• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Analys av felkällor vid energisimuleringar : En jämförelse mellan IDA ICE och CFD

Persson, Therese January 2013 (has links)
I detta arbete har energisimuleringsprogrammet IDA ICE utvärderats genom att simuleringar gjorda i detta program jämförts med simuleringar gjorda i CFD-programmet ANSYS Fluent. Modeller i form av ett kvadratiskt kontorsrum med fönster ställdes upp för ett basfall i de båda programmen och parametern operativ temperatur jämfördes. För att se hur förändringar i modellerna påverkade resultatet ställdes ett antal nya fall upp där olika parametrar varierades. Variablerna som en i taget ändrades vid uppställningar av nya simuleringsfall var: rumshöjd, U-värde på fönstret, deplacerande istället för omblandande ventilation, radiator istället för golvvärme, tilluftstemperatur, mätpunktens placering samt hur till-och frånluftsdonen placerades. Resultatet av simuleringarna visade att den operativa temperaturen höll sig på en relativt konstant nivå för de olika fallen i IDA ICE, medan värdet på denna parameter varierade för de olika fallen vid CFD-simuleringarna. Slutsatsen som dras av detta är att IDA ICE är bra för generella beräkningar av operativ temperatur och termisk komfort, men att denna parameter inte bör användas vid optimering av systemet i IDA ICE eftersom programmet inte tar hänsyn till luftrörelser och hur don är placerade.
2

INOMHUSKLIMATETS OLIKA FAKTORERS PÅVERKAN PÅ MÄNNISKANS VÄLBEFINNANDE : - En jämförelse mellan två förskolors inomhusklimat / HE IMPACT OF VARIOUS FACTORS OF INDOOR CLIMATE ON HUMAN WELLBEING : - A comparison between two preschool’s indoor climate

Gustavsson, Jenny, Högstedt, Oscar January 2024 (has links)
Människor spenderar idag över 90% av sin tid inomhus och inomhusklimatet spelar därför en viktig roll i personers hälsa och välbefinnande, större ju yngre personerna är. Syftet med den här rapporten har varit att undersöka och jämföra inomhusklimatet på två förskolor i Hallsbergs kommun, förskolan Äppellunden och Kompassen, med följande frågeställningar: - Hur upplevs förskolan Kompassens inomhusklimat i förhållande till mätningar av inomhusklimatet? - Hur upplevs förskolan Äppellundens inomhusklimat i förhållande till mätningar av inomhusklimatet? - Hur förhåller sig de två förskolornas upplevda inomhusklimat och mätningar av inomhusklimatet, vad gäller operativ temperatur, luftkvalitet, lufthastighet och fukt? Studien har pågått under en begränsad tid och har endast studerat rummen i förskolorna som barnen vistas i kontinuerligt. Studien tar inte i beaktning faktorer såsom ljud, ljus och lukt. Inomhusklimatet har studerats genom en enkät som skickats ut till alla pedagoger på de två förskolorna samt kompletterats med egna mätningar på luftkvalité och temperatur. De två förskolorna är i grunden väldigt olika. Äppellunden är en nybyggd förskola från 2019, medan Kompassen är en industrilokal från 1981 som år 2014 byggdes om till förskola. Inomhusklimatet påverkas av många olika faktorer som alla måste samverka. Här innefattas bland annat ventilationen, vars huvudsakliga funktion är att föra bort förorenad luft och tillföra ny luft. Inomhusklimatet ska även ha en behaglig temperatur, där kraven ställs utifrån den operativa temperaturen. Det ska heller inte vara varken för fuktig eller för torr luft inomhus och människan ska inte uppleva drag. För samtliga faktorer finns krav eller rekommendationer som bör följas för att upprätta ett bra inomhusklimat. Tidigare har bland annat projektet BETSI samt undersökningen ELIB utfört landsomfattande studier på inomhusklimatet. För att undersöka hur inomhusklimatet upplevs på förskolorna skickades en enkät om inomhusklimatet ut till pedagogerna. På samma förskolor mättes medelstrålningstemperaturen, lufttemperaturen, den relativa fuktigheten samt koldioxidhalten. Detta skedde i ett rum per avdelning och på fyra punkter i vardera rum. Även den operativa temperaturen beräknades. Över lag visade mätningarna att förskolorna har ett bra inomhusklimat, dock har de en torr inomhusluft. Tidigare undersökningar har visat att torr luft oftare blir ett större problem i stora hus. Detta gällde dock en studie om flerbostadshus, men vissa paralleller till förskolorna kan fortfarande dras. Från enkäten utlästes att pedagogerna främst hade problem med en varierande rumstemperatur på Äppellunden. Detta kan bero på att Äppellunden har ett ventilationssystem med ett varierande luftflöde. Kompassen besvärades främst av torr luft, en varierande rumstemperatur samt känslan av en instängd luft. Samtliga mätningar som utförts uppfyllde kraven och rekommendationerna som finns från myndigheter med undantag från en mätning på Kompassen. / People today spend more than 90% of their time indoors, making the indoor climate an important and significant part of their health and well-being, especially for younger people. The purpose of this report is to investigate and compare the indoor climate of two preschools in Hallsbergs Municipality, Äppellunden and Kompassen, with the following questions: - How is the indoor climate of Preschool Kompassen perceived in relation to measurements of the indoor climate? - How is the indoor climate of Preschool Äppellunden perceived in relation to measurements of the indoor climate? - How do the perceived indoor climate and measurements of indoor climate compare between the two preschools regarding operative temperature, air quality, air velocity and humidity? The study was conducted over a limited period and only examined the rooms in the preschool where the children are continuously present. The study does not consider factors such as noise, light, and smell. The indoor climate was studied through a survey sent to all educators at the two preschools and complemented by independent measurements of air quality and temperature. The two preschools are fundamentally very different Äppellunden is a newly built preschool from 2019, while Kompassen is an industrial building from 1981 that was converted to a preschool in 2014. Indoor climate is influenced by many different factors that all need to work together. This includes ventilation, whose main function is to remove polluted air and bring in fresh air. The indoor climate should also have a comfortable temperature, with requirements based on the operative temperature. The indoor air should not be too humid or too dry indoors, and people should not feel drafts. For all factors, there are requirements or guidelines that should be followed to establish a good indoor climate. Projects like BETSI and the ELIB survey have previously conducted nationwide studies on indoor climate. To investigate how the indoor climate is perceived at the preschools, a survey about the indoor climate was sent to the educators. In the same preschools, measurements of mean radiant temperature, air temperature, relative humidity, and carbon dioxide levels were taken, and the operative temperature calculated. This was done in one room per department and at four points in each room. Overall, the measurements showed that the preschools have a good indoor climate; however, they both have dry indoor air. Previous studies have shown that dry air often becomes a larger problem in big buildings. This was a study on multi-family houses, but some parallels to the preschools can still be drawn. From the survey, it was found that the educators mainly had problems with a varying room temperature at Äppellunden. This may be due to Äppellunden having a ventilation system with varying air flow. Kompassen mainly suffered from dry air, varying room temperature, and a feeling of stale air. All measurements performed met the requirements and recommendations from authorities, except for one measurement at Kompassen.
3

Byggnadsutformning för ett framtida varmare klimat : Klimatscenariers påverkan på energianvändning och termisk komfort i ett flerbostadshus och alternativa byggnadsutformningar för att förbättra resultatet / Building design for a future warmer climate : Climate scenarios impact on energy demand and the thermal comfort in an apartment building and alternative constructions to improve the results

Monfors, Lisa, Morell, Corinne January 2020 (has links)
När byggnader projekteras används klimatfiler från 1981-2010 för att dimensionera konstruktionen och energisystemet. Detta leder till att byggnader dimensioneras för ett klimat som varit och inte ett framtida klimat. SMHI har tagit fram olika klimatscenarier för framtiden som beskriver möjliga utvecklingar klimatet kan ta beroende på fortsatt utsläpp av växthusgaser. Dessa scenarier kallas för RCP (Representative Concentration Pathways). I denna studie används två olika klimatscenarier, RCP4,5 och RCP8,5. Siffran i namnet står för den strålningsdriving som förväntas uppnås år 2100. I RCP4,5 kommer medelårstemperaturen öka med 3 °C fram till år 2100 jämfört med referensperioden 1961-1990.  För samma tidsperiod sker en ökning på 5 °C enligt RCP8,5.  Ett flerbostadshus certifierad enligt Miljöbyggnad 2.2 nivå silver placerat i Vallentuna i Stockholms län används i denna studie som referensbyggnad. Byggnaden simuleras i programmet IDA ICE där den utsätts för RCP4,5 och RCP8,5. Resultatet visar att byggnaden inte skulle klara av kraven för Miljöbyggnad 2.2 gällande termiskt klimat sommar i något av de två klimatscenarierna. De operativa temperaturerna blir för höga i byggnaden utan att tillsätta komfortkyla.  Byggnaden ändras för att se vilka faktorer som kan förbättra resultatet gällande det termiska klimatet. Resultatet visar att värmelagringsförmåga hos byggmaterial och solavskärmning har störst påverkan på det termiska klimatet.  I studien gjordes flertal olika kombinationer av byggnadsutformningar. Enbart kombinationen av en tung stomme av betong tillsammans med fönster med lägre g-värde klarar kraven för Miljöbyggnad 2.2 i RCP4,5 och RCP8,5 utan komfortkyla. Kombinationen får lägst energianvändning i RCP8,5 av de olika kombinationerna som testats i studien.  En kombination av tung stomme av KL-trä med lågt U-värde, fönster med lägre g-värde och komfortkyla får lägst energianvändning i grundklimatet och RCP4,5 av de olika kombinationerna som testats i studien trots användningen av komfortkyla.  Frågan om vilket alternativ som är bäst ur ett hållbarhetsperspektiv är svårt att svara på. Det finns många aspekter som behöver tas i hänsyn till som byggnadens totala klimatavtryck både i tillverkning och användning. Oavsett val av konstruktion är det viktigt att projektera för att komfortkyla och solavskärmning skall kunna appliceras när ett varmare klimat råder. / When buildings are designed climate files from 1981 to 2010 are used to construct the building and its energy system. This leads to building being designed to a climate that has been and not to a future warmer climate that will come. SMHI has developed different climate scenarios for the future that describe different paths the climate can take depending on continued emissions of greenhouse gas. This climate scenarios are called RCP (Representative Concentration Pathways) In this study two of the climate scenarios, RCP4,5 and RCP8,5 are used. The number in the name stands for the radiation forcing that is expected in the year 2100.  In RCP4,5 the mean average air temperature will increase with 3 °C until year 2100 compared to the reference period 1961-1990. In the same time period RCP8,5 will increase with 5 °C.  An apartment building certified according to Miljöbyggnad 2.2 level silver placed in Vallentuna, Stockholms län is used as a reference building. The building is simulated through the simulation software program IDA ICE where it´s exposed to RCP4,5 and RCP8,5. The results demonstrate that the reference building would not meet Miljöbyggnad 2.2 requirement in the indicator about thermal comfort during summer. The operative temperature in the building is too high unless comfort cooling is used.  The design of the building changes to see what factors can improve the results regarding the thermal comfort. The results demonstrate that thermal conductivity and solar shading has the greatest impact on thermal comfort.  In this study several combinations of different building designs were made. Only the combination of a concrete frame with windows with low g-value met the requirement of Miljöbyggnad 2.2 regarding the thermal comfort during summer without using comfort cooling in RCP4,5 and RCP8,5. The combination had the lowest energy demand in RCP8,5 of all the combinations tested in the study.  A combination of cross laminated wood frame with low U-value, windows with low g-value and comfort cooling had the lowest energy demand in the original climate file and RCP4,5 despite the use of comfort cooling.  The questing about which building construction is the best from a sustainable perspective is difficult to answer. To answer that question the building´s total climate footprint in both production and use must be calculated. Regardless of the choice of building construction it is important to have in mind when designing a building that comfort cooling and solar shading should be easily applied when a warmer climate will prevail.

Page generated in 0.1149 seconds