PTC occurs. Finally, within the framework of industrial turbulence simulations a fully kinetic Large Eddy Simulation formalism is derived based on the AG model. This strategy of directly applying the filter on the kinetic level is helpful to devise realizability conditions. Preliminary results for the AG-LES model are evaluated in 2D, in order to investigate the sensitivity of the LES result on the subgrid closures.
28

Schémas numérique d'ordre élevé en temps et en espace pour l'équation des ondes du premier ordre. Application à la Reverse Time Migration. / High Order time and space schemes for the first order wave equation. Application to the Reverse Time Migration.

Ventimiglia, Florent 05 June 2014 (has links)
L’imagerie du sous-sol par équations d’onde est une application de l’ingénierie pétrolière qui mobilise des ressources de calcul très importantes. On dispose aujourd’hui de calculateurs puissants qui rendent accessible l’imagerie de régions complexes mais des progrès sont encore nécessaires pour réduire les coûts de calcul et améliorer la qualité des simulations. Les méthodes utilisées aujourd’hui ne permettent toujours pas d’imager correctement des régions très hétérogènes 3D parce qu’elles sont trop coûteuses et /ou pas assez précises. Les méthodes d’éléments finis sont reconnues pour leur efficacité à produire des simulations de qualité dans des milieux hétérogènes. Dans cette thèse, on a fait le choix d’utiliser une méthode de Galerkine discontinue (DG) d’ordre élevé à flux centrés pour résoudre l’équation des ondes acoustiques et on développe un schéma d’ordre élevé pour l’intégration en temps qui peut se coupler avec la technique de discrétisation en espace, sans générer des coûts de calcul plus élevés qu’avec le schéma d’ordre deux Leap-Frog qui est le plus couramment employé. Le nouveau schéma est comparé au schéma d’ordre élevé ADER qui s’avère plus coûteux car il requiert un plus grand nombre d’opérations pour un niveau de précision fixé. De plus, le schéma ADER utilise plus de mémoire, ce qui joue aussi en faveur du nouveau schéma car la production d’images du sous-sol consomme beaucoup de mémoire et justifie de développer des méthodes numériques qui utilisent la mémoire au minimum. On analyse également la précision des deux schémas intégrés dans un code industriel et appliqués à des cas test réalistes. On met en évidence des phénomènes de pollution numériques liés à la mise en oeuvre d'une source ponctuelle dans le schéma DG et on montre qu'on peut éliminer ces ondes parasites en introduisant un terme de pénalisation non dissipatif dans la formulation DG. On finit cette thèse en discutant les difficultés engendrées par l'utilisation de schémas numériques dans un contexte industriel, et en particulier l'effet des calculs en simple précision. / Oil engineering uses a wide variety of technologies including imaging wave equation which involves very large computing resources. Very powerful computers are now available that make imaging of complex areas possible, but further progress is needed both to reduce the computational cost and improve the simulation accuracy. The current methods still do not allow to image properly heterogeneous 3D regions because they are too expensive and / or not accurate enough. Finite element methods turn out to be efficient for producing good simulations in heterogeneous media. In this thesis, we thus chose to use a high order Discontinuous Galerkin (DG) method based upon centered fluxes to solve the acoustic wave equation and developed a high-order scheme for time integration which can be coupled with the space discretization technique, without generating higher computational cost than the second-order Leap Frog scheme which is the most widely used . The new scheme is compared to the high order ADER scheme which is more expensive because it requires a larger number of computations for a fixed level of accuracy. In addition, the ADER scheme uses more memory, which also works in favor of the new scheme since producing subsurface images consumes lots of memory and justifies the development of low-memory numerical methods. The accuracy of both schemes is then analyzed when they are included in an industrial code and applied to realistic problems. The comparison highlights the phenomena of numerical pollution that occur when injecting a point source in the DG scheme and shows that spurious waves can be eliminated by introducing a non-dissipative penalty term in the DG formulation. This work ends by discussing the difficulties induced by using numerical methods in an industrial framework, and in particular the effect of single precision calculations.
29

Méthodes d'éléments finis pour le problème de changement de phase en milieux composites / Finite element methods for the phase change problem in composite media

Mint brahim, Maimouna 30 November 2016 (has links)
Dans ces travaux de thèse on s’intéresse au développement d’un outil numérique pour résoudre le problème de conduction instationnaire avec changement de phase dans un milieu composite constitué d’une mousse de graphite infiltrée par un matériau à changement de phase tel que le sel, dans le contexte du stockage de l’énergie thermique solaire.Au chapitre 1, on commence par présenter le modèle sur lequel on va travailler. Il estséparé en trois sous-parties : un problème de conduction de chaleur dans la mousse, un problème de changement de phase dans les pores remplis de sel et une condition de résistance thermique de contact entre les deux matériaux qui est traduite par une discontinuité du champ de température.Au chapitre 2, on étudie le problème stationnaire de conduction thermique dans un milieu composite avec résistance de contact. Ceci permet de se focaliser sur la plus grande difficulté présente dans le problème qui est le traitement de la condition de saut à l’interface.Deux méthodes d’éléments finis sont proposées pour résoudre ce problème : une méthode basée sur les éléments finis Lagrange P1 et une méthode hybride-duale utilisant les éléments finis Raviart-Thomas d’ordre 0 et P0. L’analyse numérique des deux méthodes est effectuée et les résultats de tests numériques attestent des efficacités des deux méthodes [10]. Les matériaux à changement de phase qu’on étudie dans le cadre de cette thèse sont des matériaux pures, par conséquent le changement de phase s’effectue en une valeur de température fixe qui est la température de fusion. Ceci est modélisé par un saut dans la fonction fraction liquide et par conséquent dans la fonction enthalpie du matériau. Cette discontinuité représente une difficulté numérique supplémentaire qu’on propose de surmonter en introduisant un intervalle de régularisation autour de la température de fusion.Cette procédure est présentée dans le chapitre 3 où une étude analytique et numérique montre que l’erreur sur la température se comporte comme " en dehors de la zone de mélange, où " est la largeur de l’intervalle de régularisation. Cependant, à l’intérieur l’erreur se comporte comme p " et on montre que cette estimation est optimale. Cette diminution de vitesse de convergence est due à l’énergie qui reste bloquée dans la zone de mélange [58].Dans le chapitre 4 on présente quatre des schémas les plus utilisés pour le traitement de la non-linearité due au changement de phase: mise à jour du terme source, linéarisation de l’enthalpie, la capacité thermique apparente et le schéma de Chernoff. Différents tests numériques sont réalisés afin de tester et comparer ces quatre méthodes pour différents types de problèmes. Les résultats montrent que le schéma de linéarisation de l’enthalpie est le plus précis à chaque pas de temps tans dis que le schéma de la capacité thermique apparente donne de meilleurs résultats au bout d’un certain temps de calcul. Cela indique que si l’on s’intéresse aux états transitoires du matériaux le premier schéma est lemeilleur choix. Cependant, si l’on s’intéresse au comportement thermique asymptotique du matériau le second schéma est plus adapté. Les résultats montrent également que le schéma de Chernoff est le plus rapide parmi les quatre schémas en terme de temps de calcul et donne des résultats comparables à ceux des deux plus précis.Enfin, dans le chapitre 5 on utilise le schéma de Chernoff avec la méthode d’éléments finis hybride-duale Raviart-Thomas d’ordre 0 et P0 pour résoudre le problème non-linéaire de conduction thermique dans un milieu composite réel avec matériau à changement de phase. Le but étant de déterminer si un matériau composite avec une distribution uniforme de pores est assimilable à un matériau à changement de phase homogènes avec des propriétés thermo-physiques équivalentes. Pour toutes les expériences numériques exposées dans ce manuscrit on a utilisé le logiciel libre d’éléments finis FreeFem++ [41]. / In this thesis we aim to develop a numerical tool that allow to solve the unsteady heatconduction problem in a composite media with a graphite foam matrix infiltrated witha phase change material such as salt, in the framework of latent heat thermal energystorage.In chapter 1, we start by explaining the model that we are studying which is separated in three sub-parts : a heat conduction problem in the foam, a phase change problem in the pores of the foam which are filled with salt and a contact resistance condition at the interface between both materials which results in a jump in the temperature field.In chapter 2, we study the steady heat conduction problem in a composite media withcontact resistance. This allow to focus on the main difficulty here which is the treatment of the thermal contact resistance at the interface between the carbon foam and the salt. Two Finite element methods are proposed in order to solve this problem : a finite element method based on Lagrange P1 and a hybrid dual finite element method using the lowest order Raviart-Thomas elements for the heat flux and P0 for the temperature. The numerical analysis of both methods is conducted and numerical examples are given to assert the analytic results. The work presented in this chapter has been published in the Journal of Scientific Computing [10].The phase change materials that we study here are mainly pure materials and as a consequence the change in phase occurs at a single point, the melting temperature. This introduces a jump in the liquid fraction and consequently in the enthalpy. This discontinuity represents an additional numerical difficulty that we propose to overcome by introducing a smoothing interval around the melting temperature. This is explained in chapter 3 where an analytical and numerical study shows that the error on the temperature behaves like " outside of the mushy zone, where _ is the width of the smoothing interval. However, inside the error behaves like p " and we prove that this estimation is optimal due to the energy trapped in the mushy zone. This chapter has been published in Communications in Mathematical Sciences [58].The next step is to determine a suitable time discretization scheme that allow to handle the non-linearity introduced by the phase change. For this purpose we present in chapter 4 four of the most used numerical schemes to solve the non-linear phase change problem : the update source method, the enthalpy linearization method, the apparent heat capacity method and the Chernoff method. Various numerical tests are conducted in order to test and compare these methods for various types of problems. Results show that the enthalpy linearization is the most accurate at each time step while the apparent heat capacity gives better results after a given time. This indicates that if we are interestedin the transitory states the first scheme is the best choice. However, if we are interested in the asymptotic thermal behavior of the material the second scheme is better. Results also show that the Chernoff scheme is the fastest in term of calculation time and gives comparable results to the one given by the first two methods.Finally, in chapter 5 we use the Chernoff method combined with the hybrid-dual finiteelement method with P0 and the lowest order Raviart-Thomas elements to solve thenon-linear heat conduction problem in a realistic composite media with a phase change material. Numerical simulations are realised using 2D-cuts of X-ray images of two real graphite matrix foams infiltrated with a salt. The aim of these simulations is to determine if the studied composite materials could be assimilated to an equivalent homogeneous phase change material with equivalent thermo-physical properties. For all simulationsconducted in this work we used the free finite element software FreeFem++ [41].
30

Amélioration de la prévision des écoulements turbulents par une approche URANS avancée / Improvement of the turbulent flows predictions thanks to an upgraded URANS approach

Benyoucef, Farid 21 May 2013 (has links)
Ces travaux de recherche ont pour but d’évaluer la méthode dite de la "Simulation auxEchelles Adaptées" (SAS pour Scale-Adaptive Simulation). Cette approche coïncide avec uneapproche RANS classique dans les zones pariétales attachées et adapte le niveau de viscositéturbulente dans les zones décollées pour y permettre une résolution partielle des structures turbulentes.Dans une première partie, une analyse théorique du modèle SAS original a été menéeet a permis de développer une correction visant à favoriser l’adaptation du niveau de viscositéturbulente dans les zones sièges d’instabilités de type Kelvin-Helmholtz. Le modèle ainsi corrigéest nommé SAS-αL. Les modèles SAS et SAS-αL ont été implantés dans le code de calculNavier-Stokes elsA de l’ONERA. À l’issue de cette étape, trois cas académiques d’écoulementsturbulents instationnaires, cylindre à grand nombre de Reynolds, marche descendante et cavitétranssonique, ont été simulés grâce aux trois modèles de turbulence SST, SAS et SAS-αL. Outreune comparaison aux bases de données expérimentales disponibles, une attention particulièrea été portée à l’influence de paramètres numériques tels que des schémas numériques d’ordreélevé. Enfin, afin d’étudier la viabilité de l’approche SAS dans un contexte industriel, les troismodèles de turbulence ont été testés sur une configuration issue de l’industrie aéronautique etcorrespondant à la sortie d’air chaud d’un système de dégivrage des nacelles d’avion. La comparaisondes prévisions obtenues avec les modèles SST, SAS et SAS-αL aux données expérimentalesobtenues à l’ONERA a permis de montrer un gain de précision grâce à l’emploi de l’approcheSAS et ce pour un coût de calcul compatible avec un cycle de conception industrielle. / This research work is meant to assess an upgraded URANS approach, namely the Scale-Adaptive Simulation (SAS). This method is similar to a conventional RANS approach (namelythe SSTmodel) in attached areas and is able to adapt the eddy-viscosity level in detached areas toensure the resolution, at least partially, of the turbulent structures. In a first part of this researchwork, an improvement of the SAS approach is suggestedto allowa better sensitivity of themodelto instabilities such as Kelvin-Helmholtz ones. This "improved" model is referred to as SAS-αLmodel. Both SAS and SAS-αL models were implemented in the ONERA Navier-Stokes solverelsA and both of themaswell as the SSTmodelwere tested on academic test cases : a cylinder in acrossflowat a high Reynolds number, a backward-facing step flowcorresponding to theDriver&Seegmiller experiment and the transonic flow over the M219 cavity experimentally investigatedby de Henshaw. The influence of the numerical parameters was deeply investigated and particularattention was paid to the high-order space-discretization schemes effects. The reliabilityof the SAS approach in an industrial framework was assessed on an aeronautic configurationnamely a nacelle de-icing device. Comparisons between the threemodels (SST, SAS and SAS-αL)and an experimental database available at ONERA - The French Aerospace Lab have shown thebetter accuracy of the SAS approach as well as the high potential of the SAS-αL model.

Page generated in 0.461 seconds