• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 179
  • 81
  • 18
  • Tagged with
  • 269
  • 269
  • 133
  • 67
  • 52
  • 41
  • 34
  • 30
  • 28
  • 28
  • 27
  • 27
  • 26
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Problèmes inverses, application à la reconstruction compensée en mouvement en angiographie rotationnelle X

Bousse, Alexandre 12 December 2008 (has links) (PDF)
Ce travail est une application de la théorie des problèmes inverses à la reconstruction 3-D des artères coronaires avec compensation du mouvement à partir de données Rot-X. Dans un premier temps nous étudions le problème inverse en dimension finie et infinie. En dimension finie nous nous concentrons sur la modélisation du problème inverse en tomographie en définissant la notion de base de voxels et de matrice de projection, en vue de pouvoir se ramener à une formulation matricielle du problème inverse. Nous étudions aussi la notion de tomographie dynamique et les problèmes qui lui sont liés. Notre formulation discrète permet grâce aux bases de voxels d'inclure n'importe quelle déformation de support étant un difféorphisme dans le problème inverse matriciel, dès lors que cette déformation est connue a priori. Dans le dernier chapitre, nous présentons une méthode d'estimation du mouvement utilisant les projections Rot-X synchronisées par rapport à l'ECG, basée sur un modèle déformable 3-D des artères coronaires. Le mouvement est modélisé par des fonctions B-splines.<br />Une fois le mouvement estimé, la reconstruction tomographique à un instant de référence est effectuée par une optimisation aux moindres-carrés qui inclut le mouvement ainsi qu'un terme de pénalité qui favorise les valeurs d'intensités fortes pour les voxels au voisinage de la ligne centrale 3-D, et les faibles valeurs pour les autres. Cette méthode a été testée sur des données simulées basées sur des lignes centrales 3-D préalablement extraites de données MSCT.
252

Phénomènes de Stokes et approche galoisienne des problèmes de confluence

Dreyfus, Thomas 20 November 2013 (has links) (PDF)
Cette thèse porte sur la théorie de Galois différentielle. Elle est divisée en deux parties. La première concerne la théorie de Galois différentielle paramétrée, et la seconde, les équations aux q-différences. Dans le chapitre 2, nous exposons une généralisation de l'algorithme de Kovacic qui permet de calculer le groupe de Galois paramétré de certaines équations différentielles paramétrées d'ordre 2. Dans le chapitre 3, nous présentons une généralisation du théorème de densité de Ramis qui donne un ensemble de générateurs topologiques du groupe de Galois pour les équations différentielles linéaires paramétrées à coefficients dans un anneau convenable. Nous obtenons une contribution au problème inverse dans cette théorie de Galois, donnons un critère d'isomonodromie, et répondons partiellement à une question posée par Sibuya. Dans le chapitre 4, il est question de confluence et d'équations aux q-différences. Nous prouvons comment la transformée de Borel-Laplace d'une série formelle divergente solution d'une équation différentielle linéaire à coefficients dans C(z) peut être uniformément approchée par un q-analogue de la transformée de Borel-Laplace appliqué à une série formelle solution d'une famille d'équations aux q-différences linéaires qui discrétise l'équation différentielle. Nous faisons directement les calculs dans le cas des séries hypergéométriques basiques, et nous prouvons sous des hypothèses raisonnables, qu'une matrice fondamentale d'une équation différentielle linéaire à coefficients dans C(z) peut être uniformément approchée par une matrice fondamentale d'une famille d'équations aux q-différences linéaires correspondante.
253

Conventional and Reciprocal Approaches to the Forward and Inverse Problems of Electroencephalography

Finke, Stefan 03 1900 (has links)
Le problème inverse en électroencéphalographie (EEG) est la localisation de sources de courant dans le cerveau utilisant les potentiels de surface sur le cuir chevelu générés par ces sources. Une solution inverse implique typiquement de multiples calculs de potentiels de surface sur le cuir chevelu, soit le problème direct en EEG. Pour résoudre le problème direct, des modèles sont requis à la fois pour la configuration de source sous-jacente, soit le modèle de source, et pour les tissues environnants, soit le modèle de la tête. Cette thèse traite deux approches bien distinctes pour la résolution du problème direct et inverse en EEG en utilisant la méthode des éléments de frontières (BEM): l’approche conventionnelle et l’approche réciproque. L’approche conventionnelle pour le problème direct comporte le calcul des potentiels de surface en partant de sources de courant dipolaires. D’un autre côté, l’approche réciproque détermine d’abord le champ électrique aux sites des sources dipolaires quand les électrodes de surfaces sont utilisées pour injecter et retirer un courant unitaire. Le produit scalaire de ce champ électrique avec les sources dipolaires donne ensuite les potentiels de surface. L’approche réciproque promet un nombre d’avantages par rapport à l’approche conventionnelle dont la possibilité d’augmenter la précision des potentiels de surface et de réduire les exigences informatiques pour les solutions inverses. Dans cette thèse, les équations BEM pour les approches conventionnelle et réciproque sont développées en utilisant une formulation courante, la méthode des résidus pondérés. La réalisation numérique des deux approches pour le problème direct est décrite pour un seul modèle de source dipolaire. Un modèle de tête de trois sphères concentriques pour lequel des solutions analytiques sont disponibles est utilisé. Les potentiels de surfaces sont calculés aux centroïdes ou aux sommets des éléments de discrétisation BEM utilisés. La performance des approches conventionnelle et réciproque pour le problème direct est évaluée pour des dipôles radiaux et tangentiels d’excentricité variable et deux valeurs très différentes pour la conductivité du crâne. On détermine ensuite si les avantages potentiels de l’approche réciproquesuggérés par les simulations du problème direct peuvent êtres exploités pour donner des solutions inverses plus précises. Des solutions inverses à un seul dipôle sont obtenues en utilisant la minimisation par méthode du simplexe pour à la fois l’approche conventionnelle et réciproque, chacun avec des versions aux centroïdes et aux sommets. Encore une fois, les simulations numériques sont effectuées sur un modèle à trois sphères concentriques pour des dipôles radiaux et tangentiels d’excentricité variable. La précision des solutions inverses des deux approches est comparée pour les deux conductivités différentes du crâne, et leurs sensibilités relatives aux erreurs de conductivité du crâne et au bruit sont évaluées. Tandis que l’approche conventionnelle aux sommets donne les solutions directes les plus précises pour une conductivité du crâne supposément plus réaliste, les deux approches, conventionnelle et réciproque, produisent de grandes erreurs dans les potentiels du cuir chevelu pour des dipôles très excentriques. Les approches réciproques produisent le moins de variations en précision des solutions directes pour différentes valeurs de conductivité du crâne. En termes de solutions inverses pour un seul dipôle, les approches conventionnelle et réciproque sont de précision semblable. Les erreurs de localisation sont petites, même pour des dipôles très excentriques qui produisent des grandes erreurs dans les potentiels du cuir chevelu, à cause de la nature non linéaire des solutions inverses pour un dipôle. Les deux approches se sont démontrées également robustes aux erreurs de conductivité du crâne quand du bruit est présent. Finalement, un modèle plus réaliste de la tête est obtenu en utilisant des images par resonace magnétique (IRM) à partir desquelles les surfaces du cuir chevelu, du crâne et du cerveau/liquide céphalorachidien (LCR) sont extraites. Les deux approches sont validées sur ce type de modèle en utilisant des véritables potentiels évoqués somatosensoriels enregistrés à la suite de stimulation du nerf médian chez des sujets sains. La précision des solutions inverses pour les approches conventionnelle et réciproque et leurs variantes, en les comparant à des sites anatomiques connus sur IRM, est encore une fois évaluée pour les deux conductivités différentes du crâne. Leurs avantages et inconvénients incluant leurs exigences informatiques sont également évalués. Encore une fois, les approches conventionnelle et réciproque produisent des petites erreurs de position dipolaire. En effet, les erreurs de position pour des solutions inverses à un seul dipôle sont robustes de manière inhérente au manque de précision dans les solutions directes, mais dépendent de l’activité superposée d’autres sources neurales. Contrairement aux attentes, les approches réciproques n’améliorent pas la précision des positions dipolaires comparativement aux approches conventionnelles. Cependant, des exigences informatiques réduites en temps et en espace sont les avantages principaux des approches réciproques. Ce type de localisation est potentiellement utile dans la planification d’interventions neurochirurgicales, par exemple, chez des patients souffrant d’épilepsie focale réfractaire qui ont souvent déjà fait un EEG et IRM. / The inverse problem of electroencephalography (EEG) is the localization of current sources within the brain using surface potentials on the scalp generated by these sources. An inverse solution typically involves multiple calculations of scalp surface potentials, i.e., the EEG forward problem. To solve the forward problem, models are needed for both the underlying source configuration, the source model, and the surrounding tissues, the head model. This thesis treats two distinct approaches for the resolution of the EEG forward and inverse problems using the boundary-element method (BEM): the conventional approach and the reciprocal approach. The conventional approach to the forward problem entails calculating the surface potentials starting from source current dipoles. The reciprocal approach, on the other hand, first solves for the electric field at the source dipole locations when the surface electrodes are reciprocally energized with a unit current. A scalar product of this electric field with the source dipoles then yields the surface potentials. The reciprocal approach promises a number of advantages over the conventional approach, including the possibility of increased surface potential accuracy and decreased computational requirements for inverse solutions. In this thesis, the BEM equations for the conventional and reciprocal approaches are developed using a common weighted-residual formulation. The numerical implementation of both approaches to the forward problem is described for a single-dipole source model. A three-concentric-spheres head model is used for which analytic solutions are available. Scalp potentials are calculated at either the centroids or the vertices of the BEM discretization elements used. The performance of the conventional and reciprocal approaches to the forward problem is evaluated for radial and tangential dipoles of varying eccentricities and two widely different skull conductivities. We then determine whether the potential advantages of the reciprocal approach suggested by forward problem simulations can be exploited to yield more accurate inverse solutions. Single-dipole inverse solutions are obtained using simplex minimization for both the conventional and reciprocal approaches, each with centroid and vertex options. Again, numerical simulations are performed on a three-concentric-spheres model for radial and tangential dipoles of varying eccentricities. The inverse solution accuracy of both approaches is compared for the two different skull conductivities and their relative sensitivity to skull conductivity errors and noise is assessed. While the conventional vertex approach yields the most accurate forward solutions for a presumably more realistic skull conductivity value, both conventional and reciprocal approaches exhibit large errors in scalp potentials for highly eccentric dipoles. The reciprocal approaches produce the least variation in forward solution accuracy for different skull conductivity values. In terms of single-dipole inverse solutions, conventional and reciprocal approaches demonstrate comparable accuracy. Localization errors are low even for highly eccentric dipoles that produce large errors in scalp potentials on account of the nonlinear nature of the single-dipole inverse solution. Both approaches are also found to be equally robust to skull conductivity errors in the presence of noise. Finally, a more realistic head model is obtained using magnetic resonance imaging (MRI) from which the scalp, skull, and brain/cerebrospinal fluid (CSF) surfaces are extracted. The two approaches are validated on this type of model using actual somatosensory evoked potentials (SEPs) recorded following median nerve stimulation in healthy subjects. The inverse solution accuracy of the conventional and reciprocal approaches and their variants, when compared to known anatomical landmarks on MRI, is again evaluated for the two different skull conductivities. Their respective advantages and disadvantages including computational requirements are also assessed. Once again, conventional and reciprocal approaches produce similarly small dipole position errors. Indeed, position errors for single-dipole inverse solutions are inherently robust to inaccuracies in forward solutions, but dependent on the overlapping activity of other neural sources. Against expectations, the reciprocal approaches do not improve dipole position accuracy when compared to the conventional approaches. However, significantly smaller time and storage requirements are the principal advantages of the reciprocal approaches. This type of localization is potentially useful in the planning of neurosurgical interventions, for example, in patients with refractory focal epilepsy in whom EEG and MRI are often already performed.
254

CARACTÉRISATION D'AGRÉGATS DE NANOPARTICULES PAR DES TECHNIQUES DE DIFFUSION DE LA LUMIÈRE.

Woźniak, Mariusz 19 October 2012 (has links) (PDF)
Ce travail de thèse de doctorat propose et évalue différentes solutions pour caractériser, avec des outils optiques et électromagnétiques non intrusifs, les nanoparticules et agrégats observés dans différents systèmes physiques : suspensions colloïdales, aérosols et plasma poussiéreux. Deux types de modèles sont utilisés pour décrire la morphologie: d'agrégats fractals (p. ex. : suies issues de la combustion, de procédés plasma) et agrégats compacts (qualifiés de " Buckyballs " et observés dans des aérosols produits par séchage de nano suspensions). Nous utilisons différentes théories et modèles électromagnétiques (T-Matrice et approximations du type dipôles discrets) pour calculer les diagrammes de diffusion (ou facteur de structure optique) de ces agrégats, de même que leurs spectres d'extinction sur une large gamme spectrale. Ceci, dans le but d'inverser les données expérimentales obtenues en temps réel. Différents outils numériques originaux ont également été mis au point pour parvenir à une analyse morphologique quantitative de clichés de microscopie électronique. La validation expérimentale des outils théoriques et numériques développés au cours de ce travail est focalisée sur la spectrométrie d'extinction appliquée à des nano agrégats de silice, tungstène et silicium.
255

Problèmes inverses en Haute Résolution Angulaire

Mugnier, Laurent 18 October 2011 (has links) (PDF)
Les travaux exposés portent sur les techniques d'imagerie optique à haute résolution et plus particulièrement sur les méthodes, dites d'inversion, de traitement des données associées à ces techniques. Ils se situent donc à la croisée des chemins entre l'imagerie optique et le traitement du signal et des images. Ces travaux sont appliqués à l'astronomie depuis le sol ou l'espace, l'observation de la Terre, et l'imagerie de la rétine. Une partie introductive est dédiée au rappel de caractéristiques importantes de l'inversion de données et d'éléments essentiels sur la formation d'image (diffraction, turbulence, techniques d'imagerie) et sur la mesure des aberrations (analyse de front d'onde). La première partie des travaux exposés porte sur l'étalonnage d'instrument, c'est-à-dire l'estimation d'aberrations instrumentales ou turbulentes. Ils concernent essentiellement la technique de diversité de phase : travaux méthodologiques, travaux algorithmiques, et extensions à l'imagerie à haute dynamique en vue de la détection et la caractérisation d'exoplanètes. Ces travaux comprennent également des développements qui n'utilisent qu'une seule image au voisinage du plan focal, dans des cas particuliers présentant un intérêt pratique avéré. La seconde partie des travaux porte sur le développement de méthodes de traitement (recalage, restauration et reconstruction, détection) pour l'imagerie à haute résolution. Ces développements ont été menés pour des modalités d'imagerie très diverses : imagerie corrigée ou non par optique adaptative (OA), mono-télescope ou interférométrique, pour l'observation de l'espace ; imagerie coronographique d'exoplanètes par OA depuis le sol ou par interférométrie depuis l'espace ; et imagerie 2D ou 3D de la rétine humaine. Enfin, une dernière partie présente des perspectives de recherches.
256

Traitement et analyse d'images IRM de diffusion pour l'estimation de l'architecture locale des tissus

Assemlal, Haz-Edine 11 January 2010 (has links) (PDF)
Dans cette thèse, nous proposons une méthode qui tente de répondre à la problématique de l'estimation de caractéristiques variées du tissu cérébral à partir de l'acquisition d'un nombre réduit d'échantillons de signaux IRM de diffusion in vivo. Ces caractéristiques doivent permettre l'étude de la structure locale du tissu cérébral, notamment dans la substance blanche. L'approche proposée est flexible quant à la caractéristique calculée et au nombre d'échantillons disponibles. Elle définit un formalisme générique qui d'une part, unifie de nombreux travaux précédents liés à l'estimation des fonctions de densité probabilité (PDF) de déplacement en IRM de diffusion, dont l'Imagerie du Tenseur de Diffusion (DTI) et le Q-Ball Imaging (QBI). D'autre part, elle permet aussi de définir et d'estimer de nouvelles caractéristiques originales: "vraie" ODF, probabilité de non diffusion, taille moyenne des cellules, etc. Nous proposons deux formalismes: un rapide et un autre robuste au bruit des images IRM. Nous validons notre approche par des comparaisons de résultats avec des méthodes de la littérature, sur des données synthétiques ainsi que des données d'un cerveau humain acquises in vivo dans un intervalle de temps modéré.
257

Histoire sismique des failles normales de la région du Lazio-Abruzzo (Italie) : implications sur la variabilité spatiale et temporelle du glissement sismique au sein d'un système de faille / Seismic history of normal fault in the Lazio-Abruzzo (Italy) : implications for the spatial and temporal variability of the seismic slip within a fault-system

Tesson, Jim 03 March 2017 (has links)
La mesure et la modélisation des concentrations en $^{36}$Cl accumulé au sein d'un plan de faille normal permet d'estimer l'âge et le glissement des forts séismes passés ayant successivement exhumé ce plan de faille. Si cette méthode présente l'avantage de fournir des enregistrements paléo-sismologiques continus sur des périodes de temps relativement longues (10 000 à 20 000 ans), la modélisation de données repose jusqu’à présent sur un modèle direct qui permet difficilement d'attester de l'unicité du scenario proposé, et d'estimer précisément les incertitudes associées, et ne tient pas compte de l'histoire long-terme du plan de faille, avant son exhumation post-glaciaire (héritage). Nous avons développé dans un premier temps un nouveau modèle qui inclut l’histoire d'héritage, et mis en place une procédure d'inversion des données permettant de 1) déterminer l'ensemble des paramètres de l'histoire sismique d'exhumation, 2) d’attester de l'unicité du scénario proposé, et 3) de contraindre précisément ses incertitudes. Nous appliquons notre méthode d’inversion à 11 failles des Apennins Centraux et montrons une grande variabilité dans leur activité sismique au cours des derniers 10 000 à 45 000 ans, avec des accélérations représentant 2 à 20 fois la vitesse long-terme de la faille. Nos résultats suggèrent en particulier que l'activité sismique des failles des Apennins Centraux pourrait être contrôlée par les propriétés intrinsèques des failles (vitesse long-terme, longueur, segmentation, état de maturité structurale), ainsi que par des processus d'interactions visco-élastiques agissant entre les failles. / The use of $^{36}$Cl cosmogenic nuclide as a paleo-seismological tool to determine the seismic history of normal faults provide continuous records over the past 10 000 to 20 000 yrs. The modeling of the $^{36}$Cl concentrations measured at the surface of an exhumed fault-plane allows determining the age and the displacement of the past seismic events that successively exhumed the fault-plane. The available modeling approach is however unable to attest for the unicity of the inferred scenario, which makes the estimate of the associated uncertainties difficult. An other limitation concerns the long-term history of the fault-plane prior its post-glacial exhumation (inheritance), that is not fully accounted for in this model (Schlagenhauf et al., 2010). We have developed a reappraisal of this model that accounts for the inheritance history, and includes a procedure of data inversion to 1) determine all parameters of the exhumation history at once, 2) attest for the unicity of the proposed scenario, and 3) precisely determine the associated uncertainties. Applying our new modeling to 11 normal faults previously studied in Central Apennines, we observe a large variability of their seismic activity over the last 10 000 - 45 000 yrs, with slip-rate acceleration reaching 2-20 times their long-term slip-rate. In particular, our results suggest that the seismic activity of normal faults in Central Apennines could be controlled by intrinsic properties of the faults (such as their long-term slip-rate, fault-length, segmentation, state of structural maturity), and by visco-elastic stress transfers between faults.
258

Contributions à l'imagerie sismique par inversion des formes d’onde pour les équations d'onde harmoniques : Estimation de stabilité, analyse de convergence, expériences numériques avec algorithmes d'optimisation à grande échelle / Contributions to Seismic Full Waveform Inversion for Harmonic Wave Equations : Stability Estimates, Convergence Analysis, Numerical Experiments involving Large Scale Optimization Algorithms.

Faucher, Florian 29 November 2017 (has links)
Dans ce projet, nous étudions la reconstruction de milieux terrestres souterrains.L’imagerie sismique est traitée avec un problème de minimisation itérative àgrande échelle, et nous utilisons la méthode de l’inversion des formes d’ondes(Full Waveform Inversion, FWI method). La reconstruction est basée sur desmesures d’ondes sismiques, car ces ondes sont caractérisées par le milieu danslequel elles se propagent. Tout d’abord, nous présentons les méthodesnumériques qui sont nécessaires pour prendre en compte l’hétérogénéité etl’anisotropie de la Terre. Ici, nous travaillons avec les solutions harmoniques deséquations des ondes, donc dans le domaine fréquentiel. Nous détaillons leséquations et l’approche numérique mises en place pour résoudre le problèmed’onde.Le problème inverse est établi afin de reconstruire les propriétés du milieu. Ils’agit d’un problème non-linéaire et mal posé, pour lequel nous disposons de peude données. Cependant, nous pouvons montrer une stabilité de type Lipschitzpour le problème inverse associé avec l’équation de Helmholtz, en considérantdes modèles représentés par des constantes par morceaux. Nous explicitons laborne inférieure et supérieure pour la constante de stabilité, qui nous permetd’obtenir une caractérisation de la stabilité en fonction de la fréquence et del’échelle. Nous revoyons ensuite le problème de minimisation associé à lareconstruction en sismique. La méthode de Newton apparaît comme naturelle,mais peut être difficilement accessible, dû au coup de calcul de la Hessienne.Nous présentons une comparaison des méthodes pour proposer un compromisentre temps de calcul et précision. Nous étudions la convergence de l’algorithme,en fonction de la géométrie du sous-sol, la fréquence et la paramétrisation. Celanous permet en particulier de quantifier la progression en fréquence, en estimantla taille du rayon de convergence de l’espace des solutions admissibles.A partir de l’étude de la stabilité et de la convergence, l’algorithme deminimisation itérative est conduit en faisant progresser la fréquence et l’échellesimultanément. Nous présentons des exemples en deux et trois dimensions, etillustrons l’incorporation d’atténuation et la considération de milieux anisotropes.Finalement, nous étudions le cas de reconstruction avec accès aux données deCauchy, motivé par les dual sensors développés en sismique. Cela nous permetde définir une nouvelle fonction coût, qui permet de prometteuses perspectivesavec un besoin minimal quant aux informations sur l’acquisition. / In this project, we investigate the recovery of subsurface Earth parameters. Weconsider the seismic imaging as a large scale iterative minimization problem, anddeploy the Full Waveform Inversion (FWI) method, for which several aspects mustbe treated. The reconstruction is based on the wave equations because thecharacteristics of the measurements indicate the nature of the medium in whichthe waves propagate. First, the natural heterogeneity and anisotropy of the Earthrequire numerical methods that are adapted and efficient to solve the wavepropagation problem. In this study, we have decided to work with the harmonicformulation, i.e., in the frequency domain. Therefore, we detail the mathematicalequations involved and the numerical discretization used to solve the waveequations in large scale situations.The inverse problem is then established in order to frame the seismic imaging. Itis a nonlinear and ill-posed inverse problem by nature, due to the limitedavailable data, and the complexity of the subsurface characterization. However,we obtain a conditional Lipschitz-type stability in the case of piecewise constantmodel representation. We derive the lower and upper bound for the underlyingstability constant, which allows us to quantify the stability with frequency andscale. It is of great use for the underlying optimization algorithm involved to solvethe seismic problem. We review the foundations of iterative optimizationtechniques and provide the different methods that we have used in this project.The Newton method, due to the numerical cost of inverting the Hessian, may notalways be accessible. We propose some comparisons to identify the benefits ofusing the Hessian, in order to study what would be an appropriate procedureregarding the accuracy and time. We study the convergence of the iterativeminimization method, depending on different aspects such as the geometry ofthe subsurface, the frequency, and the parametrization. In particular, we quantifythe frequency progression, from the point of view of optimization, by showinghow the size of the basin of attraction evolves with frequency. Following the convergence and stability analysis of the problem, the iterativeminimization algorithm is conducted via a multi-level scheme where frequencyand scale progress simultaneously. We perform a collection of experiments,including acoustic and elastic media, in two and three dimensions. Theperspectives of attenuation and anisotropic reconstructions are also introduced.Finally, we study the case of Cauchy data, motivated by the dual sensors devicesthat are developed in the geophysical industry. We derive a novel cost function,which arises from the stability analysis of the problem. It allows elegantperspectives where no prior information on the acquisition set is required.
259

Inversion des formes d'ondes électromagnétiques en 2D pour le géoradar : vers une imagerie multi-paramètre à partir des données de surface / 2D Full waveform inversion of ground penetrating radar data : towards multiparameter imaging from surface data

Lavoué, François 09 July 2014 (has links)
Les premiers mètres à centaines de mètres de la proche surface terrestre sont le siège de processus naturels dont la compréhension requiert une caractérisation fine de la subsurface, via une estimation quantifiée de ses paramètres. Le géoradar est un outil de prospection indirecte à même d'ausculter les milieux naturels et d'en estimer les propriétés électriques (permittivité et conductivité). Basé sur la propagation d'ondes électromagnétiques à des fréquences allant du MHz à quelques GHz, le géoradar est utilisé à des échelles et pour des applications variées concernant la géologie, l'hydrologie ou le génie civil. Dans ce travail de thèse, je propose une méthode d'imagerie quantitative des propriétés électriques sur des sections 2D de la subsurface, à partir de données radar acquises à la surface du sol. La technique mise en oeuvre est l'inversion des formes d'ondes, qui utilise l'intégralité du champ d'ondes enregistré.Dans une première partie, je présente les principes physiques et l'outil de modélisation numérique utilisés pour simuler la propagation des ondes électromagnétiques dans les milieux hétérogènes à deux dimensions. Pour cela, un algorithme de différences finies en domaine fréquentiel développé dans le cadre des ondes visco-acoustiques est adapté au problème électromagnétique 2D grâce à une analogie mathématique.Dans une deuxième partie, le problème d'imagerie est formulé sous la forme d'une optimisation multi-paramètre puis résolu avec l'algorithme de quasi-Newton L-BFGS. Cet algorithme permet d'estimer l'effet de la matrice Hessienne, dont le rôle est crucial pour la reconstruction de paramètres de différents types comme la permittivité et la conductivité. Des tests numériques montrent toutefois que l'algorithme reste sensible aux échelles utilisées pour définir ces paramètres. Dans un exemple synthétique représentatif de la proche surface, il est cependant possible d'obtenir des cartes 2D de permittivité et de conductivité à partir de données de surface, en faisant intervenir des facteurs d'échelle et de régularisation visant à contraindre les paramètres auxquelles l'inversion est la moins sensible. Ces facteurs peuvent être déterminés en analysant la qualité de l'ajustement aux données, sans hypothèse a priori autre que la contrainte de lissage introduite par la régularisation.Dans une dernière partie, la méthode d'imagerie est confrontée à deux jeux de données réelles. Dans un premier temps, l'examen de données expérimentales permet de tester la précision des simulations numériques vis-à-vis de mesures effectuées en environnement contrôlé. La connaissance des cibles à imager permet en outre de valider la méthodologie proposée pour l'imagerie multiparamètre dans des conditions très favorables puisqu'il est possible de calibrer le signal source et de considérer l'espace libre environnant les cibles comme modèle initial pour l'inversion.Dans un deuxième temps, j'envisage le traitement d'un jeu de données radar multi-offsets acquises au sein d'un massif calcaire. L'interprétation de ces données est rendue beaucoup plus difficile par la complexité du milieu géologique environnant, ainsi que par la méconnaissance des caractéristiques précises des antennes utilisées. L'application de la méthode d'inversion des formes d'ondes à ces données requiert donc une étape préliminaire impliquant une analyse de vitesse plus classique, basée sur les arrivées directes et réfléchies, et des simulations numériques dans des modèles hypothétiques à même d'expliquer une partie des données. L'estimation du signal source est effectuée à partir d'arrivées sélectionnées, simultanément avec des valeurs moyennes de conductivité et de hauteur d'antennes de façon à reproduire au mieux les amplitudes observées. Un premier essai d'inversion montre que l'algorithme est capable d'expliquer les données dans la gamme de fréquences considérée et de reconstruire une ébauche des principaux réflecteurs. / The quantitative characterization of the shallow subsurface of the Earth is a critical issue for many environmental and societal challenges. Ground penetrating radar (GPR) is a geophysical method based on the propagation of electromagnetic waves for the prospection of the near subsurface. With central frequencies between 10~MHz and a few GHz, GPR covers a wide range of applications in geology, hydrology and civil engineering. GPR data are sensitive to variations in the electrical properties of the medium which can be related, for instance, to its water content and bring valuable information on hydrological processes. In this work, I develop a quantitative imaging method for the reconstruction of 2D distributions of permittivity and conductivity from GPR data acquired from the ground surface. The method makes use of the full waveform inversion technique (FWI), originating from seismic exploration, which exploits the entire recorded radargrams and has been proved successful in crosshole GPR applications.In a first time, I present the numerical forward modelling used to simulate the propagation of electromagnetic waves in 2D heterogeneous media and generate the synthetic GPR data that are compared to the recorded radargrams in the inversion process. A frequency-domain finite-difference algorithm originally developed in the visco-acoustic approximation is adapted to the electromagnetic problem in 2D via an acoustic-electromagnetic mathematical analogy.In a second time, the inversion scheme is formulated as a fully multiparameter optimization problem which is solved with the quasi-Newton L-BFGS algorithm. In this formulation, the effect of an approximate inverse Hessian is expected to mitigate the trade-off between the impact of permittivity and conductivity on the data. However, numerical tests on a synthetic benchmark of the literature display a large sensitivity of the method with respect to parameter scaling, showing the limits of the L-BFGS approximation. On a realistic subsurface benchmark with surface-to-surface configuration, it has been shown possible to ally parameter scaling and regularization to reconstruct 2D images of permittivity and conductivity without a priori assumptions.Finally, the imaging method is confronted to two real data sets. The consideration of laboratory-controlled data validates the proposed workflow for multiparameter imaging, as well as the accuracy of the numerical forward solutions. The application to on-ground GPR data acquired in a limestone massif is more challenging and necessitates a thorough investigation involving classical processing techniques and forward simulations. Starting permittivity models are derived from the velocity analysis of the direct arrivals and of the reflected events. The estimation of the source signature is performed together with an evaluation of an average conductivity value and of the unknown antenna height. In spite of this procedure, synthetic data do not reproduce the observed amplitudes, suggesting an effect of the radiation pattern of the shielded antennae. In preliminary tests, the inversion succeeds in fitting the data in the considered frequency range and can reconstruct reflectors from a smooth starting model.
260

Développement d'outils statistiques pour l'amélioration de dispositifs d'imagerie acoustique et micro-onde

Diong, Mouhamadou 09 December 2015 (has links)
L'un des enjeux majeurs pour les systèmes d'imagerie par diffraction acoustique et micro-onde, est l'amélioration des performances obtenues au moment de la reconstruction des objets étudiés. Cette amélioration peut s'effectuer par la recherche d'algorithmes d'imagerie plus performants d'une part et par la recherche d'une meilleure configuration de mesures d'autre part. La première approche (recherche d'algorithmes) permet d'améliorer le processus d'extraction de l'information présente dans un échantillon de mesures donné. Néanmoins, la qualité des résultats d'imagerie reste limitée par la quantité d'information initialement disponible. La seconde approche consiste à choisir la configuration de mesures de manière à augmenter la quantité d'information disponible dans les données. Pour cette approche, il est nécessaire de quantifier la quantité d'information dans les données. En théorie de l'estimation, ceci équivaut à quantifier la performance du système. Dans cette thèse, nous utilisons la Borne de Cramer Rao comme mesure de performance, car elle permet d'analyser la performance des systèmes de mesures sans être influencé par le choix de la méthode d'inversion utilisée. Deux analyses sont proposées dans ce manuscrit. La première consiste en l'évaluation de l'influence des facteurs expérimentaux sur la performance d'inversion. Cette analyse a été effectuée pour différents objets le tout sous une hypothèse de configuration bidimensionnelle. La seconde analyse consiste à comparer les performances de l'estimateur obtenu avec l'approximation de Born aux valeurs de la borne de Cramer Rao (BCR); l'objectif étant d'illustrer d'autres applications possibles de la BCR. / Improving the performance of diffraction based imaging systems constitutes a major issue in both acoustic and electromagnetic scattering. To solve this problem, two main approaches can be explored. The first one consists in improving the inversion algorithms used in diffraction based imaging. However, while this approach generally leads to a significant improvement of the performance of the imaging system, it remains limited by the initial amount of information available within the measurements. The second one consists in improving the measurement system in order to maximize the amount of information within the experimental data. This approach does require a quantitative mean of measuring the amount of information available. In estimation problems, the {appraisal of the} performance of the system is often used for that purpose. In this Ph.D. thesis, we use the Cramer Rao bound to assess the performance of the imaging system. In fact, this quantity has the advantage of providing an assessment which is independent from the inversion algorithm used. Two main analysis are discussed in this thesis. The first analysis explores the influence on the system's performance, of several experimental conditions such as the antennas positions, the radiation pattern of the source, the properties of the background medium, etc. Two classes of objects are considered: 2D homogeneous circular cylindrical objects and 2D cylindrical objects with defect. The second analysis studies the performance of an estimator based on Born approximation with the Cramer Rao Bound as reference. The aim of this second analysis is to showcase other possible applications for the Cramer Rao Bound.

Page generated in 0.0787 seconds