Spelling suggestions: "subject:"quantenfeldtheorie"" "subject:"quantenfeldtheorien""
41 |
Wick Rotation for Quantum Field Theories on Degenerate Moyal SpaceLudwig, Thomas 03 July 2013 (has links)
In dieser Arbeit wird die analytische Fortsetzung von Quantenfeldtheorien auf dem nichtkommutativen Euklidischen Moyal-Raum mit kommutativer Zeit zu entsprechenden Moyal-Minkowski Raumzeit (Wick Rotation) erarbeitet. Dabei sind diese Moyal-Räume durch eine konstante Nichtkommutativiät
gegeben. Einerseits wird die Wick Rotation im Kontext der algebraischen Quantenfeldtheorie, ausgehend von einer Arbeit von Schlingemann, hergeleitet. Von einem Netz Euklidischer Observablen wird die Lorentz’sche Theorie durch alle Bilder der fortgesetzten Poincare Gruppenwirkung auf der Zeit-Null Schicht erhalten. Dabei wird gezeigt, dass die Vorgänge der nichtkommutativen Deformation und der Wick Rotation kommutieren. Andererseits ist so eine analytische Fortsetzung ebenfalls für Quantenfeldtheorien, die durch einen Satz von Schwingerfunktionen definiert ist, möglich. Durch die Gültigkeit einer Kombination aus Wachstumsbedinungen, die aus der Wick Rotation von Osterwalder und Schrader bekannt sind, kann der Übergang zu einer deformierten Wightman-Theorie gezeigt werden. Abschließend beinhaltet diese Arbeit ergänzende
Resultate zu den physikalischen Eigenschaften der Kovarianz und der Lokalität.
|
42 |
On the Construction of Quantum Field Theories with Factorizing S-Matrices / Über die Konstruktion von quantenfeldtheoretischen Modellen mit faktorisierenden S-MatrizenLechner, Gandalf 24 May 2006 (has links)
No description available.
|
43 |
Thermalization and Out-of-Equilibrium Dynamics in Open Quantum Many-Body SystemsBuchhold, Michael 23 October 2015 (has links) (PDF)
Thermalization, the evolution of an interacting many-body system towards a thermal Gibbs ensemble after initialization in an arbitrary non-equilibrium state, is currently a phenomenon of great interest, both in theory and experiment. As the time evolution of a quantum system is unitary, the proposed mechanism of thermalization in quantum many-body systems corresponds to the so-called eigenstate thermalization hypothesis (ETH) and the typicality of eigenstates. Although this formally solves the contradiction of thermalizing but unitary dynamics in a closed quantum many-body system, it does neither make any statement on the dynamical process of thermalization itself nor in which way the coupling of the system to an environment can hinder or modify the relaxation dynamics.
In this thesis, we address both the question whether or not a quantum system driven away from equilibrium is able to relax to a thermal state, which fulfills detailed balance, and if one can identify universal behavior in the non-equilibrium relaxation dynamics.
As a first realization of driven quantum systems out of equilibrium, we investigate a system of Ising spins, interacting with the quantized radiation field in an optical cavity. For multiple cavity modes, this system forms a highly entangled and frustrated state with infinite correlation times, known as a quantum spin glass. In the presence of drive and dissipation, introduced by coupling the intra-cavity radiation field to the photon vacuum outside the cavity via lossy mirrors, the quantum glass state is modified in a universal manner. For frequencies below the photon loss rate, the dissipation takes over and the system shows the universal behavior of a dissipative spin glass, with a characteristic spectral density $\\mathcal{A}(\\omega)\\sim\\sqrt{\\omega}$. On the other hand, for frequencies above the loss rate, the system retains the universal behavior of a zero temperature, quantum spin glass. Remarkably, at the glass transition, the two subsystems of spins and photons thermalize to a joint effective temperature, even in the presence of photon loss. This thermalization is a consequence of the strong spin-photon interactions, which favor detailed balance in the system and detain photons from escaping the cavity. In the thermalized system, the features of the spin glass are mirrored onto the photon degrees of freedom, leading to an emergent photon glass phase. Exploiting the inherent photon loss of the cavity, we make predictions of possible measurements on the escaping photons, which contain detailed information of the state inside the cavity and allow for a precise, non-destructive measurement of the glass state.
As a further set of non-equilibrium systems, we consider one-dimensional quantum fluids driven out of equilibrium, whose universal low energy theory is formed by the so-called Luttinger Liquid description, which, due to its large degree of universality, is of intense theoretical and experimental interest. A set of recent experiments in research groups in Vienna, Innsbruck and Munich have probed the non-equilibrium time-evolution of one-dimensional quantum fluids for different experimental realizations and are pushing into a time regime, where thermalization is expected. From a theoretical point of view, one-dimensional quantum fluids are particular interesting, as Luttinger Liquids are integrable and therefore, due to an infinite number of constants of motion, do not thermalize. The leading order correction to the quadratic theory is irrelevant in the sense of the renormalization group and does therefore not modify static correlation functions, however, it breaks integrability and will therefore, even if irrelevant, induce a completely different non-equilibrium dynamics as the quadratic Luttinger theory alone. In this thesis, we derive for the first time a kinetic equation for interacting Luttinger Liquids, which describes the time evolution of the excitation densities for arbitrary initial states. The resonant character of the interaction makes a straightforward derivation of the kinetic equation, using Fermi\'s golden rule, impossible and we have to develop non-perturbative techniques in the Keldysh framework. We derive a closed expression for the time evolution of the excitation densities in terms of self-energies and vertex corrections. Close to equilibrium, the kinetic equation describes the exponential decay of excitations, with a decay rate $\\sigma^R=\\mbox\\Sigma^R$, determined by the self-energy at equilibrium. However, for long times $\\tau$, it also reveals the presence of dynamical slow modes, which are the consequence of exactly energy conserving dynamics and lead to an algebraic decay $\\sim\\tau^$ with $\\eta_D=0.58$. The presence of these dynamical slow modes is not contained in the equilibrium Matsubara formalism, while they emerge naturally in the non-equilibrium formalism developed in this thesis.
In order to initialize a one-dimensional quantum fluid out of equilibrium, we consider an interaction quench in a model of interacting, dispersive fermions in Chap.~\\ref. In this scenario, the fermionic interaction is suddenly changed at time $t=0$, such that for $t>0$ the system is not in an eigenstate and therefore undergoes a non-trivial time evolution. For the quadratic theory, the stationary state in the limit $t\\rightarrow\\infty$ is a non-thermal, or prethermal, state, described by a generalized Gibbs ensemble (GGE). The GGE takes into account for the conservation of all integrals of motion, formed by the eigenmodes of the Hamiltonian. On the other hand, in the presence of non-linearities, the final state for $t\\rightarrow\\infty$ is a thermal state with a finite temperature $T>0$. . The spatio-temporal, dynamical thermalization process can be decomposed into three regimes: A prequench regime on the largest distances, which is determined by the initial state, a prethermal plateau for intermediate distances, which is determined by the metastable fixed point of the quadratic theory and a thermal region on the shortest distances. The latter spreads sub-ballistically $\\sim t^$ in space with $0<\\alpha<1$ depending on the quench. Until complete thermalization (i.e. for times $t<\\infty$), the thermal region contains more energy than the prethermal and prequench region, which is expressed in a larger temperature $T_{t}>T_$, decreasing towards its final value $T_$. As the system has achieved local detailed balance in the thermalized region, energy transport to the non-thermal region can only be performed by the macroscopic dynamical slow modes and the decay of the temperature $T_{t}-T_\\sim t^$ again witnesses the presence of these slow modes. The very slow spreading of thermalization is consistent with recent experiments performed in Vienna, which observe a metastable, prethermal state after a quench and only observe the onset of thermalization on much larger time scales. As an immediate indication of thermalization, we determine the time evolution of the fermionic momentum distribution after a quench from non-interacting to interacting fermions. For this quench scenario, the step in the Fermi distribution at the Fermi momentum $k\\sub$ decays to zero algebraically in the absence of a non-linearity but as a stretched exponential (the exponent being proportional to the non-linearity) in the presence of a finite non-linearity. This can serve as a proof for the presence or absence of the non-linearity even on time-scales for which thermalization can not yet be observed.
Finally, we consider a bosonic quantum fluid, which is driven away from equilibrium by permanent heating. The origin of the heating is atomic spontaneous emission of laser photons, which are used to create a coherent lattice potential in optical lattice experiments. This process preserves the system\'s $U(1)$-invariance, i.e. conserves the global particle number, and the corresponding long-wavelength description is a heated, interacting Luttinger Liquid, for which phonon modes are continuously populated with a momentum dependent rate $\\partial_tn_q\\sim\\gamma |q|$. In the dynamics, we identify a quasi-thermal regime for large momenta, featuring an increasing time-dependent effective temperature. In this regime, due to fast phonon-phonon scattering, detailed balance has been achieved and is expressed by a time-local, increasing temperature. The thermal region emerges locally and spreads in space sub-ballistically according to $x_t\\sim t^{4/5}$. For larger distances, the system is described by an non-equilibrium phonon distribution $n_q\\sim |q|$, which leads to a new, non-equilibrium behavior of large distance observables. For instance, the phonon decay rate scales universally as $\\gamma_q\\sim |q|^{5/3}$, with a new non-equilibrium exponent $\\eta=5/3$, which differs from equilibrium. This new, universal behavior is guaranteed by the $U(1)$ invariant dynamics of the system and is insensitive to further subleading perturbations. The non-equilibrium long-distance behavior can be determined experimentally by measuring the static and dynamic structure factor, both of which clearly indicate the exponents for phonon decay, $\\eta=5/3$ and for the spreading of thermalization $\\eta_T=4/5$.
Remarkably, even in the presence of this strong external drive, the interactions and their aim to achieve detailed balance are strong enough to establish a locally emerging and spatially spreading thermal region.
The physical setups in this thesis do not only reveal interesting and new dynamical features in the out-of-equilibrium time evolution of interacting systems, but they also strongly underline the high degree of universality of thermalization for the classes of models studied here. May it be a system of coupled spins and photons, where the photons are pulled away from a thermal state by Markovian photon decay caused by a leaky cavity, a one-dimensional fermionic quantum fluid, which has been initialized in an out-of-equilibrium state by a quantum quench or a one-dimensional bosonic quantum fluid, which is driven away from equilibrium by continuous, external heating, all of these systems at the end establish a local thermal equilibrium, which spreads in space and leads to global thermalization for $t\\rightarrow\\infty$. This underpins the importance of thermalizing collisions and endorses the standard approach of equilibrium statistical mechanics, describing a physical system in its steady state by a thermal Gibbs ensemble.
|
44 |
Parametric representation of Feynman amplitudes in gauge theoriesSars, Matthias Christiaan Bernhard 24 September 2015 (has links)
In dieser Arbeit wird eine systematische Methode gegeben um die Amplituden in (skalarer) Quantenelektrodynamik und nicht-Abelsche Eichtheorien in Schwinger-parametrische Form zu schreiben. Dies wird erreicht in dem der Zähler der Feynmanregeln im Impulsraum in einem Differentialoperator umgewandelt wird. Dieser Differentialoperator wirkt dann auf den parametrichen Integranden der skalaren Theorie. Für die QED ist das am einfachsten, weil die Leibnizregel hier nicht nötig ist. Im Fall der sQED und den nicht-Abelsche Eichtheorien stehen die Beiträge der Leibnizregel in Verbindung mit 4-valente Vertices. Eine andere Eigenschaft dieser Methode ist, dass mit dem hier benutzten Renormierungsschema die Subtraktionen für 1-scale Graphen signifikante Vereinfachungen verursachen. Weiterhin wurden die Ward-Identitäte für die genannten drei Theorien studiert. / In this thesis a systematic method is given for writing the amplitudes in (scalar) quantum electrodynamics and non-Abelian gauge theories in Schwinger parametric form. This is done by turning the numerator of the Feynman rules in momentum space into a differential operator. It acts then on the parametric integrand of the scalar theory. For QED it is the most straightforward, because the Leibniz rule is not involved here. In the case of sQED and non-Abelian gauge theories, the contributions from the Leibniz rule are satisfyingly related to 4-valent vertices. Another feature of this method is that in the used renormalization scheme, the subtractions for 1-scale graphs cause significant simplifications. Furthermore, the Ward identities for mentioned three theories are studied.
|
45 |
Precise determination of universal finite volume observables in the Gross-Neveu modelKorzec, Tomasz 13 July 2007 (has links)
Bei dem Gross-Neveu Modell handelt es sich um eine in zwei Raumzeit-Dimensionen formulierte Quantenfeldtheorie, die einige Gemeinsamkeiten mit der Quantenchromodynamik aufweist. In der vorliegenden Arbeit wird zunächst ein Überblick über das Kontinuumsmodell sowie über diskretisierte Versionen gegeben. Ein Renormierungsschema wird eingeführt und getestet. Berechnungen im Grenzwert unendlich vieler Fermionfamilien und in Störungstheorie werden durchgeführt. In ausgiebigen Monte-Carlo Simulationen der Modelle mit einer und vier Fermionfamilien wird eine Reihe universeller Größen mit hoher Genauigkeit ermittelt. Simuliert wird eine Gitterversion des Modells mit Wilson-Fermionen. Für das Modell mit nur einer Fermionfamilie, welches zum masselosen Thirring-Modell äquivalent ist, werden die kontinuumsextrapolierten Ergebnisse mit einer exakten Lösung dieses Modells konfrontiert. / The Gross-Neveu model is a quantum field theory in two space time dimensions that shares many features with quantum chromo dynamics. In this thesis the continuum model and its discretized versions are reviewed and a finite volume renormalization scheme is introduced and tested. Calculations in the limit of infinitely many fermion flavors as well as perturbative computations are carried out. In extensive Monte-Carlo simulations of the one flavor and the four flavor lattice models with Wilson fermions a set of universal finite volume observables is calculated to a high precision. In the one flavor model which is equivalent to the massless Thirring model the continuum extrapolated Monte-Carlo results are confronted with an exact solution of the model.
|
46 |
Graphs in perturbation theoryBorinsky, Michael 30 May 2018 (has links)
Inhalt dieser Arbeit ist eine Erweiterung der Hopfalgebrastruktur der Feynmangraphen und Renormierung von Connes und Kreimer. Zusätzlich wird eine Struktur auf faktoriell wachsenden Potenzreihen eingeführt, die deren asymptotisches Wachstum beschreibt und die kompatibel mit der Hopfalgebrastruktur ist.
Die Hopfalgebrastruktur auf Graphen erlaubt die explizite Enumeration von Graphen mit Einschränkungen in Bezug auf die erlaubten Untergraphen. Im Fall der Feynmangraphen wird zusätzlich eine algebraische Verbandstruktur eingeführt, die weitere eindeutige Eigenschaften von physikalischen Quantenfeldtheorien aufdeckt. Der Differenzialring der faktoriell divergenten Potenzreihen erlaubt es asymptotische Resultate von implizit definierten Potenzreihen mit verschwindendem Konvergenzradius zu extrahieren. In Kombination ergeben beide Strukturen eine algebraische Formulierung großer Graphen mit Einschränkungen für die erlaubten Untergraphen. Diese Strukturen sind motiviert von null-dimensionaler Quantenfeldtheorie and werden zur Analyse ebendieser benutzt.
Als reine Anwendung der Hopfalgebrastruktur wird eine hopfalgebraische Formulierung der Legendretransformation in Quantenfeldtheorien formuliert. Der Differenzialring der faktoriell divergenten Potenzreihen wird dazu benutzt zwei asymptotische Enumerationsprobleme zu lösen: Die asymptotische Anzahl der verbundenen Chorddiagramme und die asymptotische Anzahl der simplen Permutationen. Für beide asymptotischen Lösungen werden vollständige asymptotische Entwicklungen in Form von geschlossenen Erzeugendenfunktionen berechnet. Kombiniert werden beide Strukturen zur Anwendung an null-dimensionaler Quantenfeldtheorie. Zahlreiche Größen werden in den null-dimensionalen Varianten von phi^3, phi^4, QED, quenched QED and Yukawatheorie mit ihren kompletten asymptotischen Entwicklungen berechnet. / This thesis provides an extension of the work of Dirk Kreimer and Alain Connes on the Hopf algebra structure of Feynman graphs and renormalization to general graphs. Additionally, an algebraic structure of the asymptotics of formal power series with factorial growth, which is compatible with the Hopf algebraic structure, will be introduced.
The Hopf algebraic structure on graphs permits the explicit enumeration of graphs with constraints for the allowed subgraphs. In the case of Feynman diagrams a lattice structure, which will be introduced, exposes additional unique properties for physical quantum field theories.
The differential ring of factorially divergent power series allows the extraction of asymptotic results of implicitly defined power series with vanishing radius of convergence. Together both structures provide an algebraic formulation of large graphs with constraints on the allowed subgraphs.
These structures are motivated by and used to analyze renormalized zero-dimensional quantum field theory at high orders in perturbation theory.
As a pure application of the Hopf algebra structure, an Hopf algebraic interpretation of the Legendre transformation in quantum field theory is given.
The differential ring of factorially divergent power series will be used to solve two asymptotic counting problems in combinatorics: The asymptotic number of connected chord diagrams and the number of simple permutations. For both asymptotic solutions, all order asymptotic expansions are provided as generating functions in closed form. Both structures are combined in an application to zero-dimensional quantum field theory. Various quantities are explicitly given asymptotically in the zero-dimensional version of phi^3, phi^4, QED, quenched QED and Yukawa theory with their all order asymptotic expansions.
|
47 |
The generalized chord diagram expansionHihn, Markus 13 September 2016 (has links)
Dyson-Schwinger-Gleichungen sind Fixpunktgleichungen, die in der Quantenfeldtheorie auftauchen. Obwohl es bekannt ist, wie die Kombinatorik vor der Anwendung von Feynman-Regeln aussieht, war die Kombinatorik der resultierenden analytischen Dyson-Schwinger-Gleichungen bisher unbekannt. Wir verallgemeinern die Arbeiten von Yeats et.al. auf diesem Gebiet zu einer Klasse von unendlich vielen Dyson-Schwinger-Gleichungen mit Hilfe von Sehnen-Diagrammen. / In quantum field theory, Dyson-Schwinger equations are fixed-point equations that come from self insertion properties of Feynman graphs. While the combinatorics of these are well understood, the combinatorics are still mysterious after applying the Feynman rules. We generalize the work of Yeats et.al. in this field to an infinite number of Dyson-Schwinger equations with the help of chord diagrams.
|
48 |
Haag's theorem in renormalisable quantum field theoriesKlaczynski, Lutz 04 March 2016 (has links)
Wir betrachten eine Reihe von Trivialitäts- resultaten und No-Go-Theoremen aus der Axiomatischen Quantenfeldtheorie. Von besonderem Interesse ist Haags Theorem. Im Wesentlichen sagt es aus, dass der unitäre Intertwiner des Wechselwirkungsbildes nicht existiert oder trivial ist. Als wichtigste Voraussetzung von Haags Theorem arbeiten wir die unitäre Äquivalenz heraus und unterziehen die kanonische Störungstheorie skalarer Felder einer Kritik um zu argumentieren, dass die kanonisch renormierte Quantenfeldtheorie Haags Theorem umgeht, da sie genau diese Bedingung nicht erfüllt. Der Hopfalgebraische Zugang zur perturbativen Quantenfeldtheorie bietet die Möglichkeit, Dyson-Schwinger-und Renormierungsgruppengleichungen mathematisch sauber herzuleiten, wenn auch mit rein kombinatorischem Ausgangspunkt. Wir präsentieren eine Beschreibung dieser Methode und diskutieren eine gewöhnliche Differentialgleichung für die anomale Dimension des Photons. Eine Spielzeugmodellversion dieser Gleichung lässt sich exakt lösen; ihre Lösung weist eine interessante nichtstörunsgtheoretische Eigenschaft auf, deren Auswirkungen auf die laufende Kopplung und die Selbstenergie des Photons wir untersuchen. Solche nichtperturbativen Beiträge mögen die Existenz eines Landau-Pols ausschliessen, ein Sachverhalt, den wir ebenfalls diskutieren. Unter der Arbeitshypothese, dass die anomale Dimension eines Quantenfeldes in die Klasse der resurgenten Funktionen fällt, studieren wir, welche Bedingungen die Dyson-Schwinger-und Renormierungsgruppengleichungen an ihre Transreihe stellen. Wir stellen fest, dass diese unter bestimmten Bedingungen kodieren, wie der perturbative Sektor den nichtperturbativen vollständig determiniert. / We review a package of triviality results and no-go theorems in axiomatic quantum field theory. Of particular interest is Haag''s theorem. It essentially says that the unitary intertwiner of the interaction picture does not exist unless it is trivial. We single out unitary equivalence as the most salient provision of Haag''s theorem and critique canonical perturbation theory for scalar fields to argue that canonically renormalised quantum field theory bypasses Haag''s theorem by violating this very assumption. The Hopf-algebraic approach to perturbative quantum field theory allows us to derive Dyson-Schwinger equations and the Callan-Symanzik equation in a mathematically sound way, albeit starting with a purely combinatorial setting. We present a pedagogical account of this method and discuss an ordinary differential equation for the anomalous dimension of the photon. A toy model version of this equation can be solved exactly; its solution exhibits an interesting nonperturbative feature whose effect on the running coupling and the self-energy of the photon we investigate. Such nonperturbative contributions may exclude the existence of a Landau pole, an issue that we also discuss. On the working hypothesis that the anomalous dimension of a quantum field falls into the class of resurgent functions, we study what conditions Dyson-Schwinger and renormalisation group equations impose on its resurgent transseries. We find that under certain conditions, they encode how the perturbative sector determines the nonperturbative one completely.
|
49 |
Local Equilibrium States in Quantum Field Theory in Curved Spacetime / Lokale Gleichgewichtszustände in der Quantenfeldtheorie auf gekrümmter RaumzeitSolveen, Christoph 11 April 2012 (has links)
No description available.
|
50 |
Thermalization and Out-of-Equilibrium Dynamics in Open Quantum Many-Body SystemsBuchhold, Michael 23 September 2015 (has links)
Thermalization, the evolution of an interacting many-body system towards a thermal Gibbs ensemble after initialization in an arbitrary non-equilibrium state, is currently a phenomenon of great interest, both in theory and experiment. As the time evolution of a quantum system is unitary, the proposed mechanism of thermalization in quantum many-body systems corresponds to the so-called eigenstate thermalization hypothesis (ETH) and the typicality of eigenstates. Although this formally solves the contradiction of thermalizing but unitary dynamics in a closed quantum many-body system, it does neither make any statement on the dynamical process of thermalization itself nor in which way the coupling of the system to an environment can hinder or modify the relaxation dynamics.
In this thesis, we address both the question whether or not a quantum system driven away from equilibrium is able to relax to a thermal state, which fulfills detailed balance, and if one can identify universal behavior in the non-equilibrium relaxation dynamics.
As a first realization of driven quantum systems out of equilibrium, we investigate a system of Ising spins, interacting with the quantized radiation field in an optical cavity. For multiple cavity modes, this system forms a highly entangled and frustrated state with infinite correlation times, known as a quantum spin glass. In the presence of drive and dissipation, introduced by coupling the intra-cavity radiation field to the photon vacuum outside the cavity via lossy mirrors, the quantum glass state is modified in a universal manner. For frequencies below the photon loss rate, the dissipation takes over and the system shows the universal behavior of a dissipative spin glass, with a characteristic spectral density $\\mathcal{A}(\\omega)\\sim\\sqrt{\\omega}$. On the other hand, for frequencies above the loss rate, the system retains the universal behavior of a zero temperature, quantum spin glass. Remarkably, at the glass transition, the two subsystems of spins and photons thermalize to a joint effective temperature, even in the presence of photon loss. This thermalization is a consequence of the strong spin-photon interactions, which favor detailed balance in the system and detain photons from escaping the cavity. In the thermalized system, the features of the spin glass are mirrored onto the photon degrees of freedom, leading to an emergent photon glass phase. Exploiting the inherent photon loss of the cavity, we make predictions of possible measurements on the escaping photons, which contain detailed information of the state inside the cavity and allow for a precise, non-destructive measurement of the glass state.
As a further set of non-equilibrium systems, we consider one-dimensional quantum fluids driven out of equilibrium, whose universal low energy theory is formed by the so-called Luttinger Liquid description, which, due to its large degree of universality, is of intense theoretical and experimental interest. A set of recent experiments in research groups in Vienna, Innsbruck and Munich have probed the non-equilibrium time-evolution of one-dimensional quantum fluids for different experimental realizations and are pushing into a time regime, where thermalization is expected. From a theoretical point of view, one-dimensional quantum fluids are particular interesting, as Luttinger Liquids are integrable and therefore, due to an infinite number of constants of motion, do not thermalize. The leading order correction to the quadratic theory is irrelevant in the sense of the renormalization group and does therefore not modify static correlation functions, however, it breaks integrability and will therefore, even if irrelevant, induce a completely different non-equilibrium dynamics as the quadratic Luttinger theory alone. In this thesis, we derive for the first time a kinetic equation for interacting Luttinger Liquids, which describes the time evolution of the excitation densities for arbitrary initial states. The resonant character of the interaction makes a straightforward derivation of the kinetic equation, using Fermi\'s golden rule, impossible and we have to develop non-perturbative techniques in the Keldysh framework. We derive a closed expression for the time evolution of the excitation densities in terms of self-energies and vertex corrections. Close to equilibrium, the kinetic equation describes the exponential decay of excitations, with a decay rate $\\sigma^R=\\mbox\\Sigma^R$, determined by the self-energy at equilibrium. However, for long times $\\tau$, it also reveals the presence of dynamical slow modes, which are the consequence of exactly energy conserving dynamics and lead to an algebraic decay $\\sim\\tau^$ with $\\eta_D=0.58$. The presence of these dynamical slow modes is not contained in the equilibrium Matsubara formalism, while they emerge naturally in the non-equilibrium formalism developed in this thesis.
In order to initialize a one-dimensional quantum fluid out of equilibrium, we consider an interaction quench in a model of interacting, dispersive fermions in Chap.~\\ref. In this scenario, the fermionic interaction is suddenly changed at time $t=0$, such that for $t>0$ the system is not in an eigenstate and therefore undergoes a non-trivial time evolution. For the quadratic theory, the stationary state in the limit $t\\rightarrow\\infty$ is a non-thermal, or prethermal, state, described by a generalized Gibbs ensemble (GGE). The GGE takes into account for the conservation of all integrals of motion, formed by the eigenmodes of the Hamiltonian. On the other hand, in the presence of non-linearities, the final state for $t\\rightarrow\\infty$ is a thermal state with a finite temperature $T>0$. . The spatio-temporal, dynamical thermalization process can be decomposed into three regimes: A prequench regime on the largest distances, which is determined by the initial state, a prethermal plateau for intermediate distances, which is determined by the metastable fixed point of the quadratic theory and a thermal region on the shortest distances. The latter spreads sub-ballistically $\\sim t^$ in space with $0<\\alpha<1$ depending on the quench. Until complete thermalization (i.e. for times $t<\\infty$), the thermal region contains more energy than the prethermal and prequench region, which is expressed in a larger temperature $T_{t}>T_$, decreasing towards its final value $T_$. As the system has achieved local detailed balance in the thermalized region, energy transport to the non-thermal region can only be performed by the macroscopic dynamical slow modes and the decay of the temperature $T_{t}-T_\\sim t^$ again witnesses the presence of these slow modes. The very slow spreading of thermalization is consistent with recent experiments performed in Vienna, which observe a metastable, prethermal state after a quench and only observe the onset of thermalization on much larger time scales. As an immediate indication of thermalization, we determine the time evolution of the fermionic momentum distribution after a quench from non-interacting to interacting fermions. For this quench scenario, the step in the Fermi distribution at the Fermi momentum $k\\sub$ decays to zero algebraically in the absence of a non-linearity but as a stretched exponential (the exponent being proportional to the non-linearity) in the presence of a finite non-linearity. This can serve as a proof for the presence or absence of the non-linearity even on time-scales for which thermalization can not yet be observed.
Finally, we consider a bosonic quantum fluid, which is driven away from equilibrium by permanent heating. The origin of the heating is atomic spontaneous emission of laser photons, which are used to create a coherent lattice potential in optical lattice experiments. This process preserves the system\'s $U(1)$-invariance, i.e. conserves the global particle number, and the corresponding long-wavelength description is a heated, interacting Luttinger Liquid, for which phonon modes are continuously populated with a momentum dependent rate $\\partial_tn_q\\sim\\gamma |q|$. In the dynamics, we identify a quasi-thermal regime for large momenta, featuring an increasing time-dependent effective temperature. In this regime, due to fast phonon-phonon scattering, detailed balance has been achieved and is expressed by a time-local, increasing temperature. The thermal region emerges locally and spreads in space sub-ballistically according to $x_t\\sim t^{4/5}$. For larger distances, the system is described by an non-equilibrium phonon distribution $n_q\\sim |q|$, which leads to a new, non-equilibrium behavior of large distance observables. For instance, the phonon decay rate scales universally as $\\gamma_q\\sim |q|^{5/3}$, with a new non-equilibrium exponent $\\eta=5/3$, which differs from equilibrium. This new, universal behavior is guaranteed by the $U(1)$ invariant dynamics of the system and is insensitive to further subleading perturbations. The non-equilibrium long-distance behavior can be determined experimentally by measuring the static and dynamic structure factor, both of which clearly indicate the exponents for phonon decay, $\\eta=5/3$ and for the spreading of thermalization $\\eta_T=4/5$.
Remarkably, even in the presence of this strong external drive, the interactions and their aim to achieve detailed balance are strong enough to establish a locally emerging and spatially spreading thermal region.
The physical setups in this thesis do not only reveal interesting and new dynamical features in the out-of-equilibrium time evolution of interacting systems, but they also strongly underline the high degree of universality of thermalization for the classes of models studied here. May it be a system of coupled spins and photons, where the photons are pulled away from a thermal state by Markovian photon decay caused by a leaky cavity, a one-dimensional fermionic quantum fluid, which has been initialized in an out-of-equilibrium state by a quantum quench or a one-dimensional bosonic quantum fluid, which is driven away from equilibrium by continuous, external heating, all of these systems at the end establish a local thermal equilibrium, which spreads in space and leads to global thermalization for $t\\rightarrow\\infty$. This underpins the importance of thermalizing collisions and endorses the standard approach of equilibrium statistical mechanics, describing a physical system in its steady state by a thermal Gibbs ensemble.
|
Page generated in 0.0653 seconds