• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 7
  • 4
  • Tagged with
  • 28
  • 25
  • 25
  • 23
  • 16
  • 12
  • 12
  • 12
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Studies on Organic Solar Cells Composed of Fullerenes and Zinc-Phthalocyanines

Pfützner, Steffen 29 February 2012 (has links) (PDF)
This work deals with the investigation and research on organic solar cells. In the first part of this work we focus on the spectroscopical and electrical characterization of the acceptor molecule and fullerene derivative C70. In combination with the donor molecule zinc-phthalocyanines (ZnPc) we investigate C70 in flat and bulk heterojunction solar cells and compare the results with C60 as acceptor. The stronger and spectral broader thin film absorption of C70 and thus enhanced contribution to photocurrent as well as the similar electrical properties with respect to C60 result in higher power conversion efficiencies. In the second part, modifications of the blend layer morphology of a C60:ZnPc bulk heterojunction solar cell are considered. Using substrate heating during co-deposition of acceptor and donor, the molecular arrangement is influenced. Due to the additional thermal energy at the substrate the blend layer morphology is improved and optimized for a substrate heating temperature of 110°C. With transmission electron microscopy, molecular phase separation of C60 and ZnPc and the formation of polycrystalline ZnPc domains in a lateral dimension on the order of 50 nm are detected. Mobility measurements show an increased ZnPc hole mobility in the heated blend layer. The improved charge carrier percolation and transport are confirmed by the enhanced performance of such bulk heterojunction solar cells. Furthermore, we show a strong influence of the pre-deposited p-doped hole transport layer on the molecular phase separation. In the third part, we study the dependency of the open circuit voltage on the mixing ratio of C60 and ZnPc in bulk heterojunction solar cells. For the different mixing ratios we determine the ionization potentials of C60 and ZnPc. Over the various C60:ZnPc blends from 1:3 - 6:1, the ionization potentials change linearly, but different from each other and exhibit a correlation to the change in open circuit voltage. Depending on the mixing ratio an intrinsic ZnPc layer adjacent to the blend leads to injection barriers which result in reduced open circuit voltage. We hence determine a voltage loss dependent on ZnPc layer thickness and barrier height. / Diese Arbeit beschäftigt sich mit der Untersuchung und Forschung an organischen Solarzellen und gliedert sich in drei Teile. Im ersten Teil wird auf die spektroskopische und elektrische Charakerisierung des Fullerenderivates C70 eingegangen, welches als Akzeptormolekül in Kombination mit dem Donormolekül Zink-Phthalocyanin (ZnPc) in Flach- und Mischschichtheteroübergänge organischer Solarzellen Anwendung findet. Dabei wird das Molekül mit dem bisherigen Standard Akzeptormolekül C60 verglichen. Die deutlich stärkere und spektral verbreiterte Dünnschichtabsorption von C70, sowie die vergleichbaren elektrischen Eigenschaften zu C60 führen zu einer Effizienzsteigerung in den Flach- und Mischschichtsolarzellen, welche maßgeblich durch die Erhöhung des Kurzschlussstromes erreicht wird. Im zweiten Teil widmet sich diese Arbeit der Morphologiemodifizierung des Mischschichtsystems C60:ZnPc, welche durch Heizen des Substrates während der Mischverdampfung von Akzeptor- und Donormolekülen in organischen Mischschichtsolarzellen erreicht werden kann. Es wird gezeigt, dass mit der zusätzlichen Zufuhr thermischer Energie über das Substrat die Anordnung der Moleküle in der Mischschicht beeinflusst werden kann. Unter Verwendung eines Transmissionselektronmikroskops lässt sich für die Mischschicht mit der optimalen Solarzellensubstrattemperatur von 110°C eine Phasenseparation von C60 und ZnPc unter Ausbildung von polykristallinen ZnPc Domänen in der lateralen Dimension von 50 nm nachweisen. Mit zusätzlichen Messungen der Ladungsträgerbeweglichkeiten des Mischschichtsystems kann die verbesserte Perkolation und Löcherbeweglichkeit von ZnPc für die Steigerung der Performance geheizter Solarzellen bestätigt werden. Desweiteren wird gezeigt, dass die Ausbildung einer Phasenseparation sehr stark von der darunter liegenden Molekülschicht z.B. der p-dotierte Löchertransportschicht abhängig ist. Im letzten und dritten Teil geht die Arbeit auf die Abhängigkeit der Klemmspannung von der Mischschichtkonzentration von C60 und ZnPc ein. Für die unterschiedlichen Volumenkonzentrationen von C60:ZnPc zwishen 6:1 und 1:6 kann gezeigt werden, dass sich die Ionisationspotentiale von C60 und ZnPc über einen großen Bereich linear und voneinander verschieden verändern und mit den absoluten Änderung der offenenen Klemmspannung korrelieren. Desweiteren wird gezeigt, dass sich durch eine zusätzlich an die Mischschicht angrenzende intrinsische ZnPc Schicht, abhängig von der Mischschichtkonzentration, Injektionsbarrieren ausbilden, welche nachweislich einen Spannungsverlust bedingen. Dabei kann gezeigt werden, dass der Spannungsverlust mit der ZnPc Schichtdicke und der Barrierenhöhe korreliert.
22

Ladungs- und Orbitalordnungsphänomene in Übergangsmetalloxidverbindungen unter hydrostatischem Druck: Diffraktometrische Studien mit Synchrotronstrahlung

Kiele, Sven 12 April 2006 (has links)
The thesis is dealing with the investigation of charge and orbital order and their behaviour under external pressure. Therefore, a new pressure cell has been developed which allows the observation of superlattice reflections corresponding to the order phenomena under pressure using scattering of high-energy synchrotron radiation. The maximum pressure that can be reached is 1.25 GPa. Until today there has been no possibility to conduct such studies of charge and orbital order superlattice reflections under pressure using x-ray scattering. The intensities of the reflections of the single crystalline samples are quite weak compared to fundamental peaks. Therefore the measurements are strongly affected by the absorption of the radiation in the pressure cell itself. Further difficulties result from the facts that low temperatures are needed and the sample has to be oriented in reciprocal space after being mounted into the cell. Therefore, the design of a compact clamp-type piston pressure cell was chosen here. The cell is made from a copper-beryllium alloy with the wall thickness reduced in the height of the sample volume. This allows the usage inside a closed-cycle cryostat mounted on a three-axis-diffractometer. Absorption effects are minimized due to the combination of reduced wall thickness and the usage of high energy synchrotron radiation (E = 100 keV at the beamline BW5 at HASYLAB/DESY). The new experimental technique was established and used for a study of two representatives of the transition metal oxide compounds, i.e. doped cuprates and manganites, which belong to the class of strongly correlated electron systems. The 1/8-doped cuprate La_{2-x}Ba_{x}CuO_{4} reveals an ordered state at low temperatures. Inside the CuO_{2} planes a combined order of charge stripes and antiferromagnetic spin stripes is observed. The ordering results from the interaction between charge, spin and lattice degrees of freedom. Here the lattice degrees of freedom play a major role. Particularly, a structural transition from an orthorhombic to a tetragonal symmetry is prerequisite for the observation of the ordered state. The cell constructed in this work allows a more exact analysis of the coupling between the crystal lattice and the formation of the charge and spin ordered phase. The manganite system Pr_{0.7}(Ca_{0.9}Sr_{0.1})_{0.3}MnO_{3} shows a strong magnetoresistive effect, called colossal magnetoresistance (CMR). In this system, several ordered phases can be found, which exhibit charge, spin and - since the orbital degree of freedom is also present in the manganites - additionally orbital ordering phenomena. In particular, an antiferromagnetically spin ordered insulating phase, which is connected to a charge- and orbital ordered state competes with a ferromagnetic metallic phase. This competition leads to a phase separation, which determines the properties of the sample. Both phases are strongly coupled to the lattice degrees of freedom, so that application of external pressure drastically affects the interplay between the different phases and allows a detailed study of the relation between the charge and orbital ordered phase and the crystal structure. / Die vorliegende Arbeit befaßt sich mit dem Studium der Ordnungszustände von Ladungen und Orbitalen und deren Beeinflußung durch externen Druck. Als experimentelle Neuentwicklung wurde dafür eine Druckzelle entworfen, mit deren Hilfe die Beobachtung der jeweiligen Ordnungsphänomene unter Druck mittels der Streuung hochenergetischer Synchtrotronstrahlung möglich ist. Die Zelle erlaubt die Messung der orbitalen und Ladungsüberstrukturreflexe, welche aus den geordneten Zuständen resultieren, in einem Druckbereich bis 1.25 GPa. Die experimentelle Herausforderung ergibt sich hierbei aus der Tatsache, dass die Überstrukturreflexe im Vergleich zu den fundamentalen Reflexen der einkristallinen Proben sehr schwach sind und zusätzlich durch die Absorption im Mantelmaterial der Druckzelle stark beeinträchtigt werden. Darüber hinaus soll die Zelle bei tiefen Temperaturen einsetzbar und die Probe auch innerhalb der Zelle im reziproken Raum orientierbar sein. Bei dem hier realisierten Ansatz wurde für das Design daher der Typ einer kompakten Klemmdruckzelle aus einer Kupfer-Beryllium-Legierung gewählt, deren Zellwände im Bereich des Probenvolumens reduziert wurden. Dadurch ist der Einsatz der Zelle im Inneren eines Closed-Cycle-Kryostaten auf einem Einkristall-Diffraktometer möglich. Aufgrund der geringen Wandstärke der Zelle und der Nutzung von hochenergetischer Röntgenstrahlung (E = 100 keV am Messplatz BW5 des HASYLAB/DESY) werden Absorptionseffekte minimiert. Die neue Messmethode wurde im Rahmen der Arbeit etabliert und zur Untersuchung zweier wichtiger Übergangsmetalloxidverbindungen (dotierte Kuprate, Manganate), die zur Klasse der stark korrelierten Elektronensysteme gehören, eingesetzt. Das 1/8-dotierte Kupratsystem La_{2-x}Ba_{x}CuO_{4}, weist bei tiefen Temperaturen einen statisch geordneten Zustand auf. Innerhalb der CuO_{2}-Schichten des Kristalls ergibt sich eine Ordnung, bei der sich Streifen lokalisierter Löcher und antiferromagnetische Bereiche abwechseln. Ursache dieses Zustands ist das Wechselspiel von Ladungen, Spins und strukturellen Freiheitsgraden. Dabei spielen letztere eine herausgehobene Rolle. So ist insbesondere ein struktureller Übergang von einer orthorhombischen zu einer tetragonalen Phase Voraussetzung für die Beobachtung der Ordnung. Die in dieser Arbeit aufgebaute Druckzelle erlaubt eine genauere Analyse des Zusammenhangs zwischen Struktur des Kristalls und der Ausbildung der ladungs- und spingeordneten Phase. Das Manganatsystem Pr_{0.7}(Ca_{0.9}Sr_{0.1})_{0.3}MnO_{3}, zeichnet sich durch einen sehr starken magnetoresistiven Effekt aus, der auch als kolossaler Magnetowiderstand (CMR) bezeichnet wird. Auch hier kann bei tiefen Temperaturen eine geordnete Phase beobachtet werden. Allerdings spielt in diesem System zusätzlich der orbitale Freiheitsgrad der Elektronen eine entscheidende Rolle, so dass sich eine kombinierte Ladungs- und Orbitalordnung ergibt. Diese Phase, die isolierend und zusätzlich antiferromagnetisch geordnet ist, steht im direkten Wettbewerb zu einer ferromagnetischen Phase. Aus dieser Konkurrenz ergibt sich eine Tendenz zur Phasenseparation, deren Effekte die Eigenschaften des Kristalls dominieren. Da beide Phasen stark an die strukturellen Freiheitsgrade gekoppelt sind, läßt sich das Gleichgewicht zwischen ihnen durch externen Druck beeinflussen und die Abhängigkeit der ladungs- und orbitalgeordneten Phase von den strukturellen Eigenschaften des Kristalls im Detail untersuchen.
23

Studies on Organic Solar Cells Composed of Fullerenes and Zinc-Phthalocyanines

Pfützner, Steffen 30 January 2012 (has links)
This work deals with the investigation and research on organic solar cells. In the first part of this work we focus on the spectroscopical and electrical characterization of the acceptor molecule and fullerene derivative C70. In combination with the donor molecule zinc-phthalocyanines (ZnPc) we investigate C70 in flat and bulk heterojunction solar cells and compare the results with C60 as acceptor. The stronger and spectral broader thin film absorption of C70 and thus enhanced contribution to photocurrent as well as the similar electrical properties with respect to C60 result in higher power conversion efficiencies. In the second part, modifications of the blend layer morphology of a C60:ZnPc bulk heterojunction solar cell are considered. Using substrate heating during co-deposition of acceptor and donor, the molecular arrangement is influenced. Due to the additional thermal energy at the substrate the blend layer morphology is improved and optimized for a substrate heating temperature of 110°C. With transmission electron microscopy, molecular phase separation of C60 and ZnPc and the formation of polycrystalline ZnPc domains in a lateral dimension on the order of 50 nm are detected. Mobility measurements show an increased ZnPc hole mobility in the heated blend layer. The improved charge carrier percolation and transport are confirmed by the enhanced performance of such bulk heterojunction solar cells. Furthermore, we show a strong influence of the pre-deposited p-doped hole transport layer on the molecular phase separation. In the third part, we study the dependency of the open circuit voltage on the mixing ratio of C60 and ZnPc in bulk heterojunction solar cells. For the different mixing ratios we determine the ionization potentials of C60 and ZnPc. Over the various C60:ZnPc blends from 1:3 - 6:1, the ionization potentials change linearly, but different from each other and exhibit a correlation to the change in open circuit voltage. Depending on the mixing ratio an intrinsic ZnPc layer adjacent to the blend leads to injection barriers which result in reduced open circuit voltage. We hence determine a voltage loss dependent on ZnPc layer thickness and barrier height.:Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 15 2 History, Fundamentals, and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Photovoltaic principle and organic solar cells . . . . . . . . . . . . . . . . . ... . . 42 2.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 61 3 Materials & Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63 3.1 Organic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63 3.1.1 Standard photoactive materials . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63 3.1.2 Transport materials and dopants . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . 67 3.1.3 Material purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2 Sample preparation and vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . .. . 70 3.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70 3.2.2 Vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70 3.2.3 Substrates and layer stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 73 3.3 Solar cell characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 77 3.3.1 J(V)-measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.3.2 EQE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.4 Further characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79 3.4.1 UPS and XPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79 3.4.2 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 81 3.4.3 AFM, SEM, TEM, and WAXRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.4.4 Optical Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.5 Simulation and modeling software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.1 Optical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.2 Electrical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4 Results: C70 as acceptor molecule for organic solar cells . . . . . . . . . . . . . . 85 4.1 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 Mobility measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 88 4.3 Ultraviolet photoelectron spectroscopy . . . . . . . . . . . . . . . . . . . . . . .. . . 89 4.4 p-i-i flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 90 4.4.1 Di-NPD/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . 90 4.4.2 ZnPc/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . 91 4.5 p-i-i bulk heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.5.1 p-i-i mixed C60:C70:ZnPc bulk heterojunction solar cell . . . . . . . . . . . 99 4.6 Outlook: fullerene C84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 101 5 Results: Bulk heterojunction solar cells deposited on heated substrates . 103 5.1 150 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . 103 5.2 60 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . . 107 5.2.1 AFM and SEM measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.2.2 Absorption measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.2.3 X-Ray (WAXRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113 5.2.4 TEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 116 5.2.5 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 119 5.2.6 C70:ZnPc m-i-p bulk-heterojunctions . . . . . . . . . . . . . . . . . . . . . . .. . 121 5.3 p-i-i bulk heterojunction solar cells deposited at 110°C . . . . . . . . . . . . 124 5.3.1 Influence of sublayer on blend layer morphology . . . . . . . . . . . . . . . . 128 6 Results: On the influence of Voc in p-i-i bulk heterojunction solar cells . . 137 6.1 Dependency of Voc on C60:ZnPc mixing ratio . . . . . . . . . . . . . . . . . . . . 137 6.2 Influence of different hole transport layers on C60:ZnPc . . . . . . . . . .. . 140 6.2.1 Red and blue illumination measurements . . . . . . . . . . . . . . . . . . . . . . 143 6.2.2 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.2.3 UPS measurements for different C60:ZnPc mixing ratios . . . . . . . . .. 148 6.3 Influence of thin ZnPc and C70 interlayers on Voc . . . . . . . . . . . . . . .. . 152 6.3.1 UPS measurements of blend/ZnPc interfaces . . . . . . . . . . . . . . . . . . . 155 6.3.2 Blend/ZnPc injection barrier: experiment and simulation . . . . . . . . . . 158 7 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 / Diese Arbeit beschäftigt sich mit der Untersuchung und Forschung an organischen Solarzellen und gliedert sich in drei Teile. Im ersten Teil wird auf die spektroskopische und elektrische Charakerisierung des Fullerenderivates C70 eingegangen, welches als Akzeptormolekül in Kombination mit dem Donormolekül Zink-Phthalocyanin (ZnPc) in Flach- und Mischschichtheteroübergänge organischer Solarzellen Anwendung findet. Dabei wird das Molekül mit dem bisherigen Standard Akzeptormolekül C60 verglichen. Die deutlich stärkere und spektral verbreiterte Dünnschichtabsorption von C70, sowie die vergleichbaren elektrischen Eigenschaften zu C60 führen zu einer Effizienzsteigerung in den Flach- und Mischschichtsolarzellen, welche maßgeblich durch die Erhöhung des Kurzschlussstromes erreicht wird. Im zweiten Teil widmet sich diese Arbeit der Morphologiemodifizierung des Mischschichtsystems C60:ZnPc, welche durch Heizen des Substrates während der Mischverdampfung von Akzeptor- und Donormolekülen in organischen Mischschichtsolarzellen erreicht werden kann. Es wird gezeigt, dass mit der zusätzlichen Zufuhr thermischer Energie über das Substrat die Anordnung der Moleküle in der Mischschicht beeinflusst werden kann. Unter Verwendung eines Transmissionselektronmikroskops lässt sich für die Mischschicht mit der optimalen Solarzellensubstrattemperatur von 110°C eine Phasenseparation von C60 und ZnPc unter Ausbildung von polykristallinen ZnPc Domänen in der lateralen Dimension von 50 nm nachweisen. Mit zusätzlichen Messungen der Ladungsträgerbeweglichkeiten des Mischschichtsystems kann die verbesserte Perkolation und Löcherbeweglichkeit von ZnPc für die Steigerung der Performance geheizter Solarzellen bestätigt werden. Desweiteren wird gezeigt, dass die Ausbildung einer Phasenseparation sehr stark von der darunter liegenden Molekülschicht z.B. der p-dotierte Löchertransportschicht abhängig ist. Im letzten und dritten Teil geht die Arbeit auf die Abhängigkeit der Klemmspannung von der Mischschichtkonzentration von C60 und ZnPc ein. Für die unterschiedlichen Volumenkonzentrationen von C60:ZnPc zwishen 6:1 und 1:6 kann gezeigt werden, dass sich die Ionisationspotentiale von C60 und ZnPc über einen großen Bereich linear und voneinander verschieden verändern und mit den absoluten Änderung der offenenen Klemmspannung korrelieren. Desweiteren wird gezeigt, dass sich durch eine zusätzlich an die Mischschicht angrenzende intrinsische ZnPc Schicht, abhängig von der Mischschichtkonzentration, Injektionsbarrieren ausbilden, welche nachweislich einen Spannungsverlust bedingen. Dabei kann gezeigt werden, dass der Spannungsverlust mit der ZnPc Schichtdicke und der Barrierenhöhe korreliert.:Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 15 2 History, Fundamentals, and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Organic semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Photovoltaic principle and organic solar cells . . . . . . . . . . . . . . . . . ... . . 42 2.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 61 3 Materials & Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63 3.1 Organic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63 3.1.1 Standard photoactive materials . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 63 3.1.2 Transport materials and dopants . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . 67 3.1.3 Material purification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.2 Sample preparation and vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . .. . 70 3.2.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70 3.2.2 Vacuum tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 70 3.2.3 Substrates and layer stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 73 3.3 Solar cell characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 77 3.3.1 J(V)-measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.3.2 EQE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 3.4 Further characterization tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79 3.4.1 UPS and XPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 79 3.4.2 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 81 3.4.3 AFM, SEM, TEM, and WAXRD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 3.4.4 Optical Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.5 Simulation and modeling software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.1 Optical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.2 Electrical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 4 Results: C70 as acceptor molecule for organic solar cells . . . . . . . . . . . . . . 85 4.1 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 4.2 Mobility measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 88 4.3 Ultraviolet photoelectron spectroscopy . . . . . . . . . . . . . . . . . . . . . . .. . . 89 4.4 p-i-i flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 90 4.4.1 Di-NPD/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . 90 4.4.2 ZnPc/fullerene flat heterojunction solar cells . . . . . . . . . . . . . . . . . . . . 91 4.5 p-i-i bulk heterojunction solar cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 4.5.1 p-i-i mixed C60:C70:ZnPc bulk heterojunction solar cell . . . . . . . . . . . 99 4.6 Outlook: fullerene C84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 101 5 Results: Bulk heterojunction solar cells deposited on heated substrates . 103 5.1 150 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . 103 5.2 60 nm thick C60:ZnPc blend layers in m-i-p bulk heterojunctions . . . . . 107 5.2.1 AFM and SEM measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.2.2 Absorption measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 5.2.3 X-Ray (WAXRD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 113 5.2.4 TEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 116 5.2.5 OFET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. 119 5.2.6 C70:ZnPc m-i-p bulk-heterojunctions . . . . . . . . . . . . . . . . . . . . . . .. . 121 5.3 p-i-i bulk heterojunction solar cells deposited at 110°C . . . . . . . . . . . . 124 5.3.1 Influence of sublayer on blend layer morphology . . . . . . . . . . . . . . . . 128 6 Results: On the influence of Voc in p-i-i bulk heterojunction solar cells . . 137 6.1 Dependency of Voc on C60:ZnPc mixing ratio . . . . . . . . . . . . . . . . . . . . 137 6.2 Influence of different hole transport layers on C60:ZnPc . . . . . . . . . .. . 140 6.2.1 Red and blue illumination measurements . . . . . . . . . . . . . . . . . . . . . . 143 6.2.2 Optical characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 6.2.3 UPS measurements for different C60:ZnPc mixing ratios . . . . . . . . .. 148 6.3 Influence of thin ZnPc and C70 interlayers on Voc . . . . . . . . . . . . . . .. . 152 6.3.1 UPS measurements of blend/ZnPc interfaces . . . . . . . . . . . . . . . . . . . 155 6.3.2 Blend/ZnPc injection barrier: experiment and simulation . . . . . . . . . . 158 7 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
24

Organic Small Molecules: Correlation between Molecular Structure, Thin Film Growth, and Solar Cell Performance

Schünemann, Christoph 09 January 2013 (has links)
Das wesentliche Ziel dieser Doktorarbeit ist es, die Zusammenhänge zwischen der Struktur von kleinen organischen Molekülen, deren Anordnung in der Dünnschicht und der Effizienz organischer Solarzellen zu beleuchten. Die Kombination der komplementären Methoden spektroskopischer Ellipsometrie (VASE) und Röntgenstreuung, vor allem der unter streifendem Einfall (GIXRD), hat sich als sehr effiient für die Strukturuntersuchungen organischer Dünnschichten erwiesen. Zusammen geben sie einen detailreichen Einblick in die intermolekulare Anordnung, die Kristallinität, die molekulare Orientierung, die optischen Konstanten n und k und die Phasenseparation von organischen Schichten. Zusätzlich wird die Topografie der organischen Dünnschicht mit Rasterkraftmikroskopie untersucht. Der erste Fokus liegt auf der Analyse des Dünnschichtwachstums von Zink-Phthalocyanin (ZnPc) Einzelschichten. Für alle untersuchten Schichtdicken (5, 10, 25, 50 nm) und Substrattemperaturen (Tsub=30°C, 60°C, 90°C) zeigt ZnPc ein kristallines Schichtwachstum mit aufrecht stehenden ZnPc Molekülen. Um effiziente organische Solarzellen herzustellen, werden Donor- und Akzeptormoleküle üblicherweise koverdampft. Bei der Mischung von Donor- und Akzeptormolekülen bildet sich eine gewisse Phasenseparation aus, deren Form wesentlich für die Ladungsträgerextraktion entlang der Perkolationpfade ist. Der Ursprung dieser Phasenseparation wird innerhalb dieser Arbeit experimentell für ZnPc:C60 Absorber-Mischschichten untersucht. Um die Ausprägung der Phasenseparation zu variieren, werden verschiedene Tsub (30°C, 100°C, 140°C) und Mischverhältnisse (6:1, 3:1, 2:1, 1:1, 1:2, 1:3, 1:6) bei der Koverdampfung von ZnPc und C60 angewendet. GIXRD Messungen zeigen, dass hier der bevorzugte Kristallisationsprozess von C60 Molekülen die treibende Kraft für eine effiziente Phasenseparation ist. Solarzellen, die ZnPc:C60 Mischschichten mit verbesserter Phasenseparation enthalten (Tsub=140°C, 1:1), zeigen eine verbesserte Ladungsträgerextraktion und somit eine höhere Effizienz von 3,0% im Vergleich zu 2,5% für die entsprechende Referenzsolarzelle (Tsub=30°C, 1:1). Im zweiten Teil der Arbeit wird der Einfluss der Molekülorientierung auf die Dünnschichtabsorption beispielhaft an ZnPc und Diindenoperylen (DIP) untersucht. DIP und ZnPc Moleküle, die auf schwach wechselwirkenden Substraten wie Glas, SiO2, amorphen organischen Transportschichten oder C60 aufgedampft sind, zeigen eine eher stehende Orientierung innerhalb der Dünnschicht in Bezug zur Substratoberfläche. Im Gegensatz dazu führt die Abscheidung auf stark wechselwirkenden Substraten, wie z.B. einer Gold- oder Silberschicht oder 0.5 nm bis 2 nm dünnen PTCDA (3,4,9,10-Perylentetracarbonsäuredianhydrid) Templatschichten laut GIXRD und VASE Messungen dazu, dass sich die ZnPc und DIP Moleküle eher flach liegend orientieren. Dies führt zu einer wesentlich besseren Dünnschichtabsorption da das molekulare Übergangsdipolmoment jeweils innerhalb der Ebene des ZnPc und des DIP Moleküls liegt. Ein Einbetten von Gold- oder Silberzwischenschichten in organischen Solarzellen führt leider zu keinen klaren Abhängigkeiten, da die verbesserte Absorption durch die flach liegenden Moleküle von Mikrokavitäts- und plasmonischen Effekten überlagert wird. Ebenso wenig führte das Einfügen einer PTCDA-Zwischenschicht in organischen Solarzellen zum Erfolg, da hier Transportbarrieren den Effekt der verbesserten Absorption überlagern. Das letzte Kapitel konzentriert sich auf den Einfluss der Molekülstruktur auf das Dünnschichtwachstum am Beispiel von DIP und dessen Derivaten Ph4-DIP und P4-Ph4-DIP, Isoviolanthron und Bis-nFl-NTCDI (N,N-Bis(fluorene-2-yl)-naphthalenetetra-carboxylic Diimid) Derivaten. GIXRD Messungen belegen deutlich, dass die sterischen Behinderungen, hervorgerufen durch die Phenylringe (für Ph4-DIP und P4-Ph4-DIP) und Seitenketten (für Bis-nFl-NTCDI), ein amorphes Schichtwachstum induzieren. Im Vergleich sind die Dünnschichten von DIP und Bis-HFl-NTCDI kristallin. Bezüglich der Molekülorientierung und folglich der Absorption von DIP und dessen Derivaten kann ein starker Einfluss des Schichtwachstums beobachtet werden. In Solarzellen verhindert die Präsenz der Phenylringe eine effiziente Phasenseparation der Mischschichten aus (P4-)Ph4-DIP:C60, was zu einer verschlechterten Ladungsträgerextraktion und damit zu einem reduzierten Füllfaktor (FF) von 52% im Vergleich zu dem entsprechender DIP:C60 Solarzellen mit FF=62% führt Die Untersuchungen an der Bis-nFl-NTICDI Serie zeigen ein ähnliches Ergebnis: Auch hier zeichnen sich die amorphen Schichten aus Bis-nFl-NTCDI Molekülen mit Seitenketten durch schlechtere Transporteigenschaften aus als nanokristalline Bis-HFl-NTCDI Schichten. / The aim of this thesis is to demonstrate correlations between the molecular structure of small organic molecules, their arrangement in thin films, and the solar cell performance. For structure analysis of the organic thin films, the combination of variable angle spectroscopic ellipsometry (VASE) and grazing incidence X-ray diffraction (GIXRD) as complementary methods turned out to be a powerful combination. Using both methods, it is possible to obtain information about the crystallinity, crystallite size, intermolecular arrangement, mean molecular orientation, optical constants n and k, and phase separation within thin films. In addition, the topography of thin films is analyzed by atomic force microscopy. First, the thin film morphology of pristine zinc-phthalocyanine (ZnPc) films deposited at different substrate temperatures (Tsub=30°C, 60°C, 90°C) and for varying film thicknesses (5, 10, 25, 50 nm) is investigated. The ZnPc films grow highly crystalline with an upright standing molecular orientation with respect to the substrate surface for all investigated Tsub and all film thicknesses. In effcient organic solar cells, donor and acceptor molecules are commonly co-deposited to form a blend absorber film. This is usually accompanied by a certain phase separation between donor and acceptor molecules leads to a formation of percolation paths necessary to extract electrons and holes towards the electrodes. For ZnPc:C60 blends the origin of this phase separation process is analyzed by investigating different degrees of phase separation induced by film deposition at different Tsub (30°C, 100°C, 140°C) and for different blend ratios (6:1, ... , 1:6 (vol%)). GIXRD measurements indicate that the preferred crystallization of C60 is the driving force for good phase separation. Solar cells with improved phase separation of ZnPc:C60 blends (Tsub=140°C, 1:1) reveal a better charge carrier extraction and thus enhanced effciencies of 3.0% in comparison to 2.5% for the reference device (Tsub=30°C, 1:1). In the second part, the impact of molecular orientation within the absorber thin films on light harvesting is examined for pristine ZnPc and diindenoperylene (DIP) films. For film deposition on weakly interacting substrates like glass, SiO2, amorphous organic transport films, or C60, the orientation of DIP and ZnPc molecules is found to be upright standing. In contrast, GIXRD and VASE measurements show that films deposited onto strongly interacting substrates like Au and Ag, as well as on thin PTCDA templating layers lead to nearly flat-lying ZnPc and DIP molecules. Since the molecular transition dipole moment is oriented in the plane of the DIP and ZnPc molecules, the light absorption in films with flat-lying molecules is strongly improved. Unfortunately, an implementation of Au or Ag sublayers in organic solar cells does not result in reliable dependencies since the enhanced absorption by an improved molecular orientation is superimposed by different effects like microcavity and plasmonic effects. The implementation of PTCDA interlayers leads to transport barriers making the solar cell data interpretation difficult. In the last part, the influence of molecular structure on thin film growth is studied for DIP and its derivatives Ph4-DIP and P4-Ph4-DIP, isoviolanthrone, and Bis-nFl-NTCDI derivatives. GIXRD measurements reveal that steric hindrance is induced by the addition of side chains (for Bis-nFl-NTCDI) and phenyl rings (for Ph4-DIP and P4-Ph4-DIP) (N,N-Bis(fluorene-2-yl)-naphthalenetetra-carboxylic diimide) leading to an amorphous thin film growth. In contrast, DIP films and Bis-HFl-NTCDI films are found to be crystalline. The mean molecular orientation and hence the absorption is strongly affected by the different growth modes of DIP and its derivatives. In OSC, the presence of the phenyl rings prevents an effcient phase separation for (P4-)Ph4-DIP:C60 blends which causes diminished charge extraction in comparison to the crystalline DIP:C60 blends. For the Bis-nFl-NTCDI series, the transport properties are significantly worse in the amorphous films composed of Bis-nFl-NTCDI derivatives with alkyl chains in comparison to the nanocrystalline films made of the bare Bis-HFl-NTCDI.
25

Self-incompatible solvents with ionic groups

Wang, Yana 25 February 2013 (has links)
The concept of a self-incompatible solvent is introduced as a molecule composed of two parts (compound 1 and 2) with unfavourable interactions. A third compound will be readily dissolved in this solvent to diminish this unfavourable interaction by dilution. The more incompatible compounds 1 and 2 are, the stronger this behaviour is expected to be. In this work, ionic liquids comprising non-polar carbon chain and polar ionic group are chosen to serve as a model of self-incompatible solvent. The interactions parameters k of the ionic liquids with active ingredients are investigated to examine the effect of self-incompatibility of the ionic liquid molecule. On the other hand, phase separation between compounds 1 and 2 will reduce the positive effect of self-incompatibility. The tendency of phase separation is increasing with increasing size of the two compounds. Thus, if compounds 1 and 2 are blocks tied together into a block copolymer, one expects a decreasing ability of the block copolymer to dissolve an active ingredient with increasing block length. In this work the ability of polybutadiene-block-poly(2-vinylpyridine) (PB-b-P2VP) block copolymers to dissolve the model compound anthracene is investigated. As expected, the solubility indeed decreases with increasing block length.
26

Mechanische Spannungen und Mikrostruktur dünner TiNi- und Ti50Ni50-xCux-Formgedächtnisschichten / Mechanical stresses and microstructure of TiNi and Ti50Ni50-xCux shape memory thin films

Harms, Henning 06 May 2003 (has links)
No description available.
27

Scenarios of Structure Stabilization and the Emergence of Transport Properties in AlMnCu - alloys

Gillani, Syed Sajid Ali 04 February 2016 (has links)
Thin films of a ternary alloys between aluminum, manganese and copper (AlMnCu), prepared at low temperature, are reported in the present work. It is a study along two binary edges (Al100−xMnx and Al100−xCux (from literature)), the first almost along the entire range of concentrations, and two different cuts through the ternary system. The first cut begins at amorphous Al50Mn50 and adds Cu step by step (from literature). The second cut begins at amorphous Al60Cu40 and varies Al and Mn such that the Cu-content stays constant. There is a wide amorphous range, purely amorphous or with additional quasi-crystalline local features, and there are ranges where mixtures between amorphous and nano- or partially crystalline phases with a high content of lattice defects exist. The work exclusively deals with the development of the static structure and its thermal stability, as well as the development of its electronic transport properties. The ternary AlMnCu is a model for a deeper understanding of different scenarios of structure stabilization and their interaction, with consequences on the emergence of physical properties. The analysis focuses on self-organizing spherical-periodic, global resonance effects between two global subsystems of the alloy under consideration, the Fermi gas as one and the forming static structure of ions as the other. The global resonances are self organizing by i.e. an exchange of characteristic momenta and energy between the subsystems and trigger, besides a particular structure, particle-density anomalies and/or hybridization effects. The work shows strong evidence of a combined action of the particle-density anomalies with the effective valence of the atoms involved, in order to maintain the resonance condition under all circumstances. Whereas at high Al-content, additionally, local features of quasi-crystallinity arise, closer to pure Mn phase separations arise, causing mixtures of amorphous with nano-crystalline phases or crystals with a high content of lattice distortions. Reports on density anomalies, hybridization effects, and angular correlations, have been published quite often. In the present work, besides similar effects in a ternary system, first indications for phase separations and lattice defects as additional scenarios of stabilizing condensed matter are reported. The resonance, seen as spherical-periodic-order at short- and medium-range distances in real space, causes in reciprocal space a resonance maximum (analogous to a Bragg peak in crystals). Its location on the axis of the scattering vector is defined by the electron system and a pseudo-gap in the electronic density of states arise at the Fermi energy. The origin of the structural order and its thermal stability, the pseudo-gap at the Fermi energy, as well as the transport properties with its anomalies, all are attributed to the resonance. The spherically-periodic atomic order in an amorphous phase is analogous to the planar order in a crystal. The interatomic distances between the nearest neighboring shells at short- and medium range distances coincide with half the Fermi wavelength, also called Friedel-wavelength. / In der vorliegenden Arbeit wird über bei niedriger Temperatur hergestellte dünne Schichten aus einem ternären Legierungssystem zwischen Aluminium, Mangan und Kupfer (AlMnCu) berichtet, über zwei binäre Randlegierungen (Al100−xMnx und Al100−xCux (aus der Literatur)) und über zwei verschiedene Schnitte durch den ternären Bereich. Ein Schnitt durch den ternären Bereich beginnt bei amorphem Al50Mn50 und fügt schrittweise Cu zur Legierung (aus der Literatur). Der zweite Schnitt beginnt bei amorphem Al60Cu40 und fügt schrittweise Al und Mn so zu, dass der Cu-Gehalt konstant bleibt. Es gibt amorphe Bereiche, teilweise mit weiteren lokal quasi-kristallinen zusätzlichen Merkmalen, sowie Bereiche, in denen Mischungen aus amorphen mit nano oder teilkristallinen Phasen auftreten. Die Arbeit behandelt die Entwicklung der statischen Struktur und deren thermische Stabilität, sowie die Entwicklung elektronischer Transporteigenschaften. Das ternäre AlMnCu ist ein Modellsystem für ein tieferes Verständnis der verschiedenen Szenarien struktureller Stabilisierung und deren Interaktion, mit Auswirkungen auf ein tieferes Verständnis der mit der Struktur sich entwicklenden physikalischen Eigenschaften. Die Analyse konzentriert sich auf sich selbstorganisierende sphärisch-periodische, globale Resonanzeffekte zwischen zwei globalen Untersystemen des gewählten Materialsystems, der Fermi-Kugel als einem und der sich bildenden statischen Struktur der Ionen als dem anderen. Die globalen Resonanzen bilden sich u.a. durch einen Austausch von charakteristischen Impulsen und Energie zwischen den Untersystemen, die neben einer bestimmten Struktur zunächst auch Teilchendichteanomalien und/oder Hybridisierungseffekte erzeugen. Die vorliegende Arbeit zeigt dabei starke Anzeichen für eine kombinierte Wirkung dieser Effekte um die Resonanzbedingung unter allen Umständen beizubehalten. Bei hohen Al-Anteilen treten zusätzlich lokale Merkmale von quasi-Kristallinität, mit 5-facher Winkelkorrelation auf, um auch diesen Bereich strukturell zu stabilisieren. Bei hohen Mn-Anteilen sind es lokale Phasentrennung in amorphe und nano-kristalline Phasen oder hohe Anteile von Gitterdeffekten, die zusätzlich auftreten. Über Dichteanomalien, Hybridisierungseffekte und Winkelkorrelationen wurde in der Vergangenheit bereits mehrfach berichtet. In der vorliegenden Arbeit sind es, neben der modellhaften Behandlung dieser im ternären System, die Hinweise zu Phasentrennung und Gitterdeffekten als zusätzliche Szenarien zur Stabilisierung kondensierter Materie, über die erstmalig berichtet wird. Die auf dem Austausch von Impuls beruhende Resonanz, als sphärisch-periodische-Ordnung im nahen und mittleren Abstandsbereich des Ortsraumes zu sehen, verursacht im reziproken Raum ein Resonanzmaximum (analog zu einem Bragg-peak in kristallinen Systemen), dessen Lage auf der Achse der Streuvektoren vom Elektronensystem definiert wird, und eine Pseudolücke in der elektronischen Zustandsdichte der Elektronen an der Fermi-Energie. Letztendlich werden die Entstehung der strukturellen Ordnung selbst, ihre thermische Stabilität, als auch die Transporteigenschaften mit ihren Anomalien auf diese Pseudolücke und demzufolge auf die Resonanz zurückgeführt. Die sphärisch-periodische Ordnung der Atome in einer amorphen Phase ist analog zur planaren Ordnung in einem Kristall. Die Atomabstände zwischen den Nächstnachbarschalen im mittleren, aber auch nahen Abstandsbereich, stimmen über große Distanzen mit der halben Fermi-Wellenlänge überein, die man auch als Friedel-Wellenlänge bezeichnet.
28

Entwicklung von Monolithen auf Basis polyfunktioneller Glycidylether für die Anwendung in der Affinitätschromatographie

Pecher, Heike Susanne 28 March 2014 (has links)
Monolithische Phasen werden seit ca. 20 Jahren entwickelt und sind in den letzten Jahren eine attraktive Alternative zu etablierten mit Partikeln gefüllten Säulen geworden. Sie werden in anorganische Phasen und organische Polymermonolithe unterteilt. Monolithe bestehen aus einem einzigen, durchgehenden Stück. Charakteristisch ist das sie durchziehende Porennetzwerk, durch das der Eluent mit geringerem hydraulischen Widerstand fließen kann und das somit schnellere Flussraten ermöglicht. Polymermonolithe werden vorwiegend für die Separation großer Biomoleküle aufgrund eines durch Konvektion beschleunigten Massentransfers eingesetzt. Zudem sind sie über einen breiten pH-Wert-Bereich stabil und können direkt (in situ) im gewünschten Format polymerisiert werden. In der vorliegenden Arbeit gelang die Herstellung neuartiger epoxidbasierter Phasen nach einem von Weller et al. entwickelten Konzept, die im Affinitätsexperiment angewendet wurden. Die Herstellung erfolgte durch Autopolymerisation polyfunktioneller Glycidylether. Für die Funktionalisierung wurden nicht polymerisierte Epoxide genutzt. Als Monomere dienten TEPIC, GE 100 sowie GE 500. Die Arbeiten konzentrierten sich vor allem auf die bei Raumtemperatur durchführbaren Synthesen mit dem höher funktionellen GE 500. Die Polymerisationsbedingungen wurden hinsichtlich Porogenmischung und -anteil optimiert. Eine mit 75 Vol.-% Porogen (Dioxan/ MTBE (2:3)) hergestellte und mit rProtein A funktionalisierte Kapillarsäule (66 %, 12 µm, 7m2/g) ergab im Affinitätsexperiment eine Kapazität von 0,44 mg/mL aus Kaninchenserum isolierbarem IgG. Durch Beimischung von 60 % BDE konnte der Epoxidgehalt vervierfacht und die Porengröße auf 400 nm bei 59 % Porosität reduziert werden. Die spezifische Oberfläche wurde verdreifacht und die Kapazität präparierter Disks auf 0,90 mg/mL etwa verdoppelt. Die in dieser Arbeit entwickelten Disks können zur Isolierung von IgG aus einer komplexen Probe, wie beispielsweise Blutserum, eingesetzt werden. / Monolithic supports have been developed since 20 years and have become an attractive alternative to well-established columns packed with particles over the past years. They are classified into inorganic media and organic polymer monoliths. Monoliths consist of a single, continuous piece with an integrated characteristic porous network through which the eluent can flow with lower hydraulic resistance and which consequently offers higher flow rates. Due to an accelerated mass transfer caused by convection polymer monoliths are mainly used for separation of large biomolecules. In addition, they are stable over a wide pH range and can be polymerized directly (in situ) in the desired format. In the present work the successful preparation of new epoxide-based supports according to a concept introduced by Weller et al. as well as their application in affinity chromatography are reported. Their preparation was carried out by self-polymerization of polyfunctional glycidyl ethers and for functionalization non-polymerized epoxide groups were used. As monomers TEPIC, GE 100 and GE 500 were utilized. The work has focused especially on the polymerization of the higher functional GE 500, which can be perfomed at room temperature and was optimized in terms of both composition and amount of porogen. The extraction of IgG from rabbit serum with a capillary column (66 %, 12 µm, 7m2/g) prepared by 75 vol.-% porogen (dioxane/ MTBE (2:3)) and functionalized with rprotein A resulted in a capacity of 0,44 mg/mL. By addition of 60 % BDE the epoxide content was quadrupled and the pore size reduced to 400 nm while maintaining consistently high porosity of 59 %. The specific surface area was tripled and the capacity of prepared disks approximately doubled to 0,90 mg/mL. The disks developed in this work can be applied for the isolation of IgG from complex samples such as serum.

Page generated in 0.1067 seconds