Spelling suggestions: "subject:"polarité"" "subject:"molarité""
11 |
Etude de l’interaction entre un module de polarité Rho GTPase et l’environnement membranaire chez Saccharomyces cerevisiae / A study of the interaction between a Rho GTPase polarity module and the membrane environment in Saccharomyces cerevisiaeMeca, Julien 08 November 2018 (has links)
La polarité cellulaire, organisation asymétrique du matériel cellulaire dans l'espace et le temps, est fréquemment observée en biologie. Elle est nécessaire pour de nombreux mécanismes cellulaires essentiels allant de la division cellulaire et la migration au développement et la croissance polarisée. Comprendre comment la cellule génère et maintient cette polarité est crucial, les défauts de polarité étant liés à des maladies graves comme le cancer ou les maladies neurodégénératives. Chez la levure Saccharomyces cerevisiae, la polarité cellulaire est établie lorsque le module de la Rho GTPase Cdc42, qui comprend le facteur d'échange de nucléotide guanine (GEF) Cdc24 et la protéine scaffold Bem1, localise à un unique site à la membrane plasmique pour activer Cdc42 et ainsi, établir un axe de polarité utilisé pour la croissance et la division cellulaire. Les mécanismes responsables de l'activation de Cdc42 à un site unique au cortex pendant l'établissement de la polarité sont essentiels mais largement inconnus. En utilisant des expériences complémentaires d'imagerie in vivo et des expériences in vitro, je mis en évidence que le ciblage avide du module de Cdc42 à la membrane plasmique implique des interactions multivalentes entre des lipides anioniques et le module de Cdc42. En détail, j'ai démontré que la combinaison de plusieurs phospholipides anioniques, comprenant PS, PI4P et PI(4,5)P2, est nécessaire à la localisation de Bem1 et Cdc24 in vivo. J'ai identifié des groupements cationiques interagissant avec des lipides (CLICs) dans l'extrémité N-terminale de Bem1 qui étaient nécessaires et suffisants pour interagir avec des phospholipides anioniques. Réduire l’interaction de Bem1 avec les lipides en mutant la séquence CLICs a fortement diminué la localisation de Bem1 au niveau du cortex ainsi que la signalisation de Cdc42. En plus des CLICs de Bem1, le domaine PX de Bem1 et le domaine PH de Cdc24 augmentent davantage l'avidité du module GTPase pour les lipides anioniques et la combinaison des trois domaines est essentielle pour l'établissement de la polarité cellulaire. Ces résultats définissent pour la première fois le mécanisme de ciblage avide des activateurs de Cdc42 à la membrane plasmique pendant l'établissement de l'axe de polarité. / Cell polarity, the asymmetric organization of cell material in space and time, is frequently observed in biology. It is required for numerous essential cellular processes ranging from cell division and migration to development and polarized growth. Addressing how cells generate and maintain polarity is crucial, since defects in polarity are linked to severe diseases including cancer and neurodegeneration. In the budding yeast Saccharomyces cerevisiae, cell polarity is established when the Cdc42 Rho GTPase module, which includes the Guanine nucleotide Exchange Factor (GEF) Cdc24 and the scaffold protein Bem1, accumulate at a unique site on the plasma membrane to activate Cdc42 and establish the polarity axis used for cell growth and division. The mechanisms responsible for the site-specific activation of Cdc42 at the cortex during polarity establishment are essential but are largely unknown. Using complementary in vivo imaging and in vitro experiments, I found that the avid targeting of the Cdc42 GTPase module to the plasma membrane involves multivalent anionic lipid-Cdc42 module interactions. I found that a combination of anionic phospholipids, including PS, PI4P and PI(4,5)P2, are necessary for Bem1 and Cdc24 localization in vivo. I identified Cationic-enriched Lipid Interacting Clusters (CLICs) in the N-terminus of Bem1 that were necessary and sufficient for anionic phospholipid interactions. Reducing Bem1 lipid binding by mutating the CLICs strongly diminished the localization of Bem1 at the cortex and Cdc42 signaling. In addition to the Bem1 CLICs, the Bem1 PX domain and the Cdc24 PH domain increased the avidity of the GTPase module for anionic lipids, and a combination of all three domains was essential for the establishment of cell polarity. The results of my thesis define a mechanism of avid targeting of Cdc42 activators to the cortex during polarity axis establishment.
|
12 |
Le traitement des homographes en temps réel : interaction du degré de polarité et du SOATessier, Christophe January 2006 (has links) (PDF)
Bien que l'équivoque ne soit pas un phénomène propre au français, il semble que notre langue offre un terrain propice et fertile à la production d'ambigüités de nature variée (lexicale, métaphorique, métonymique, syntaxique et autres). En effet, les ambigüités peuvent concerner le mot, tout simplement (homonymes, homographes, homophones, mots polysémiques), comme la phrase, voire le texte dans son ensemble. Loin de constituer une tare, l'ambigüité représente plutôt une nécessité qui repose sur le principe d'économie et de connaissances partagées. Nous nous sommes intéressés à l'étude d'une catégorie particulière d'ambigüités, en l'occurrence, l'ambigüité lexicale. La recherche porte sur l'identification visuelle et la représentation d'une catégorie particulière de mots, les homographes. Les mots homographes illustrent bien le cas de ce qu'il est convenu d'appeler l'indétermination du sens, liée à l'ambigüité lexicale, car ils possèdent deux ou plusieurs significations pour une même orthographe. L'expérience se propose de mesurer en temps réel la disponibilité des différentes significations au cours du traitement des homographes. Pour ce faire, une expérience psycholinguistique a été menée afin d'étudier l'effet du degré de polarité lors de l'accès lexical des mots homographes en français. Dans un premier temps, 62 participants francophones ont accepté de répondre à un questionnaire qui a permis de sélectionner le matériel expérimental. Ensuite, 48 autres volontaires, tous locuteurs natifs du français, ont été soumis à la tâche de décision lexicale sur un ordinateur. Les variables indépendantes manipulées dans notre expérimentation sont le type de mot amorce (variable à deux niveaux: homographe équilibré ou polarisé) et le délai entre l'apparition de l'amorce et de la cible (SOA) (variable à trois niveaux: 67 ms, 120 ms et 250 ms). La variable dépendante est le temps de réaction mesuré en millisecondes. La variable complémentaire est le taux de réussite qui nous sert de contrôle. Les résultats montrent que le temps de décision lexicale est significativement plus rapide quand il s'agit d'acceptions dominantes des mots homographes polarisés. L'expérience révèle aussi que cette supériorité de l'accès à la signification dominante s'estompe avec le temps. Ces résultats ont été analysés en fonction des différents modèles concernant la représentation des mots homographes. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Accès au lexique, Ambigüité lexicale, Polysémie, Homographe, Fréquence relative des acceptions, Degré de polarité.
|
13 |
Etude ab initio du trioxyde de tungstène WO3 en volume et en surfaceKoutiri, Issam 30 November 2012 (has links) (PDF)
Nous avons étudié par calcul ab initio la structure et la stabilité de différentes phases cristallographiques du trioxyde de tungstène en volume et ensurface, ainsi que l'effet du dopage par le potassium. L'étude a été motivéepar des travaux expérimentaux sur la croissance de nano-bâtonnets WO3 surun substrat de mica ; ces nanostructures adoptent la phase hexagonale, mé-tastable dans le WO3 massif. La première partie du manuscrit est consacrée àl'étude du volume. Les structures atomiques des phases hexagonales et monocliniquessont déterminées et comparées aux différents modèles proposés dansla littérature expérimentale. La stabilité relative de ces deux phases est calculée en fonction du taux de potassium permettant d'obtenir un diagrammede phase approximatif de KxWO3 montrant que la phase hexagonale est stablepour x compris entre 3 et 35%. Par ailleurs, les distorsions disparaissentpour des concentrations de K suffisamment élevées. Ces résultats expliquentla stabilisation de la phase hexagonale dans les nano-bâtonnets par l'insertiond'atomes de K de la surface du mica. Dans la seconde partie, une étudesystématique des surfaces, en phase monoclinique et hexagonale, est présentée. Pour chaque phase, les trois orientations de surface de plus faibles indicesde Miller sont considérées. Toutes les terminaisons non-reconstruitesainsi que plusieurs types de reconstructions ont été analysées en terme depolarité, stabilité et structure atomique. Pour la phase monoclinique, l'orientation(010) avec reconstruction c(2x2) est la surface la plus stable, enaccord avec des données expérimentales. Quant à la phase hexagonale, c'estla surface c(1x1)O2(1120) qui a la plus petite énergie de surface (0.02 eV/Å2).Nous trouvons que la stabilité des différentes orientations est très sensible audopage par le potassium. En effet, pour KxWO3 avec x = 13 , c'est l'orientation (0001) qui est la plus stable, avec une terminaison KO3 et une énergiede surface de 0.05 eV/Å2.
|
14 |
Rôle des gènes de polarité Dlg1 et Crb3 dans la géométrie de la myéline du nerf périphérique / Role of the polarity genes Dlg1 and Crb3 in the myelin geometry of the peripheral nerveCotter, Laurent 06 November 2017 (has links)
Chez les vertébrés, la vitesse de la conduction nerveuse dépend du processus de myélinisation. Dans le système nerveux périphérique, ce sont les cellules de Schwann (CS) qui en s’enroulant autour de l’axone, constituent les gaines de myéline, séparés par des nœuds de Ranvier. La succession de ces gaines augmente la vitesse de conduction nerveuse car les potentiels d’action sont forcés de « sauter » d’un nœud de Ranvier à un autre, ce qui accélère leur vitesse de propagation. La géométrie (l’épaisseur et la longueur) de la gaine de myéline est donc un paramètre essentiel de la conduction de l’influx. Une publication à laquelle j’ai participé, a mis en évidence la polarisation cellulaire de la cellule de Schwann myélinisante. Notre hypothèse est que ce processus est capital pour la formation d’une gaine de myéline fonctionnelle. Comme trois complexes protéiques, conservés au cours de l’évolution, établissent et maintiennent la polarisation cellulaire (ces complexes sont: aPKC/Par3/Par6, Pals1/Patj/Crb3 et Dlg1/Lgl/Scrib chez les mammifères), mon travail consiste à étudier le rôle fonctionnel des protéines de la polarité Dlg1 et Crb3 lors de la myélinisation. Comme l’altération de la géométrie de la myéline est la cause d’un grand nombre de pathologies du système nerveux périphérique mais aussi central. Mon travail sur la mise en lumière des mécanismes qui préside à ce phénomène permet d’envisager de nouvelles voies thérapeutiques. / In the mammalian nervous system, the nerve conduction velocity depends on the myelin sheath. Myelin is produced by Schwann cells in the peripheral nervous system. The myelin sheath, together with the highly specialized nodes of Ranvier that are regulary arrayed along the myelinated fibers, is responsible for efficient and rapid propagation of action potentials along the nerve. Optimal conduction is obtained by adjusting the geometry (length and thickness) of the myelin sheath When I arrived in the laboratory, the team just showed the polarization of the myelinating Schwann cell ( mSC). We hypothesized then that cell polarity proteins are key players for the formation of the myelin sheath. Three complexes, well conserved among species, organize polarized cellular processes. In mammals, these complexes are aPKC/Par3/Par6, Pals1/Patj/Crb3 et Dlg1/Lgl/Scrib. Using an approch allowing the in vivo transduction of mSC, I investigate the relevance of Dlg1 and Crb3 in myelin formation. Changes in the myelin geometry is linked to several human neuropathies in the central and peripheral nervous system. This work highlights mechanisms which control correct myelin formation and allow designing strategies for their treatment.
|
15 |
Utilisation de nanoparticules magnétiques pour perturber la localisation spatiotemporelle de protéines de signalisation / Use of magnetic nanoparticles to pertub the spatiotemporal localization of signaling proteinsBonnemay, Louise 19 December 2014 (has links)
De plus en plus d’études soulignent l’importance de la localisation intracellulaire des voies de signalisation. Nous avons développé des méthodes permettant de perturber cette localisation à l’aide de nanoparticules magnétiques. Ces dernières sont fonctionnalisées avec les protéines d’intérêts et deviennent ainsi un vecteur permettant de contrôler la localisation de la signalisation. Nous avons tout d’abord appliqué cette méthode dans un système modèle, des gouttes d’extrait cellulaire de Xénope, dans lesquelles nous avons créé artificiellement un gradient de protéines de signalisation à l’aide de nanoparticules magnétiques. Nous avons mis en évidence l’influence d’une asymétrie biochimique sur la localisation d’asters de microtubules. Dans un deuxième temps nous avons examiné la possibilité d’appliquer cette méthode dans des cellules HeLa adhérentes, pour perturber la localisation d’endosomes de signalisation rendus magnétiques. Nous avons cherché à optimiser les conditions expérimentales nécessaires pour contrôler la position d’endosomes de signalisation magnétiques Enfin, un troisième projet dont les résultats préliminaires sont présentés dans cette thèse, a consisté à utiliser un actuateur, non plus magnétique, mais biologique pour confiner une cascade de signalisation. Plus précisément la contraction d’un réseau d’actine confiné dans des gouttes d’extrait cellulaire est utilisée pour localiser des protéines de signalisation. Ces résultats démontrent l’intérêt de nanoparticules magnétiques pour induire et étudier des phénomènes de brisures de symétries dans des environnements biologiques / An increasing number of studies highlight the importance of signaling localization. We developed methods to perturb this localization using magnetic nanoparticles. Proteins of interest are grafted on magnetic nanoparticles, allowing to magnetically localize them. We first propose a new method to engineer directly a spatial gradient of signaling protein concentration within in cell extract droplets using super-paramagnetic nanoparticles. We observed a link between a spatial asymmetry in biochemical cues and microtubules aster positional information. Our assay provides a bottom-up approach to examine the minimum ingredients generating polarization and symmetry breaking within cells. We then examined the possibility to magnetically perturb endosomes position in HeLa cell. We found the experimental conditions to achieve this goal. Finally, we used directly cytoskeleton elements as actin filament to trigger asymmetrically confined signaling proteins and trigger microtubule assembly, in cell extract droplets. More generally, these results show how symmetry breaking within cells can be induced and studied using magnetic nanoparticles and biophysical tools.
|
16 |
Rôle des Septines dans la transmission de traits morphologiques au cours de la neurogenèse des ganglions des racines dorsales / A novel function of Septins in the control of early morphological neuronal differenciationBoubakar, Leila 08 September 2016 (has links)
La formation des neurites constitue une étape cruciale dans le processus de différenciation neuronale. Cependant, les mécanismes qui permettent de déterminer comment et à quelle position les neurites émergent sont toujours largement méconnus. Nous avons postulé qu'une marque moléculaire pouvait préfigurer la différenciation morphologique. Au cours de ma thèse, j'ai cherché à identifier de nouvelles molécules capables de s'accumuler aux sites d'initiation des neurites et d'en contrôler la protrusion. De manière intéressante, chez la levure, la marque moléculaire qui contrôle le site de protrusion du bourgeon a été caractérisée. Parmi les centaines de protéines contrôlant le site d'initiation chez la levure, les Septines constituent une famille de protéines bien conservée chez les vertébrés. Ces GTPases forment des filaments qui agissent comme barrière de diffusion ou « échafaudage » moléculaire. Au cours de ma thèse, je me suis donc intéressée au rôle des Septines lors de l'initiation axonale dans le modèle des neurones sensoriels de DRG chez l'embryon de poulet. Nous avons pu démontrer qu'aux stades précoces de leur développement, ces neurones formaient deux axones, un au pôle ventral et l'autre au pôle dorsal, indiquant que le nombre et la position des sites d'initiation des axones sont bien contrôlés dans ces neurones. Nous avons, ensuite, démontré que les Septines étaient bien exprimées dans les DRG aux stades précoces du développement. Mes analyses en vidéo-microscopie de la localisation de la septine 7 au cours de la différentiation des neurones de DRG montrent que les Septines s'accumulent au site d'émergence de l'axone, juste avant ou lors de sa formation. L'inhibition des Septines induite par une construction dominant-négative (DN) ou par ajout d'un inhibiteur pharmacologique bloque la formation des axones. De plus, cette inhibition entraine une modification précoce de la morphologie, qui se traduit par l'apparition de cellules multipolaires complexes et de cellules rondes sans prolongement suggérant que, conformément à notre hypothèse, les Septines sont impliquées dans l'initiation des neurites. L'ensemble de ces résultats montre que les Septines régulent la différenciation morphologique précoce des neurones sensoriels / Neurite formation is a crucial step of neuronal differentiation. However, the mechanisms that determine how and at which position neurites emerge in the soma are still poorly understood. We postulated that a molecular polarity could prefigure the morphological differentiation, with some molecules that could accumulate at the future site of axon initiation. Interestingly, such molecular polarity has been evidenced in the contest of yeast budding, with bud forming at specific position relatively to the previous bud site. Genome-wide screen identified hundreds of proteins that control bud site location. Among the vertebrate molecules homologous to those involved in budding site selection, we selected the Septins as promising candidates. These GTP-ases form filaments that act as diffusion barriers and molecular scaffolds. We investigated the contribution of Septins to axon initiation using the chick dorsal root ganglion (DRG) neurons as a model. Monitoring of cell morphology in nascent ganglia indicates that DRG neurons form a single axon at the ventral pole and a second one at the dorsal pole and that these axons seem to emerge directly after their last division. This suggests that two initiation sites are selected at opposite pole of the soma.We found that Septins homologous with those controlling budding are expressed in the early DRG developmental stages. My analyses by time-lapse video-microscopy showed that Septin7 accumulate at the site of axon emergence, just before or during its formation.We observed that a pharmacological inhibitor and a dominant-negative construct block axon formation both in vitro and in vivo respectively. Furthermore, blocking Septin function leads to the appearance of uncommon round or sea urchin-like neurons. Thus, Septins appear to regulate early step of morphological differentiation of DRG neurons, possibly by controlling axon initiation site selection
|
17 |
Control of synaptic transmission by astroglial connexin 30 : molecular basis, activity-dependence and physiological implication / Contrôle de la transmission synaptique par la connexin 30 astrocytaire : bases moléculaires, dépendance à l'activité et implication physiologiqueGhezali, Grégory 30 September 2016 (has links)
Les astrocytes périsynaptiques participent activement, au côté des neurones, dans le traitement de l’information cérébrale. Une propriété essentielle des astrocytes est d’exprimer un niveau élevé de protéines appelées connexines (Cxs), et formant les sous-unités des jonctions communicantes. Étonnamment, bien qu’il ait été suggéré très tôt que la Cx30 astrocytaire soit impliquée dans des processus cognitifs, son rôle exact dans la neurophysiologie demeure cependant encore mal connu. Nous avons récemment révélé que la Cx30, via une fonction non-canal inédite, contrôle la force et la plasticité de la transmission synaptique glutamatergique de l’hippocampe en régulant les niveaux synaptiques de glutamate par le biais du transport astrocytaire du glutamate. Cependant, les mécanismes moléculaire et cellulaire impliqués dans ce contrôle, ainsi que sa régulation dynamique par l’activité neuronale et son impact in vivo dans un contexte physiologique restaient inconnus. Dans le cadre de cette problématique, j’ai démontré durant ma thèse que: 1) La Cx30 induit la maturation morphologique des astrocytes de l’hippocampe par l’intermédiaire de la modulation d’une voie de signalisation dépendante de la laminine et régulant la polarisation cellulaire ; 2) l’expression de la Cx30, sa localisation perisynaptique, ainsi que ses fonctions sont modulées par l’activité neuronale ; 3) Le contrôle de la couverture astrocytaire des synapses du noyau supraoptique de l’hypothalamus par la Cx30 fixe les niveaux plasmatiques de base de la neurohormone ocytocine et ainsi favorise la mise en place de comportements sociaux adaptés. Dans l’ensemble, ces résultats éclairent les régulations des Cxs astrocytaires par l’activité neuronale et leur rôle dans le développement postnatal des réseaux neurogliaux, ainsi que dans le contrôle des interactions structurelles astrocytes-synapses à l’origine de processus comportementaux. / Perisynaptic astrocytes are active partners of neurons in cerebral information processing. A key property of astrocytes is to express high levels of the gap junction forming proteins, the connexins (Cxs). Strikingly, astroglial Cx30 was suggested early on to be involved in cognitive processes; however, its specific role in neurophysiology has yet been unexplored. We recently reveal that Cx30, through an unconventional non-channel function, controls hippocampal glutamatergic synaptic strength and plasticity by directly setting synaptic glutamate levels through astroglial glutamate clearance. Yet the cellular and molecular mechanisms involved in such control, its dynamic regulation by activity and its impact in vivo in a physiological context were unknown. To answer these questions, I demonstrated during my PhD that: 1) Cx30 drives the morphological maturation of hippocampal astrocytes via the modulation of a laminin signaling pathway regulating cell polarization; 2) Cx30 expression, perisynaptic localization and functions are modulated by neuronal activity; 3) Cx30-mediated control of astrocyte synapse coverage in the supraoptic nucleus of the hypothalamus sets basal plasmatic level of the neurohormone oxytocin and hence promotes appropriate oxytocin-based social abilities. Taken together, these data shed new light on astroglial Cxs activity-dependent regulations and roles in the postnatal development of neuroglial networks, as well as in astrocyte-synapse structural interactions mediating behavioral processes.
|
18 |
Architecture des plans de clivage pendant l'embryogenèse : une approche quantitative / Cleavage pattern architecture in early embryos : a quantitative approachPierre, Anaëlle 07 March 2017 (has links)
Les cellules positionnent leur plan de division de manière précise et prévisible. En particulier au tout début de l’embryogenèse, la cellule-œuf suit un patron de clivage extrêmement reproductible, mais néanmoins sensible aux perturbations (manipulation de la forme de la cellule,…), ce qui suggère une plasticité intrinsèque du système. Au cours de ma thèse, je me suis intéressée aux signaux qui déterminent la position des plans de division embryonnaires, et à leur compétition. Dans un premier temps, j’ai développé un modèle pour prédire le positionnement du plan de division à partir de la forme de la cellule, et de la présence éventuelle de polarité maternelle à la membrane ou d’une distribution inhomogène de yolk/organelles dans le cytoplasme. Ce modèle est basé sur les forces de traction exercées par les microtubules des astres interphasiques sur le fuseau mitotique/noyau. Sous l’hypothèse que ces forces dépendent de la longueur des microtubules (dynéine dans le cytoplasme) et sont modulées par la polarité membranaire, il est alors possible de trouver la position d’équilibre du fuseau, qui détermine le futur plan de division. J’ai également reproduit les formes et réarrangements des cellules (blastomères) dans l’embryon après la division, à l’aide d’un programme (The Surface Evolver) qui minimise l’énergie de surface sous différentes contraintes : ici les volumes, tensions de surface et éventuels confinements. En bouclant la génération des formes des blastomères avec la prédiction de leurs divisions (les formes permettent de prédire la division, qui permet de générer les formes des cellules filles, etc…), j’ai pu reproduire de manière quantitative quatre patrons de clivage représentatifs (poisson-zèbre, xenope, oursin, ascidie), jusqu’au stade 8 à 16 cellules, in silico. J’ai également testé le modèle sur des expériences classiques de perturbation dans ces quatre systèmes (Hertwig, Hörstadius, ablation de la polarité,…), et reproduit les observations de la littérature. Cette première partie suggère que ces systèmes sont auto-organisés et que la détermination du plan de division dépend principalement d’un nombre restreint de signaux. Dans un second temps, j’ai cherché à caractériser la compétition entre les signaux de forme et de polarité maternelle chez l’embryon d’oursin, de manière quantitative. Ce projet comprend une part importante d’imagerie 3D (position des centrosomes et division, polarité, forme des blastomères), ainsi que des expériences visant à tester le rôle de la forme/taille des blastomères et de la polarité (séparation des blastomères, microchambres de différentes formes, inhibition de la polarité,…). Les résultats obtenus sont comparés aux prédictions du modèle, cette fois basées sur la forme imagée des blastomères. Ces résultats expérimentaux confirment les hypothèses de l’étude in silico, et permettent d’évaluer la robustesse du système biologique pour affiner le modèle. / Cells position their cleavage plane in a precise and predictable way. In particular, during the early embryogenesis, the cleavage pattern of the egg cell is extremely reproducible, yet sensitive to perturbation (shape manipulation,…), which suggests an intrinsic plasticity of the system. My PhD project is about the signals that determine the positions of the cleavage planes in the embryo, and their competition. First, I developed a model to predict division plane positioning from cell shape and possible additional cortical maternal polarity or inhomogeneous yolk/organelles distribution within the cytoplasm. This model is based on pulling forces exerted by interphase astral microtubules on the mitotic spindle/nucleus. Under the hypothesis that these forces depend on microtubule lengths (dynein in the cytoplasm), and are modulated by cortical polarity, it is then possible to find the equilibrium position of the spindle, that sets the future division plane. In addition, I reproduced the shapes and rearrangement of cells (blastomeres) within the embryo, with a program (The Surface Evolver) that minimizes surface energy under various constraints : here cell volumes, surface tensions and possible confinements. The modeling framework I used consisted in a loop between cell shape generation and division plane prediction (cell shape allows to predict cell division, that gives the daughter cells volumes and positions to generate the next cell shapes, and so on…). I could quantitatively reproduce four representative cleavage patterns (zebrafish, xenopus, sea urchin, ascidian), up to the 8 to 16-cell stage, in silico. I also tested the model on classic perturbation experiments in these four systems (Hertwig, Hörstadius, polarity ablation,…), and reproduced the observations of the literature. This first part suggests an auto-organization of these systems, and that the determination of the cleavage plane mainly depends on a limited number of signals. Second, I aimed at characterizing the competition between shape and maternal polarity cues, in a quantitative manner. This project comprises 3D imaging (positions of the centrosomes and division planes, polarity, blastomere shape), as well as experiments assessing the roles of blastomere shape/size and of polarity (blastomere separation, microchambers of different shapes, polarity inhibition,…). The results are compared to the predictions of the model, that now inputs the imaged blastomere shapes. These experimental results confirm the hypotheses of the in silico study, and allow assessing the robustness of the biological system to refine the model.
|
19 |
Rôle de Stratum dans la régulation de la voie de signalisation Notch au cours de divisions cellulaires asymétriques chez Drosophila melanogaster / Role of Stratum in the regulation of Notch signalling during asymmetric cell divisions in Drosophila melanogasterBellec, Karen 10 September 2018 (has links)
Notch est le récepteur d’une voie de communication intercellulaire, conservée au cours de l’évolution et impliquée dans de nombreux processus développementaux. Chez Drosophila melanogaster, la spécification et la division des précurseurs des organes sensoriels (SOPs) sont gouvernées par l’activation différentielle de la voie de signalisation Notch. Cette activation est dépendante de l’interaction entre le récepteur Notch et les ligands Delta/Serrate et LAG-2. Cette interaction favorise le clivage protéolytique du récepteur Notch puis la libération et la translocation du domaine intracellulaire dans le noyau de la cellule receveuse du signal. L’activation de Notch est étroitement régulée dans le temps et dans l’espace et est sous le contrôle du trafic intracellulaire. Toutefois, la localisation exacte de l’interaction entre le ligand et le récepteur demeure encore débattue.Précédemment, la protéine Stratum, prédite pour avoir un rôle de facteur d’échange nucléotidique (GEF), fut identifiée comme régulateur de la voie de signalisation Notch. Ici, nous montrons que la perte de Stratum induit des phénotypes Notch associés à une délocalisation du co-facteur de Notch, Sanpodo, au pôle apical des cellules et dans le réseau trans- golgien, avec Notch et Delta. De plus, nous montrons que Rab8 est délocalisée en absence de Stratum et la perte de Rab8 récapitule les phénotypes Notch observés dans le mutant strat. Ensemble, nous résultats indiquent que Stratum et Rab8 régulent la voie de signalisation Notch en contrôlant à la fois le tri et le transport polarisé de Notch, Sanpodo et Delta à la sortie de l’appareil de Golgi. / Notch is the receptor of an evolutionarily conserved intercellular communication pathway, involved in numerous developmental processes. In Drosophila melanogaster, the specification and the division of sensory organ precursors (SOPs) are governed by the differential activation of the Notch signalling pathway. This activation depends on the interaction between the Notch receptor and its ligands Delta/Serrate and LAG-2. This interaction induces the proteolytic cleavage of the Notch receptor, the release and the translocation of the intracellular domain in the nucleus of the signal-receiving cell. The Notch activation is tightly regulated in time and in space and is controlled by intracellular trafficking. However, the exact localisation of the interaction remains debated.Previously, Stratum, predicted to be a guanine exchange factor (GEF), was identified as a regulator of the Notch signalling pathway. Here we show that the loss of Stratum induces Notch phenotypes associated with a mislocalization of the Notch co- factor, Sanpodo, at the apical pole of cells and in the trans-golgi network, with Notch and Delta. Moreover we show that Rab8 is mislocalized in the absence of Stratum and the loss of Rab8 recapitules Notch phenotypes observed in the strat mutant. Together our results indicate that Stratum and Rab8 regulate the Notch signalling pathway by controlling both the sorting and the transport of Notch, Sanpodo and Delta at the exit of the Golgi apparatus.
|
20 |
De Drosophila melanogaster à l'humain, les protéines Yurt et Girdin ont des fonctions conservées pour maintenir l'architecture épithélialeBiehler, Cornélia 03 January 2022 (has links)
La polarisation apico-basale des cellules épithéliales est cruciale pour le maintien de l'intégrité des tissus épithéliaux et sa perte contribue à la progression tumorale. Les protéines établissant cette polarité sont divisées en modules apicaux et basolatéraux qui s'excluent mutuellement de leur domaine respectif. La zonula adherens (ZA) forme l'interface entre ces deux domaines. La ZA joue aussi un rôle clé dans la cohésion intercellulaire et la morphogenèse épithéliale. Elle est composée de protéines d'adhésion, d'une ceinture d'actomyosine et de protéines de polarité. L'homéostasie épithéliale est déterminée par une fine collaboration entre les protéines de polarité et celles de la ZA. Le but de mon doctorat a été d'étudier ce lien existant entre les protéines de polarité et celles composant la ZA. Pour cela, au laboratoire nous utilisons un outil in vivo avantageux se nommant Drosophila melanogaster ainsi que des modèles de cellules épithéliales humaines cultivées en 2 ou 3 dimensions. Dans un premier temps, mes travaux de thèse se sont concentrés sur les protéines Girdin. Girdin chez la drosophile et GIRDIN, son orthologue humain, sont des protéines d'échafaudage qui sont impliquées dans de multiples processus cellulaires dont celui qui nous a principalement intéressé au cours de mon doctorat : l'adhésion intercellulaire. Au laboratoire, Dre Élise Houssin a montré que Girdin renforçait l'ancrage des protéines d'adhésion à la ceinture d'actomyosine constituant la ZA (Houssin et al., 2015), une fonction conservée chez son orthologue humain (Wang et al., 2018a). De plus, GIRDIN interagit physiquement avec des protéines de polarité, telles que Par3 et aPKC (Ohara et al., 2012; Sasaki et al., 2015). Nous avons donc émis l'hypothèse que les protéines Girdin jouaient un rôle dans le maintien de la polarité épithéliale. Pour y répondre, nous avons réalisé des interactions génétiques entre girdin et différents gènes de polarité. L'interprétation de l'ensemble de nos résultats indique que Girdin et son orthologue soutiennent les déterminants latéraux de polarité en réprimant l'activité de la kinase apicale aPKC. De plus, nous avons mis en lumière que la sous-expression de GIRDIN est associée à la dissémination de cellules issues de sphères tumorales, un phénomène également observé in vivo pour son orthologue de drosophile (Houssin et al., 2015). La perte de la polarité épithéliale ainsi que la dissémination cellulaire observées dans les sphères tumorales sous-exprimant GIRDIN indiquent qu'elle pourrait contrer la progression tumorale en maintenant la polarité épithéliale et la cohésion cellulaire. Nos observations ont été appuyées par l'analyse de tissus tumoraux de patients qui a établi un lien entre l'altération de l'expression de GIRDIN et une faible espérance de survie de ces patients dans deux sous-types de cancer du sein et du poumon. Dans un deuxième temps, les travaux présentés dans cette thèse ont également contribué à une meilleure compréhension du rôle de la protéine Yurt (Yrt) dans le maintien de l'architecture épithéliale (chapitre 2 et 3). Tout d'abord, nous avons mis en lumière le rôle de cette protéine de polarité dans l'induction de la tension épithéliale. La caractérisation de cette fonction nous a permis d'explorer les régulateurs et effecteurs de Yrt. Ainsi, nous avons constaté que Yrt est recrutée au domaine apical par la protéine apicale Crumbs pour promouvoir la tension épithéliale. De plus, la kinase aPKC et le module Pak1-PP2A ont des effets antagonistes sur son activité. aPKC phosphoryle Yrt pour l'inhiber alors que l'axe Pak1-PP2A la déphosphoryle afin d'induire son activité. J'ai également étudié le rôle d'un partenaire physique de Yrt, la NAD synthetase (Nadsyn) qui m'a conduit à explorer une nouvelle voie de signalisation effectrice de Yrt. En effet, nous avons constaté que Yrt pourrait recruter la Nadsyn aux membranes plasmiques pour produire localement du NAD⁺, le co-substrat de la famille des sirtuines, activant ces déacétylases. Cette activation locale permettrait de désacétyler des protéines clés de la contraction cellulaire et/ou de la polarité épithéliale afin de réguler l'architecture épithéliale. Ces deux études dévoilent les modes de régulation et d'action de la protéine Yrt chez la drosophile. Ses deux orthologues étant fortement surexprimés dans de nombreux cancers agressifs, il sera pertinent de valider la conservation de ces mécanismes chez l'humain, afin de déceler de nouvelles stratégies thérapeutiques. L'ensemble de ces travaux de thèse contribue à une meilleure compréhension des mécanismes régulant l'homéostasie épithéliale. La perte de l'architecture épithéliale étant étroitement liée à la progression tumorale, ses travaux ouvrent la voie à l'identification de nouvelles cibles thérapeutiques. / Epithelia form the basis of animal tissue architecture, establishing a barrier against diffusion and providing mechanical structure by their apico-basal asymmetry and adhesive properties. This apico-basal polarity is regulated through various polarity protein complexes characterized by a mutual antagonism between apical and basolateral complexes. Cells adhere to each other with the major cohesive and contractile adhesion of epithelial cells, the zonula adherens (ZA). The ZA machinery contains a strong cohesive complex linked to an actomyosin belt, and forms the interface between the apical and basolateral domains. This actomyosin belt is the main modulator of the epithelial tension. Apico-basal proteins collaborate with the ZA machinery to control tissue architecture homeostasis. Loss of epithelial architecture, such as apico-basal polarity loss or cell-cell cohesion loss, is a hallmark of tumoral progression. My PhD work was aimed at deciphering the molecular mechanisms controlling epithelial polarity and ZA homeostasis using the sophisticated in vivo model Drosophila melanogaster. First, we investigated the role of the scaffold Girdin proteins in epithelial architecture. Previously in the laboratory, the drosophila Girdin protein has been shown to localize at and to reinforce the ZA cohesion (Houssin et al., 2015), a function shared by its human ortholog GIRDIN (Wang et al., 2018a). Furthermore, GIRDIN has been shown to physically interact with polarity proteins such as Par3 and aPKC (Ohara et al., 2012; Sasaki et al., 2015), but its role in cell polarity remained unclear. Using genetic interactions combined with biochemistry technics we demonstrated that Girdin proteins support basolateral determinants by negatively regulating the apical kinase aPKC. In addition, we observed cell detachment and dissemination from GIRDIN knockdown cysts, a phenomenon also reported in girdin null embryos (Houssin et al., 2015). Thus, GIRDIN is required for the cohesion of multicellular epithelial structures that is crucial to prevent various pathological conditions such as cancer progression (Halaoui & McCaffrey, 2015). Indeed, we found a correlation between a low expression of GIRDIN mRNA and a decreased survival in more aggressive breast cancer subtypes and lung adenocarcinoma. The second and third result chapters show that the Drosophila polarity protein Yrt plays a role in epithelial tension and explore the upstream activators and downstream effectors pathways of Yrt. Yrt was previously shown to limit the ability of Crumbs to promote apical membrane growth, thereby defining proper apical/lateral membrane ratio in epithelial cells (Laprise et al., 2006; Laprise et al., 2009). Our results show that Yrt, by interacting with Crumbs, also induces epithelial tension by organizing the apical localization of the non-muscle myosin II, which is needed during embryogenesis. Mechanistically, the apical kinase aPKC phosphorylates Yurt, thereby dislodging Yrt from the apical domain and releasing apical tension. In contrast, the Pak1- PP2A module promotes Yrt dephosphorylation, leading to its apical localization and function. We then investigated how Yrt could reorganize the cytoskeleton to induce epithelial tension. We performed a genetic screen on the Yrt physical interactome. We identified the NAD synthetase (Nadsyn), an enzyme responsible for the de novo NAD⁺ synthesis, as a strong interactor of Yrt. We observed that Yrt recruits Nadsyn to the plasma membrane and that apical constriction induced by Yrt is Nadsyn- and NAD⁺-dependent. Based on these novel findings, we proposed that Yrt may recruit Nadsyn to locally produce a NAD⁺ pool that activates the deacetylases Sirtuin1 or 2, thereby deacetylating proteins involved in cell contractility and cell polarity. This model remains to be clarified by further work. Since Yrt's human orthologs are overexpressed in many epitheliaderived tumors and are associated with a poor survival outcome, deciphering whether the signaling pathways uncovered in our work are preserved in humans could help uncovering novel therapeutic approaches. In conclusion, my PhD work dissected the role of new proteins and pathways involved in the maintenance of epithelial cell architecture. Since the maintenance of an epithelial structure counteracts tumor progression, it also highlights new therapeutic possibilities.
|
Page generated in 0.1423 seconds