• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 12
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

VARIATION BETWEEN PERIPHERAL AND CENTER ACHENE MORPHOLOGY AND ATTRIBUTES OF ACHENE GERMINATION IN THE INVASIVE SPECIES, <i>CENTAUREA MELITENSIS</i>

Bain, Kandee 01 December 2015 (has links)
Invasive species are often successful and problematic because of their ability to persist in disturbed and undisturbed environments despite weed management practices. Understanding reproduction and dispersal strategies in these species can aid in developing management approaches to help control their spread. Centaurea melitensis, a nonnative invasive with European origins, is found in disturbed areas of southern California. It produces three different types of flower heads that develop at different times and at different locations on the plant during the growing season. The chasmogamous (CH) flower heads are located at the top of the plant, the initial cleistogamous (iCL) heads are located at the base of the plant and at some branch and axillary points, and the final cleistogamous (fCL) heads are located along the stem and at some branch points. This pattern differs from that in Centaurea solstitialis, its most closely related congener, which develops one type of flower head with two morphologically distinct achenes within each flower head: peripheral and center achenes. The overall objective of this study was to examine potential differences between peripheral and center achenes of Centaurea melitensis, including morphological differences in dispersal features, potential differences in response to temperature, tendency to disperse, dormancy and viability. The approach involved selecting whole plants from the field and separating peripheral and center achenes from each of the three head types. Morphological differences were assessed by measuring mass, fruit length, fruit width, pappus length, pappus width, and elaiosome features. Temperature response patterns were evaluated by exposing peripheral and center achenes to temperatures ranging from 5 C to 30 C and measuring germination. Tendency of different achene types to remain in the flower heads was assessed by comparing ratios of peripheral to center achenes in heads immediately after maturation (March to June) to the ratios remaining in heads in early fall (September). Viability and dormancy testing was performed using a cut test and tetrazolium chloride tests in conjunction with germination tests. Results of these studies indicate that peripheral achenes of Centaurea melitensis were lighter and narrower, with shorter pappi and smaller elaiosomes than center achenes. Peripheral achenes responded similarly to their center counterparts in germination response to temperature, but the pattern differed among head types. Broad temperature optima were observed within the fCL and CH heads and a narrow optimum was observed in iCL. There was no evidence that the peripheral achenes remained in the heads longer than the center achenes. Ratios of peripheral to center achenes were 3.8:1 in CH heads, 2.23:1 in iCL heads, and 1.94:1 in fCL heads. Peripheral achenes were more likely to be dormant while maintaining viability than center achenes were. The results of this study, therefore, indicate that peripheral and center achenes of Centaurea melitensis differ morphologically. Dispersal features, such as pappi and elaiosomes, were more highly developed in center achenes than in peripheral achenes, but these differences were not reflected in differences in behavior to the extent we could measure it (i.e., the tendency to remain in heads or the germination responses to temperature). Differences between peripheral and center achenes of Centaurea melitensis trended in the same direction as differences seen in its closely related congener, Centaurea solstitialis, which has center achenes that disperse more readily than peripheral achenes. However, the differences observed in Centaurea melitensis were not as pronounced as those seen in Centaurea solstitialis.
2

Arbelos

Silva, Flavio Fernando da January 2014 (has links)
Orientador: Prof. Dr. Márcio Fabiano da Silva / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional - PROFMAT, 2014. / Inspirado no artigo de Harold P. Boas [2], neste trabalho estudamos os Arbelos e suas propriedades. Analisamos a inversão em relação a um círculo e aplicamos essa técnica na construção da Cadeia de Pappus e do Círculo de Banko. / Based on the work of Harold P. Boas [2], in this work we study the arbelos and their properties. we analyse the inversion about a circle and apply this technique to the construction of Pappus Chain and Banko's circle.
3

Aplicação de alguns teoremas na resolução de problemas geométricos

Nogueira, Leandro Teles 17 March 2016 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-01-25T14:25:37Z No. of bitstreams: 1 Dissertação - Leandro T. Nogueira.pdf: 1907447 bytes, checksum: 43e2c4711395f304490584cf48c13045 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-01-25T14:25:52Z (GMT) No. of bitstreams: 1 Dissertação - Leandro T. Nogueira.pdf: 1907447 bytes, checksum: 43e2c4711395f304490584cf48c13045 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-01-25T14:26:11Z (GMT) No. of bitstreams: 1 Dissertação - Leandro T. Nogueira.pdf: 1907447 bytes, checksum: 43e2c4711395f304490584cf48c13045 (MD5) / Made available in DSpace on 2017-01-25T14:26:11Z (GMT). No. of bitstreams: 1 Dissertação - Leandro T. Nogueira.pdf: 1907447 bytes, checksum: 43e2c4711395f304490584cf48c13045 (MD5) Previous issue date: 2016-03-17 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The objective of this study was to address some theorems of geometry and consequently use them to solve exercises. Here are theorems as the Ceva theorem, Menelaus Theorem and Stewart’s theorem, which are very efficient theorems, specially regarding solving exercises that seem complex. That is, knowing these theorems make us very powerful cognitive point of view, of course. We expose here also another magnificent theorem, also known as theorem of Pappus-Guldin. This theorem has as main objective to calculate areas and volumes of surfaces and solids of revolution. Pappos-Guldin theorem is a brilliant theorem. With it can establish several formulas that involve areas and volumes of revolution solids and surfaces, such as the area of ??a circle and the volume of a very trivially cylinder. This theorem enables solving exercises that seem too difficult of a high school student to solve. In this work in very not only care about the dialect, but also with the above content. For example, we leave to those who have the curiosity to see the demonstration of Pappus-Guldin theorem in Appendices A and B, as for the demonstration of it is necessary to use the Differential and Integral Calculus, which until then the high school student remotely have contact. / O objetivo deste trabalho foi abordar alguns teoremas da Geometria e consequentemente usá-los para resolver exercícios. Apresentamos aqui teoremas clássicos como o Teorema de Ceva, o Teorema de Menelaus e o Teorema de Stewart, que são teoremas muito eficientes, principalmente no quesito resolver exercícios que parecem complexos. Isto é, conhecer estes teoremas nos deixam muito poderosos do ponto de vista cognitivo, é claro. Expomos aqui também outro teorema magnífico, conhecido também como Teorema de Pappus- Guldin. Este teorema têm como objetivo principal calcular áreas e volumes de superfícies e sólidos de revolução. O Teorema de Pappus-Guldin é um teorema brilhante. Com ele podemos demonstrar várias fórmulas que envolvem áreas e volumes de superfícies e sólidos de revolução, tais como da área de um círculo e do volume de um cilindro de modo muito trivial. Este teorema possibilita solucionar exercícios que parecem muito difíceis de um aluno do ensino médio resolver. Neste trabalho nos preocupamos muito não só com o dialeto, mas também com o conteúdo exposto. Por exemplo, deixamos, para quem tem a curiosidade ver, a demonstração do Teorema de Pappus-Guldin nos Apêndices A e B, pois para a demonstração do mesmo é necessário o uso do Cálculo Diferencial e Integral, que até então o aluno do ensino médio remotamente tem contato.
4

Teorema de Pappus: superfícies e sólidos de revolução

Costa, Maurício Rafael Oliveira da, 92-98163-2116 28 September 2017 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-01-31T16:04:51Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação_Maurício R. O. Costa.pdf: 12114225 bytes, checksum: 1668d785715106cc4a276838e45dd38d (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2018-01-31T16:05:04Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação_Maurício R. O. Costa.pdf: 12114225 bytes, checksum: 1668d785715106cc4a276838e45dd38d (MD5) / Made available in DSpace on 2018-01-31T16:05:04Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Dissertação_Maurício R. O. Costa.pdf: 12114225 bytes, checksum: 1668d785715106cc4a276838e45dd38d (MD5) Previous issue date: 2017-09-28 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This research intends to demonstrate how efficient and how easy the use of Pappus'centroid the-orems can be at solving problems of surface areas and solids of revolution. The use of centroid theorems is one of the many contributions Pappus of Alexandria made to Mathematics through his work, The Synagogue. Currently, Pappus'theorems are not studied in Secondary Education and are not commonly studied in university; on the other hand, surface areas and solids of re-volutions are studied both in Secondary Education and university level whilst Pappus'theorems can be used to simplify the calculations of surface areas and solids of revolution. The research also addresses the centre of gravity of simple plane figures, which is of extreme importance in the application of the theorems. Finally, theorems and propositions of Calculus were used for the demonstration of the two theorems of Pappus. / Este trabalho tem como objetivo mostrar que os teoremas de Pappus para centroides é muito eficiente e simples na resolução, de algumas questões, sobre superfícies e sólidos de revolução. Essa é uma das muitas contribuições à matemática feita por Pappus de Alexandria por intermédio de sua obra A Coleção Matemática (Mathematicon Synagogon). Os teoremas de Pappus não são estudados no ensino ensino médio e no nível superior poucas vezes. As superfícies e sólidos de revolução são estudados tanto no ensino médio quanto no nível superior, e estes, teoremas simplificam os cálculos das áreas e volumes dos sólidos de revolução. Aborda-se também, neste trabalho, o centro de gravidade de figuras planas, que é de grande importância para aplicação dos teoremas. Utilizou-se de teoremas e proposições, do cálculo, para a demostração dos dois teoremas de Pappus.
5

Áreas e volumes : uma abordagem complementar ao livro "A matemática do ensino médio" SBM - vol 2, E. L. LIMA, et al.

Menezes, José Claudemir de 29 May 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we are treated in detail, three subjects of mathematics that relate to each other: Plane Geometry, Geometry and Spatial Revolution Solid. In this approach, we prioritized the calculation of the area of the lateral surfaces and full of Prism, Pyramid, Cylinder, Cone and Sphere, and the calculation of its volumes in the latter, using the principle of the deduction Cavalieri their formulas. In the study of Revolution Solids, we highlight the theorems of Pappus, used to derive the formulas of surface areas and volumes of cylinder, cone and revolution sphere. / Neste trabalho são tratados, de forma detalhada, três temas da Matemática que se relacionam entre si: Geometria Plana, Geometria Espacial e Sólidos de Revolução. Nessa abordagem, priorizou-se o cálculo da área das superfícies lateral e total do Prisma, da Pirâmide, do Cilindro, do Cone e da Esfera, bem como o cálculo de seus volumes, neste último, utilizando-se o princípio de Cavalieri na dedução de suas fórmulas. No estudo dos Sólidos de Revolução, destacam-se os Teoremas de Pappus, usados para deduzir as fórmulas das áreas das superfícies e dos volumes do Cilindro, do Cone e da Esfera de revolução.
6

Morfologia das cipselas de Disynaphiinae e Praxelinae (Eupatorieae - Asteraceae)

Silva, Taynara Dayane Guimarães 26 February 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Asteraceae (=Compositae) is one of the largest families of plants, comprises about 1,600 genera and 23,000 species. The family has a wide distribution in Brazil occurring in different vegetation formations. The Disynaphiinae and Praxelinae subtribes belong to Eupatorieae tribe, which currently has 19 subtribes. The cypselae and its accessory parts (pappus and carpopodium) have great taxonomic value and can be used as diagnostic to differentiate or group species and even genera. The boundaries between some genera are not well defined based on morphological usual features. The study of the morphology of cypselae in Disynaphiinae and Praxelinae will contribute to the characterization and can understanding their infrageneric relations. The aim is to describe the structure of the pericarp of the mature fruit of the representatives of Disynaphiinae and Praxelinae as well as the varieties of Chromolaena squalida, seeking common morphological characteristics distinct to these groups. Thereunto, we used a scanning electron microscopy and light microscopy. The trichomes, pericarp structure, and accessory parts of cypselae proved useful in taxonomic groups revealing a close relationship between species of each of the subtribes. These features were also important to exclude species e. g. Disynaphia praeficta. Our study also supports the varieties of Chromolaena squalida, allowing the correct identification. The phytomelanin was present in all cypselae studied, but their arrangement differs among the subtribes. The correlation between the number of bundles and ribs is not fixed in Praxelinae and ribs were not always associated with vascular bundles. / Asteraceae (= Compositae) é uma das maiores famílias de plantas, compreende cerca de 1.600 gêneros e 23.000 espécies. A família apresenta no Brasil uma ampla distribuição em diferentes formações vegetacionais. As subtribos Disynaphiinae e Praxelinae pertencem à tribo Eupatorieae, que atualmente apresenta 19 subtribos. As cipselas e suas partes acessórias (pápus e carpopódio) possuem grande valor taxonômico e podem ser usados como diagnósticos para diferenciar ou agrupar espécies e até gêneros. Os limites entre alguns gêneros não são bem definidos baseado nas características morfológicas tradicionais.O estudo da morfologia das cipselas em Disynaphiinae e Praxelinae contribuirá para a caracterização e o entendimento das relações infragenéricas nestas subtribos. O objetivou-se, com esta dissertação, descrever a micromorfologia e a estrutura do pericarpo do fruto maduro dos representantes de Disynaphiinae e Praxelinae, bem como das variedades de Chromolaena squalida, buscando características morfológicas comuns e distintas a estes grupos. Para isso, utilizou-se a Microscopia Eletrônica de Varredura e a Microscopia de luz. Nas subtribos Disynaphiinae e Praxelinae, características analisadas como o indumento, a estrutura do pericarpo e partes acessórias das cipselas, mostraram-se úteis na taxonomia dos grupos, revelando a proximidade entre as espécies de cada uma das subtribos, tais características também foram importantes na rejeição de espécies (Disynaphia praeficta). O presente estudo suporta as variedades de Chromolaena squalida, permitindo a correta identificação. A fitomelanina esteve presente em todas as cipselas, porém o arranjo dessa camada difere nas subtribos estudadas. A correlação entre o número de feixes vasculares e a presença de costelas não é fixa em Praxelinae e as costelas não necessariamente estavam associadas com feixes vasculares. / Mestre em Biologia Vegetal
7

Geometria projetiva: algumas aplicações básicas para alunos do Ensino Médio

Bezerra, Yury dos Santos 21 November 2014 (has links)
Submitted by Lúcia Brandão (lucia.elaine@live.com) on 2015-12-11T20:13:50Z No. of bitstreams: 1 Dissertação - Yury dos Santos Bezerra.pdf: 12355510 bytes, checksum: 71b4c028c620d01d7b179abec5d64207 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-01-19T18:12:54Z (GMT) No. of bitstreams: 1 Dissertação - Yury dos Santos Bezerra.pdf: 12355510 bytes, checksum: 71b4c028c620d01d7b179abec5d64207 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-01-19T18:25:08Z (GMT) No. of bitstreams: 1 Dissertação - Yury dos Santos Bezerra.pdf: 12355510 bytes, checksum: 71b4c028c620d01d7b179abec5d64207 (MD5) / Made available in DSpace on 2016-01-19T18:25:08Z (GMT). No. of bitstreams: 1 Dissertação - Yury dos Santos Bezerra.pdf: 12355510 bytes, checksum: 71b4c028c620d01d7b179abec5d64207 (MD5) Previous issue date: 2014-11-21 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The objective of the present work, analyze the main theorems of projective geometry, presenting some problems and their solutions, using the Menelaus theorem and some arguments of classical geometry. Even if it is unknown to the students Teaching Average, the aim of this work was to present it to them through the introduction of knowledge this fundamental geometry, as Projetividade, perspectivity, dual loved and some theorems as the Desargues' theorem, the fundamental theorem and the theorem of Pappus. Expected that through this approach on some basic applications of projective geometry, are proportionate conditions necessary for the reader, professors and experts deepen their knowledge of projective geometry and be motivated to continue to research the subject at hand and motivate them to seek other sources of information to facilitate advances the re fl ections of this geometry. It is expected also that the teacher can arouse the interest of his students by research on this very important geometry in our lives. / Objetivou-se, com o presente trabalho, analisar os principais teoremas da Geometria Projetiva, apresentando alguns problemas e suas respectivas soluções, recorrendo ao teorema de Menelaus e alguns argumentos da Geometria Clássica. Mesmo sendo ela desconhecida pelos alunos do Ensino Médio, busca-se com este trabalho apresentá-la a eles por meio da introdução de conhecimentos fundamentais desta geometria, como Projetividade, Perspectividade, entes duais e alguns teoremas como: o Teorema de Desargues, o Teorema Fundamental e o Teorema de Pappus. Espera-se que através desta abordagem sobre algumas aplicações básicas da Geometria Projetiva, sejam proporcionadas condições necessárias para que o leitor, professores e especialistas aprofundem seus conhecimentos sobre a Geometria Projetiva e se sintam motivados para continuar a pesquisar o assunto em pauta,bem como os motive a buscar outras fontes de informações para favorecer avanços nas reflexões desta geometria. Espera-se, ainda, que o professor possa despertar o interesse dos seus alunos pela pesquisa sobre esta geometria muito importante na nossa vida.
8

Intuição e dedução nas regras para a direção do espirito

Scherer, Fabio Cesar 28 January 2005 (has links)
Orientador: Zeljko Loparic / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciencias Humanas / Made available in DSpace on 2018-08-04T10:34:59Z (GMT). No. of bitstreams: 1 Scherer_FabioCesar_M.pdf: 7228765 bytes, checksum: 7a2c7feb47c760bd7f395fb12a0a1b86 (MD5) Previous issue date: 2005 / Resumo: A descrição cartesiana do aparato cognitivo deixou uma questão aberta na história da filosofia. Os "clássicos" caracterizaram as operações do entendimento como distintas e complementares. Os "intuicionistas" definiram as vias do conhecimento em termos da redução da dedução à intuição. Em nossa dissertação propomos a análise da gênese das Regras para a direção do espírito, bem como a investigação dos conteúdos e da aplicação dos processos cognitivos a fim de solucionamos a problemática presente na interpretação da "teoria cartesiana do conhecimento". A partir da álgebra moderna e da distinção dos conceitos de "operação" e de "ato" do entendimento sustentamos a presença das operações de intuição e de dedução, assim como de um único ato de apreensão, o intuitivo. A defesa destes pontos nos conduziu a uma nova leitura do aparato cognitivo na obra citada / Abstract: The Cartesian description of the cognitive apparatus left an open question to the history of philosophy. The "scholars" have characterized the understanding operations as both distinct and complementary. The "intuitionists" have defined knowledge paths through the reduction of deduction to intuition. Our dissertation proposes the analysis of the origins of the Rules for the direction of the mind as well as an investigation of the content and application of cognitive processes in order to resolve a noticeable problematic in "Cartesian theory of knowledge" interpretations. Through the resource to both modern algebra and the distinction of the concepts of understanding "operation" and "act" we sustain the presence of the operations of intuition and deduction as well as a sole act of apprehension, the intuitive. The defense of those points has brought us to a new reading of the cognitive apparatus in the mentioned work / Mestrado / Filosofia / Mestre em Filosofia
9

Phylogenetic analyses and taxonomic studies of Senecioninae : southern African Senecio section Senecio

Milton, Joseph J. January 2009 (has links)
Molecular phylogenetic analyses of subtribe Senecioninae, based on combining sequenced ITS and trnL-F fragments from specimens collected in the field with sequences collected from GenBank, suggest the subtribe is monophyletic, as is Senecio s.str. (including Robinsonia), and suggest an expanded monophyletic section Senecio. Many Senecio species should be removed from the genus, as they are only distantly related to it, emphasising the para- or polyphyletic nature of Senecio as it is currently circumscribed. Area optimisation suggests southern Africa as a possible geographical origin for the genus and section. Harvey’s (1865) sectional classification of South African Senecio species (the only attempt to date to impose infrageneric groupings on these taxa), was tested for monophyly which, however, was not seen in the sections tested. A number of southern African species from Harvey’s sections are suggested for inclusion in an expanded section Senecio. A clade suggested as basal to sect. Senecio, consisting of Senecio engleranus and Senecio flavus, was found to be only distantly related to the section. Resolution of the two species within the clade was not evident; a comparative study was therefore made employing RAPDs, morphometrics and breeding experiments. The two proved to be distinct entities, both genetically and morphologically, although they remain interfertile, suggesting that intrinsic postzygotic barriers between them are weak, and that hybridisation – not found in the wild - is mainly prevented by prezygotic barriers. F1 hybrids created between the two were seen to have intermediate morphologies and RAPD profiles. A single F1 individual self-pollinated to produce a vigorous F2 generation, allowing preliminary surveys of pollen number, pollen fertility and pappus type. Pappus type is seen to be under the control of allelic variations in a single major gene, while pollen numbers and pollen fertility are seen to be under more complex genetic control.
10

La théorie des courbes et des équations dans la Géométrie cartésienne : 1637-1661. [version corrigée]

Maronne, Sebastien 19 September 2007 (has links) (PDF)
Dans cette thèse, nous étudions trois thèmes qui nous sont apparus centraux dans la Géométrie cartésienne : le problème de Pappus, le problème des tangentes et des normales, et un problème de gnomonique connu sous le nom de Problema Astronomicum. Par " Géométrie cartésienne ", nous entendons le corpus formé non seulement par la Géométrie, publiée en 1637, mais également par la Correspondance cartésienne et les deux éditions latines placées sous la direction de Frans van Schooten, publiées respectivement en 1649 et 1659-1661. Nous étudions la genèse de la théorie des courbes géométriques définies par des équations algébriques en particulier à travers les controverses qui apparaissent dans la correspondance cartésienne : la controverse avec Roberval sur le problème de Pappus, la controverse avec Fermat sur les tangentes, et la controverse avec Stampioen sur le Problema astronomicum. Nous souhaitons ainsi montrer que la Géométrie de la Correspondance constitue un moyen terme entre la Géométrie de 1637 et les éditions latines de 1649 et 1659-1661, mettant en lumière les enjeux et les difficultés du processus de création de la courbe algébrique comme objet. D'autre part, nous examinons la méthode des tangentes de Fermat et la méthode des normales de Descartes, en les rapportant à une matrice commune formée par le traité des Coniques d'Apollonius, plus précisément, le Livre I et le Livre V consacré à une à théorie des droites minimales.

Page generated in 0.0233 seconds