• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 170
  • 18
  • Tagged with
  • 188
  • 188
  • 188
  • 59
  • 42
  • 32
  • 29
  • 24
  • 23
  • 22
  • 22
  • 20
  • 20
  • 19
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Relations entre le nombre de classes et les formes modulaires

Ayotte, David 29 November 2019 (has links)
En 2010, Dummigan et Heim ont démontré deux résultats en lien avec le nombre de classes du corps quadratique Q(√-p), dénoté h(-p), et l'espace des formes cuspidales de poids k pour SL2(ℤ), dénoté Sk(SL2(ℤ)), où p ≡ 3 (mod 4) est un premier et k = (p + 1)/2. Ainsi, dans ce mémoire, on s'intéresse à présenter les démonstrations de Dummigan et Heim avec davantage de détails et de généraliser leurs résultats. Tout d'abord, le premier résultat a_rme que la trace de la fonction L carrée symétrique, un nombre rationnel qui dépend uniquement du poids de l'espace Sk(SL2(ℤ)), possède un unique facteur de p au dénominateur si et seulement si h(-p) > 1. De plus, si h(-p) =1, alors la trace ne contient aucun facteur de p. Ainsi, en utilisant les congruences de Kummer pour les nombres de Bernoulli, on démontre qu'il est possible de généraliser ce résultat pour l'espace Sk'(SL2(ℤ) ou k' ≡ k (mod p - 1). En rapport avec ce résultat, une conjecture est énoncée et des évidences numériques avec PARI/GP sont données. Ensuite, Dummigan et Heim ont démontré, en utilisant la théorie des représentations galoisiennes, qu'il existe une forme cuspidale f = Σn≥1 anqn de poids k pour SL2 (ℤ) qui satisfait une congruence diédrale en p, c'est-à-dire p
72

Calcul de la capacité analytique et fonctions d'Ahlfors rationnelles

Younsi, Malik 20 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdorales, 2014-2015 / Soit K ⊆ C compact et soit X le complément de K par rapport à la sphère de Riemann, X := C∞ \ K. La capacité analytique de K, notée γ(K), est définie par [symbol]. La capacité analytique des sous-ensembles compacts du plan fut introduite par Ahlfors en 1947 dans le but d’étudier un problème soulevé par Painlevé en 1888 demandant une caractérisation géométrique des sous-ensembles compacts dits effaçables. Le problème de Painlevé se révéla fort difficile et il fallut attendre plus d’un siècle avant d’en obtenir une solution satisfaisante, grâce aux travaux de Xavier Tolsa et plusieurs autres. La présente thèse de doctorat vise à étudier en détail la capacité analytique. Plus précisément, dans la première partie de la thèse, on développe une méthode efficace et rigoureuse pour le calcul numérique de la capacité analytique. Cette méthode est d’autant plus intéressante qu’il est extrêmement difficile en pratique d’estimer la capacité analytique d’un ensemble compact donné. On utilise ensuite cette méthode, implémentée sur ordinateur à l’aide du logiciel matlab, pour étudier le célèbre problème de la sous-additivité de la capacité analytique. Ce problème réputé fort difficile fut énoncé en 1967 par Vitushkin et demeure encore à ce jour sans réponse. Plusieurs expérimentations numériques de même que certains des résultats obtenus mènent à la formulation d’une conjecture qui, si démontrée, impliquerait que la capacité analytique est bel et bien sous-additive. Enfin, on démontre la conjecture dans un cas particulier. La seconde partie de la thèse est dédiée à l’étude des fonctions d’Ahlfors, fonctions extrémales pour le problème de la capacité analytique. Plus précisément, on s’intéresse à un problème soulevé par Jeong et Taniguchi visant à déterminer les fonctions d’Ahlfors qui sont des fonctions rationnelles. On donne une solution partielle au problème, fournissant ainsi plusieurs nouveaux exemples explicites de fonctions d’Ahlfors et de capacités analytiques.
73

Méthode d'inférence utilisant la vraisemblance empirique basée sur l'entropie pour les modèles de diffusion avec sauts

Laporte, Francis 05 March 2019 (has links)
Avec la venue de modèles de plus en plus élaborés pour modéliser les rendements boursiers, la méthode classique du maximum de vraisemblance pour inférer les paramètres n’est généralement plus applicable puisque, par exemple, la fonction de densité n’est pas disponible ou très difficile à calculer numériquement. Dans la littérature, l’inférence par la méthode des moments (MM) est donc généralement suggérée. Dans ce mémoire, une méthode d’inférence plus efficace, soit celle du maximum de vraisemblance empirique basé sur l’entropie (MEEL), est proposée pour deux cas particuliers du processus de Lévy, soit les modèles de Merton et de Tsay. Premièrement, un retour sur certains modèles développés par le passé est fait. Les lacunes du mouvement brownien géométrique sont présentées afin de justifier l’utilisation de modèles plus élaborés. Ensuite, les deux modèles, Merton et Tsay, et leurs propriétés sont présentés plus en détail. Par la suite, il y a une analyse comparative entre l’efficacité du MEEL et celle du MM ; un exemple sur des données réelles est aussi présenté. Pour terminer, deux approches de tarification de produits dérivés sont présentées. / With the advent of increasingly sophisticated models for modeling stock market returns, the classical maximum likelihood method for inferring parameters is generally no longer applicable since, for example, the density function has no closed form or very difficult to calculate numerically. In the literature, inference by the method of moments (MM) is therefore generally suggested. In this master’s thesis, a more efficient inference method, the maximum empirical entropy likelihood (MEEL), is proposed for two particular cases of the Lévy process, namely the Merton and Tsay models. First, a review of some models developed in the past is done. The flaws of the geometric Brownian motion are presented to justify the use of more sophisticated models. Then, the two models, Merton and Tsay, and their properties are presented in more detail. Subsequently, there is a comparative analysis between the effectiveness of the MEEL and the MM; an example with real data is also presented. Finally, two approaches to pricing derivatives are presented.
74

Capacités et espace de Dirichlet

Laniel, François 19 April 2018 (has links)
Choquet influença profondément la théorie du potentiel en démontrant la capacitabilité des ensembles analytiques, en particulier des boréliens. L’abstraction de la capacité newtonienne à des capacités abstraites permit l’introduction de capacités intéressantes à étudier et c’est en partie ce que nous ferons dans ce mémoire. Beurling fut le premier à discuter de l’espace de Dirichlet classique en démontrant dans sa thèse de doctorat un théorème profond liant la capacité logarithmique aux limites non tangentielles des fonctions de cet espace. En compagnie de Carleson, il établit les bases fondamentales de cette théorie. Plusieurs questions restent encore ouvertes concernant l’espace de Dirichlet et c’est ce qui motive l’intérêt de nombreux mathématiciens à son égard. Passant par la démonstration du théorème de Choquet, du théorème de Frostman, du théorème de Beurling et de l’inégalité capacitaire forte, ce mémoire se veut avant tout une introduction aux résultats classiques mais profonds concernant différentes capacités et l’espace de Dirichlet classique.
75

Les sommes de renouvellement escomptées avec taux d'intérêt général

Adekambi, Franck 17 April 2018 (has links)
Dans la littérature actuarielle, les modèles collectifs les plus souvent utilisés pour représenter le montant total des réclamations sur un intervalle de temps donné sont ceux construits à partir de sommes de renouvellement dans lesquelles les forces d'intérêt et d'inflation peuvent éventuellement être prises en compte. Le modèle de renouvellement dans lequel le contexte économique est ignoré, même si trop simpliste, a toutefois permis dans plusieurs cas le calcul de quantités d'intérêt telles que les moments, la fonction génératrice des moments, la distribution du montant total des réclamations, la probabilité de ruine, et a ainsi constitué une première approche de ce problème d'assurance. Pour le modèle de renouvellement avec force d'intérêt constante, les mathématiques sont déjà plus complexes, mais plusieurs résultats ont tout de même été obtenus. Nous pouvons citer deux articles des professeurs Léveillé et Garrido, où ces auteurs proposent des formules récursives pour le calcul de tous les moments. Dans cette thèse, nous proposons un modèle de renouvellement escompté encore plus réaliste où la force d'intérêt est soit représentée par une fonction déterministe ou par un processus stochastique. Les difficultés qu'ajoute ainsi une force d'intérêt plus générale nous obligent à développer une identité qui donnera la distribution conjointe conditionnelle du temps des réclamations connaissant leur nombre dans un intervalle de temps donné. Cet outil fondamental nous permettra de calculer les premiers moments simples et conjoints, de construire une équation intégrale de la fonction génératrice des moments, d'obtenir certaines distributions, de développer des prédicteurs de la valeur présente de notre processus de risque ainsi que d'autres résultats connexes.
76

Contributions à l'adaptation de maillage anisotrope sur base hiérarchique

Briffard, Thomas 24 April 2018 (has links)
Cette thèse est la poursuite des travaux entrepris dans [13] pour le développement d’un nouvel estimateur d’erreur de type hiérarchique. Cet estimateur permet d’adapter un maillage et d’obtenir des solutions plus précises d’une équation aux dérivées partielles. La méthode est relativement générale et peut s’appliquer à une grande variété de problèmes, et permet théoriquement de traiter des approximations de n’importe quel degré. Elle mène, lorsque la solution le permet, à des maillages fortement anisotropes et se compare avantageusement aux méthodes basées sur la définition d’une métrique. Des améliorations substantielles à la méthode ont été apportées dans le cadre de ce travail. Les principaux objectifs étant de réduire fortement les coûts de calcul associés à la méthode et de la rendre beaucoup plus robuste de manière générale. Ainsi, on a revu et amélioré les algorithmes de reconstruction des gradients par un scaling approprié, de réinterpolation des champs en introduisant une méthode de krigeage. On a également introduit un algorithme de remaillage des coquilles à l’aide d’une méthode dite de «ear clipping» originale en 3D. L’algorithme de déplacement de sommets a également été revu. Enfin la gestion des frontières courbes est également considérée. De nombreux exemples bi et tridimensionnels sont présentés pour illustrer l’efficacité de l’estimateur. Des problèmes académiques sont d’abord considérés, y compris des problèmes singuliers où on montre que l’on obtient des taux de convergence optimaux (par rapport au nombre de degrés de liberté). Par la suite, on s’intéresse à différents domaines d’applications, notamment en mécanique des fluides et en neurosciences. Enfin, un algorithme général pour l’adaptation de maillage dans le cas instationnaire sera également décrit et testé. / This thesis is the continuation of the work undertaken in [13] for the development of a new a posteriori error estimator based on hierarchical basis. This estimator allows to adapt a finite element mesh and to obtain more accurate solutions of various partial differential equations. Most importantly, it leads, whenever possible, to strongly anisotropic meshes, and compares favorably with methods based on the definition of a metric. The method is fairly general and can be applied to approximations of any degree and to a wide variety of problems. In this work, several significant improvements have been added to the initial method. The objectives being to substantially reduce the calculation costs associated with the method and to make it much more robust. Many substantial contributions have been made to the various algorithms. Let’s mention the introduction of an appropriate scaling in the gradient recovery method, kriging for the reinterpolation of the different fields during adaptation, an original ear clipping method in 3D for local remeshing. A different approach for nodes displacement is also condirered. Finally we detailled how we take care of curved borders. Many bi and three-dimensional examples are presented to illustrate the efficiency of the estimator. Academic problems are first considered, including classical singular problems where optimal rates of convergence are observed (relative to the number of degrees of freedom). Applications in different fields such as fluid mechanics and neurosciences are then considered. Finally an algorithm for time-dependent problems is presented and tested.
77

Les ponts entre la cohomologie et la stabilité des équations fonctionnelles

Poulin, Denis 12 April 2018 (has links)
Dans ce mémoire, nous étudions la stabilité des équations fonctionnelles, la cohomologie des algèbres de Banach ainsi que les liens utiles entre ces deux théories. Nous présentons au chapitre 2 une introduction à la stabilité des équation fonctionnelles et quelques nouveaux résultats concernant les fonctions strictement e-additives. Au chapitre 3, nous étudions les notions de base de la cohomologie, incluant le produit tensoriel et l'amenabilité d'une algèbre. Finalement, au chapitre 4, nous explorons les liens entre ces deux domaines. Ce chapitre est principalement constitué de travail original. Nous y faisons le lien entre l'amenabilité d'un groupe et la stabilité de l'équation de Cauchy sur ce groupe. De plus, dans des circonstances précises, nous proposons deux approches possibles pour relier le fait que Hn (l1 (S), l°°(S)) est un espace de Banach, où S est un semi-groupe, avec la stabilité de certaines équations sur S.
78

Intégration à l'usage du mathématicien : extensions transcendantes

Tremblay, Patrice 16 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2008-2009 / Ce mémoire présente dans un langage moderne la théorie de l'intégration en termes finis. Le grand mathématicien J. Liouville l'initia et bien d'autres la poursuivirent, il fallut pourtant attendre deux articles de R. H. Risch, à la fin des années soixante pour connaitre enfin un algorithme intégrant explicitement les fonctions élémentaires. La méthode a été développée, raffinée et étendue au cours des décennies qui suivirent. Notre approche emprunte principalement aux articles et aux autres écrits de M. Bronstein (1963- 2005). Nous détaillons ces nouveaux algorithmes, notamment dans le cas des fonctions élémentaires transcendantes. Ils ont tous été programmés et testés dans le langage Maple Il.0. Nous avons tenté de rendre le contenu vivant, insistant sur l'apport historique et la source des découvertes. Ce mémoire n'est qu'une facette d'un objectif plus, large qui consistait à explorer l'ensemble du calcul formel ("Computer Algebra"). / [Théorème de Liouville]
79

La méthode de renormalisation de Zalcman et ses applications

Younsi, Malik 17 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2010-2011 / Un principe heuristique généralement attribué au mathématicien français A. Bloch stipule qu'une famille de fonctions holomorphes ayant une propriété en commun dans un certain domaine aura tendance à être normale s'il n'existe pas de fonction entière non constante ayant cette même propriété. Bien qu'il existe des contre-exemples à ce principe heuristique, celui-ci demeure néanmoins vrai dans plusieurs cas intéressants. Récemment, L. Zalcman [26] a introduit une technique permettant de rendre le principe de Bloch rigoureux : il s'agit d'une méthode de renormalisation qui décrit le type de propriété nécessaire pour qu'une famille de fonctions méromorphes ayant cette propriété soit normale. Le présent travail a pour but d'étudier la méthode de renormalisation de Zalcman et ses applications en analyse complexe. On y donne une présentation détaillée des principaux résultats associés ainsi que plusieurs applications, concernant, notamment, la dynamique complexe et la théorie des séries lacunaires.
80

Étude de certaines mesures d'association multivariées et d'un test de dépendance extrémale fondés sur les rangs

Ben Ghorbal, Noomen 17 April 2018 (has links)
Cette thèse contribue à la modélisation de la dépendance stochastique par la théorie des copules et la statistique non paramétrique. Elle s'appuie sur trois articles rédigés avec mes directeurs de thèse, M. Christian Genest et Mme Johanna Neslehovâ. Le premier article, intitulé ± On the Ghoudi, Khoudraji, and Rivest test for extreme-value dependence, ¿ a été publié en 2009 dans La revue canadienne de statistique, vol. 37, no 4, pp. 534-552. Le second article, intitulé ± Spearman's footrule and Gini's gamma : A review with complements, ¿ paraîtra sous peu dans le Journal of Nonparametric Statistics. Le troisième article, intitulé ± Estimators based on Kendall's tau in multivariate copula models, ¿ est en cours d'évaluation.

Page generated in 0.0329 seconds