• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 11
  • 6
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 40
  • 40
  • 12
  • 12
  • 12
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Rydberg excitation dynamics and correlations in arbitrary 2D arrays of single atoms / La dynamique et correlations d'excitations Rydberg dans des matrices 2D des atomes unique

Labuhn, Henning 26 February 2016 (has links)
Dans cette thèse, nous mesurons la dynamique cohérente et les corrélations spatiales des excitations Rydberg dans des matrices 2D d’atomes uniques.Nous utilisons un modulateur spatial de lumière pour façonner la phase spatiale d'un faisceau laser de piégeage optique avant de le focaliser avec une lentille asphérique de grande ouverture numérique. En imprimant une phase appropriée sur le faisceau laser, nous pouvons créer des matrices 2D de pièges optiques, de forme arbitraire et facilement reconfigurables, avec jusqu'à 100 pièges séparées de quelques micromètres. Les pièges sont chargés à partir d'un nuage d'atomes froids de 87Rb, et due aux collisions assistées par la lumière, au plus un seul atome peut être présent dans chaque piège en même temps. Une caméra CCD sensible permet en temps réel l'imagerie de la fluorescence atomique émanant des pièges, ce qui nous permet de détecter individuellement la présence d'un atome dans chaque piège avec une précision presque parfaite.Pour créer des interactions importantes entre les atomes uniques, nous les excitons vers des états de Rydberg, qui sont des états électroniques avec un nombre quantique principal élevé.Un faisceau supplémentaire d'adressage permet la manipulation individuelle d'un atome sélectionné dans la matrice.La connaissance précise, de la fois de la matrice des atomes préparé et des positions des excitations Rydberg, nous a permis de mesurer l’augmentation collective de la couplage optique dans le régime de blocage Rydberg, où une seule excitation est partagée de façon symétrique entre tous les atomes de la matrice.Dans le régime où l'interaction ne s’étend que sur quelques sites, nous avons mesuré la dynamique et les corrélations spatiales des excitations Rydberg, dans des matrices d’atomes à une et deux dimensions. La comparaison à une simulation numérique d'un modèle d'Ising quantique d'un système de spin-1/2 montre un accord exceptionnel pour les matrices où l'effet de l'anisotropie de l’interaction Rydberg-Rydberg est faible. Les résultats obtenus démontrent que les atomes Rydberg uniques sont une plate-forme bien adaptée pour la simulation quantique des systèmes de spin. / In this thesis, we measure the coherent dynamics and the pair correlations of Rydberg excitations in two-dimensional arrays of single atoms.We use a spatial light modulator to shape the spatial phase of a single optical dipole trap beam before focusing it with a high numerical-aperture aspheric lens. By imprinting an appropriate phase pattern on the trap beam, we can create arbitrarily shaped and easily reconfigurable 2D arrays of high-quality single-atom traps, with trap-spacings of a few micrometers for up to 100 traps. The traps are loaded from a cloud of cold 87Rb atoms, and due to fast light-assisted collisions of atoms inside the traps, at most one atom can be present in each trap at the same time. A sensitive CCD camera allows the real-time, site-resolved imaging of the atomic fluorescence from the traps, enabling us to detect the presence of an atom in each individual trap with almost perfect accuracy.In order to induce strong, tunable interactions between the atoms in the array, we coherently laser-excite them to Rydberg states, which are electronic states with a high principal quantum number.An additional addressing beam allows the individual manipulation of an atom at a selected site in the array.The precise knowledge of both the prepared atom array and the positions of the Rydberg excitations allowed us to measure the collective enhancement of the optical coupling strength in the regime of full Rydberg blockade, where one single excitation is shared symmetrically among all atoms in the array.In the regime where the strong interaction only extends over a few sites, we measured the dynamics and the spatial pair-correlations of Rydberg excitations, in one- and two-dimensional atom arrays. The comparison to a numerical simulation of a quantum Ising model of a spin-1/2 system shows an exceptional agreement for trap geometries where the effect of the anisotropy of the Rydberg-Rydberg interaction is small. The obtained results demonstrate that single Rydberg atoms are a suitable platform for the quantum simulation of spin systems.
32

Next-Generation Ultrafast Transmission Electron Microscopy – Development and Applications

Feist, Armin 05 June 2018 (has links)
No description available.
33

Sauts quantiques de phase dans des chaînes de jonctions Josephson / Quantum phase-slips in Josephson junction chains

Pop, Ioan Mihai 14 February 2011 (has links)
Nous avons étudié la dynamique des sauts quantiques de phase (quantum phase-slips) dans différents types de chaînes de jonctions Josephson. Les sauts de phase sont contrôlés par le rapport entre l'énergie Josephson et l'énergie de charge de chaque jonction. Nous avons mesuré l'effet des sauts de phase sur l'état fondamental de la chaîne et nous avons observé l'interférence quantique de sauts de phase (effet Aharonov-Casher). Les résultats de nos mesures sont en très bon accord avec les prédictions théoriques. Nous avons montré qu'une chaîne de jonctions Josephson polarisée en phase, présente un comportement collectif, similaire à un objet macroscopique. Les résultats de cette thèse ouvrent la voie pour la conception de nouveaux circuits Josephson, comme par exemple un qubit topologiquement protégé ou un dispositif quantique pour la conversion courant-fréquence. / In this thesis we presented detailed measurements of quantum phase-slips in Josephson junction chains. The measured phase-slips are the result of fluctuations induced by the finite charging energy of each junction. Our experimental results can be fitted in very good agreement by considering a simple tight-binding model for QPS. We have shown that under phase-bias, a chain of Josephson junctions or rhombi can behave in a collective way very similar to a single macroscopic quantum object. These results open the way for possible use of quantum phase-slips for the design of novel Josephson junction circuits, such as topologically protected rhombi qubits or current-to-frequency conversion devices.
34

Quantum Information Processing By NMR : Quantum State Discrimination, Hadamard Spectroscopy, Liouville Space Search, Use Of Geometric Phase For Gates And Algorithms

Gopinath, T 07 1900 (has links)
The progess in NMRQIP can be outlined in to four parts.1) Implementation of theoretical protocols on small number of qubits. 2) Demonstration of QIP on various NMR systems. 3) Designing and implementing the algorithms for mixed initial states. 4) Developing the techniques for coherent and decoherent control on higher number(up to 15) of qubits. This thesis contains some efforts in the direction of first three points. Quantum-state discrimination has important applications in the context of quantum communication and quantum cryptography. One of the characteristic features of quantum mechanics is that it is impossible to devise a measurement that can distinguish nonorthogonal states perfectly. However, one can distinguish them with a finite probability by an appropriate measurement strategy. In Chapter 2, we describe the implementation of a theoretical protocol of programmable quantum-state discriminator, on a two-qubit NMR System. The projective measurement is simulated by adding two experiments. This device does the unambiguous discrimination of a pair of states of the data qubit that are symmetrically located about a fixed state. The device is used to discriminate both linearly polarized states and eillipitically polarized states. The maximum probability of successful discrimination is achieved by suitably preparing the ancilla quubit. The last step of any QIP protocol is the readout. In NMR-QIP the readout is done by using density matrix tomography. It was first proposed by Ernst and co-workers that a two-dimensional method can be used to correlate input and output states. This method uses an extra (aniclla) qubit, whose transitions indicate the quantum states of the remaining qubits. The 2D spectrum of ancilla qubit represent the input and output states along F1 and F2 dimensions respectively. However the 2D method requires several t1 increments to achieve the required spectral width and resolution in the indirect dimension, hence leads to large experimental time. In chapter 3, the conventional 2D NMRQIP method is speeded-up by using Hadamard spectroscopy. The Hadamard method is used to implement various two-, three-qubit gates and qutrit gates. We also use Hadamard spectroscopy for information storage under spatial encoding and to implement a parallel search algorithm. Various slices of water sample can be spatially encoded by using a multi-frequency pulse under the field gradient. Thus the information of each slice is projected to the frequency space. Each slice represents a classical bit, where excitation and no excitation corresponds to the binary values 0 and 1 respectively. However one has to do the experiment for each binary information, by synthesizing a suitable multi-frequency pulse. In this work we show that by recording the data obtained by various Hadamard encoded multi-frequency pulses, one can suitably decode it to obtain any birnary information, without doing further experiments. Geometric phases depend only on the geometry of the path executed in the projective Hilbert space, and are therefore resilient to certain types of errors. This leads to the possibility of an intrinsically fault-tolerant quantum computation. In liquid state NMRQIP. Controlled phase shift gates are achieved by using qubit selective pulses and J evolutions, and also by using geometir phases. In order to achieve higher number of qubits in NMR, one explores dipolar couplings which are larger in magnitude, yielding strongly coupled spectra. In such systems since the Hamiltonian consists of terms, it is difficult to apply qubit selective pulses. However such systems have been used for NMRQIP by considering 2n eigen states as basis states of an n-qubit system. In chapter 4, it is shown that non-adiabatic geometric phases can be used to implement controlled phase shift gates in strongly dipolar coupled systems. A detailed theoretical explanation of non-adiabatic geometric phases in NMR is given, by using single transition operators. Using such controlled phase shift gates, the implementation of Deutsch-Jozsa and parity algorithms are demonstrated. Search algorithms play an important role in the filed of information processing. Grovers quantum search algorithm achieves polynomial speed-up over the classical search algorithm. Bruschweiler proposed a Liouville space search algorithm which achieve polymonial speed-up. This algorithm requires a weakly coupled system with a mixed initial state. In chapter 5 we modified the Bruschweiler’s algorithm, so that it can be implemented on a weakly as well as strongly coupled system. The experiments are performed on a strongly dipolar coupled four-qubit system. The experiments from four spin-1/2 nuclei of a molecule oriented in a liquid crystal matrix. Chapter 6 describes the implementation of controlled phase shift gates on a quadrupolar spin-7/2 nucleus, using non-adiabatic geometric phases. The eight energy levels of spin-7/2 nucleus, form a three qubit system. A general procedure is given, for implementing a controlled phase shift gate on a system consisting of any number of energy levels. Finally Collin’s version of three-qubit DJ algorithm using multi-frequency pulses, is implemented in the spin-7/2 system.
35

Effects of Atom-Laser Interaction on Ultra-Cold Atoms / Effekte der Atom-Laser Wechselwirkung auf ultrakalte Atome

Hannstein, Volker Martin 03 April 2006 (has links)
No description available.
36

Interactive quantum information theory

Touchette, Dave 04 1900 (has links)
La théorie de l'information quantique s'est développée à une vitesse fulgurante au cours des vingt dernières années, avec des analogues et extensions des théorèmes de codage de source et de codage sur canal bruité pour la communication unidirectionnelle. Pour la communication interactive, un analogue quantique de la complexité de la communication a été développé, pour lequel les protocoles quantiques peuvent performer exponentiellement mieux que les meilleurs protocoles classiques pour certaines tâches classiques. Cependant, l'information quantique est beaucoup plus sensible au bruit que l'information classique. Il est donc impératif d'utiliser les ressources quantiques à leur plein potentiel. Dans cette thèse, nous étudions les protocoles quantiques interactifs du point de vue de la théorie de l'information et étudions les analogues du codage de source et du codage sur canal bruité. Le cadre considéré est celui de la complexité de la communication: Alice et Bob veulent faire un calcul quantique biparti tout en minimisant la quantité de communication échangée, sans égard au coût des calculs locaux. Nos résultats sont séparés en trois chapitres distincts, qui sont organisés de sorte à ce que chacun puisse être lu indépendamment. Étant donné le rôle central qu'elle occupe dans le contexte de la compression interactive, un chapitre est dédié à l'étude de la tâche de la redistribution d'état quantique. Nous prouvons des bornes inférieures sur les coûts de communication nécessaires dans un contexte interactif. Nous prouvons également des bornes atteignables avec un seul message, dans un contexte d'usage unique. Dans un chapitre subséquent, nous définissons une nouvelle notion de complexité de l'information quantique. Celle-ci caractérise la quantité d'information, plutôt que de communication, qu'Alice et Bob doivent échanger pour calculer une tâche bipartie. Nous prouvons beaucoup de propriétés structurelles pour cette quantité, et nous lui donnons une interprétation opérationnelle en tant que complexité de la communication quantique amortie. Dans le cas particulier d'entrées classiques, nous donnons une autre caractérisation permettant de quantifier le coût encouru par un protocole quantique qui oublie de l'information classique. Deux applications sont présentées: le premier résultat général de somme directe pour la complexité de la communication quantique à plus d'une ronde, ainsi qu'une borne optimale, à un terme polylogarithmique près, pour la complexité de la communication quantique avec un nombre de rondes limité pour la fonction « ensembles disjoints ». Dans un chapitre final, nous initions l'étude de la capacité interactive quantique pour les canaux bruités. Étant donné que les techniques pour distribuer de l'intrication sont bien étudiées, nous nous concentrons sur un modèle avec intrication préalable parfaite et communication classique bruitée. Nous démontrons que dans le cadre plus ardu des erreurs adversarielles, nous pouvons tolérer un taux d'erreur maximal de une demie moins epsilon, avec epsilon plus grand que zéro arbitrairement petit, et ce avec un taux de communication positif. Il s'ensuit que les canaux avec bruit aléatoire ayant une capacité positive pour la transmission unidirectionnelle ont une capacité positive pour la communication interactive quantique. Nous concluons avec une discussion de nos résultats et des directions futures pour ce programme de recherche sur une théorie de l'information quantique interactive. / Quantum information theory has developed tremendously over the past two decades, with analogues and extensions of the source coding and channel coding theorems for unidirectional communication. Meanwhile, for interactive communication, a quantum analogue of communication complexity has been developed, for which quantum protocols can provide exponential savings over the best possible classical protocols for some classical tasks. However, quantum information is much more sensitive to noise than classical information. It is therefore essential to make the best use possible of quantum resources. In this thesis, we take an information-theoretic point of view on interactive quantum protocols and study the interactive analogues of source compression and noisy channel coding. The setting we consider is that of quantum communication complexity: Alice and Bob want to perform some joint quantum computation while minimizing the required amount of communication. Local computation is deemed free. Our results are split into three distinct chapters, and these are organized in such a way that each can be read independently. Given its central role in the context of interactive compression, we devote a chapter to the task of quantum state redistribution. In particular, we prove lower bounds on its communication cost that are robust in the context of interactive communication. We also prove one-shot, one-message achievability bounds. In a subsequent chapter, we define a new, fully quantum notion of information cost for interactive protocols and a corresponding notion of information complexity for bipartite tasks. It characterizes how much quantum information, rather than quantum communication, Alice and Bob must exchange in order to implement a given bipartite task. We prove many structural properties for these quantities, and provide an operational interpretation for quantum information complexity as the amortized quantum communication complexity. In the special case of classical inputs, we provide an alternate characterization of information cost that provides an answer to the following question about quantum protocols: what is the cost of forgetting classical information? Two applications are presented: the first general multi-round direct-sum theorem for quantum protocols, and a tight lower bound, up to polylogarithmic terms, for the bounded-round quantum communication complexity of the disjointness function. In a final chapter, we initiate the study of the interactive quantum capacity of noisy channels. Since techniques to distribute entanglement are well-studied, we focus on a model with perfect pre-shared entanglement and noisy classical communication. We show that even in the harder setting of adversarial errors, we can tolerate a provably maximal error rate of one half minus epsilon, for an arbitrarily small epsilon greater than zero, at positive communication rates. It then follows that random noise channels with positive capacity for unidirectional transmission also have positive interactive quantum capacity. We conclude with a discussion of our results and further research directions in interactive quantum information theory.
37

Nouveaux états quantiques de spin induits par frustration magnétique sur le réseau kagome / New quantum spin states induced by magnetic frustration on the kagome lattice

Kermarrec, Edwin 05 December 2012 (has links)
La déstabilisation de l’ordre antiferromagnétique de Néel au profit de nouvelles phases quantiques à température nulle à deux dimensions est envisageable grâce au phénomène de frustration magnétique. Le modèle théorique de spins Heisenberg S=1/2 répartis sur le réseau bidimensionnel frustré kagome, constitué de triangles joints uniquement par leurs sommets, est susceptible de stabiliser des phases quantiques originales de liquides de spin, qui ne présentent aucune brisure de symétrie à T = 0. Cette thèse a été consacrée à l’étude expérimentale de deux types de composés de spins S=1/2 (Cu2+) à géométrie kagome à l’aide de techniques spectroscopiques locales, la RMN et la μSR, ainsi que de mesures thermodynamiques (susceptibilité magnétique, chaleur spécifique). Dans Mg-herbertsmithite, la frustration est générée par une interaction d’échange premiers voisins antiferromagnétique J et est responsable d’un comportement liquide de spin jusqu’à des températures de l’ordre de J/10000. Par rapport au composé isostructural antérieur, Zn-herbertsmithite, nous avons montré qu’il possédait des propriétés physiques similaires tout en permettant une caractérisation fine du taux de défauts de substitutions Cu/Mg. Nos expériences réalisées à partir d’échantillons contrôlés permettent d’étudier finement l’origine des plateaux de relaxation observés en μSR à basse température en lien avec l’existence des défauts de spins interplans. La kapellasite et l’haydéite possèdent des interactions ferromagnétiques (J1) et antiferromagnétiques (Jd), offrant la possibilité d’explorer le diagramme de phases générées par la compétition de ces interactions sur le réseau kagome. Pour la kapellasite, nos mesures de μSR démontrent le caractère liquide de spin jusqu’à T ≈ J1/1000. La dépendance en température de la susceptibilité magnétique sondée par RMN du 35Cl ainsi que de la chaleur spécifique permettent d’évaluer le rapport Jd/J1 = 0.85, qui localise classiquement son fondamental au sein d’une phase originale de spins non coplanaires à 12 sous-réseaux appelée cuboc2. Les interactions présentes dans l’haydéite localisent son fondamental au sein de la phase ferromagnétique, en bon accord avec nos mesures qui indiquent une transition partielle à caractère ferromagnétique à T = 4 K. Cette étude confirme la pertinence du réseau kagome frustré pour la stabilisation de phases quantiques originales et démontre l’existence d’une nouvelle phase liquide de spin sur ce réseau, distincte de celle attendue pour des spins couplés antiferromagnétiquement. / Magnetic frustration helps destabilizing conventional Néel order at T = 0 in dimensions 2, and therefore allows the emergence of new original quantum phases. The S=1/2 Heisenberg Hamiltonian on the highly frustrated kagome lattice, which is made of corner-sharing triangles, is expected to stabilize such quantum states, including the spin liquid ones which do not break any symmetry even at T = 0. This thesis work focuses on the experimental study of two kinds of S=1/2 (Cu2+) kagome compounds using NMR and μSR local probes as well as thermodynamic measurements (magnetic susceptibility, specific heat).In Mg-herbertsmithite magnetic frustration occurs thanks to a first nearest-neighbor antiferromagnetic interaction J and is responsible for the spin liquid behavior observed down to T = J/10000. In comparison with the formerly known isostructural counterpart Zn-herbertsmithite, we showed that it shares similar physical magnetic properties while allowing sensitive structural refinements and therefore a control of the level of Cu/Mg substitutions defects. Our experiments performed on such well controlled materials allow us to investigate the origin of the dynamical relaxation in these compounds in relation with the existence of interplane spins defects. Kapellasite and haydeite possess both ferromagnetic (J1) and antiferromagnetic (Jd) interactions. They offer the possibility to explore the phase diagram generated by such competing interactions on the kagome lattice. For kapellasite, our μSR experiments evidenced a spin liquid character down to T ≈ J1/1000. We tracked the temperature dependence of the magnetic susceptibility probed by 35Cl-NMR as well as of the specific heat, from which the ratio Jd/J1 = 0.85 can be evaluated. This ratio locates the ground-state of kapellasite to be within an original non-coplanar spin phase described by 12 magnetic sublattices and called cuboc2. Magnetic exchanges in haydeite locate its ground-state within the ferromagnetic phase. Both our local and thermodynamic measurements point to a partial ferromagnetic transition at T = 4 K. This study confirms the relevance of the frustrated quantum kagome lattice to stabilize original quantum phases and suggests the existence of a new spin liquid phase, distinct from the one expected for antiferromagnetically coupled spins.
38

Interfacing mechanical resonators with excited atoms

Sanz Mora, Adrián 28 September 2018 (has links)
We investigate two different coupling schemes between a nano-scale mechanical resonator and one-electron atoms. In these schemes, classical electromagnetic radiation mediates a mutual communication between the mechanical resonator and the atoms. In the process it generates atomic coherences, quantum superpositions of excited electronic levels of the atoms. An atomic coherence is highly responsive to subtle variations in the relative frequencies of the levels participating in such superposition state. By exposing the atoms to electromagnetic radiation modulated by the motion of the mechanical resonator, we show how the response of an atomic coherence can, under appropriate conditions, be used to affect on demand the dynamical state of the mechanical resonator. The first scheme realizes a long range interface between a mechanical resonator and an ensemble of three-level atoms. Here, mechanically modulated electromagnetic radiation comes from a laser beam reflected off an oscillating mirror, the mechanical resonator. This light beam drives the transition between an excited level and a hyperfine sublevel of the atoms with a certain detuning. A weaker light beam resonantly couples to the transition between the excited level and another hyperfine sublevel. On full resonance, the atoms evolve into a stationary coherence of the above (non-absorbing) hyperfine sublevels only. The atoms then become transparent to the weaker light beam, in a phenomenon called electromagnetically induced transparency. Off resonance, we find that this transparency is modulated at the mirror frequency with some phase shift, which allows the weaker beam to cause resonant backaction onto the moving mirror. The strength of this backaction is enhanced near atomic resonances and its character can be switched between amplification or damping of mirror vibrations by adjusting the detuning. In contrast, the second scheme accomplishes a closer range interface between a torsion pendulum and guided two level Rydberg atoms. Attaching a point electric dipole to the torsion pendulum allows electromagnetic coupling to two Rydberg levels of a passing atom. This coupling modifies the eigenfrequencies of the Rydberg levels such that they become dependent on the phonon number of the torsion pendulum. Via Ramsey interferometry, we may readout this effect and thus measure the phonon number. We show that, by subjecting several atoms, one by one, to a Ramsey measurement, a quantum non-demolition detection of the phonon number is feasible. Likewise, we show coherent oscillator displacements possible, by driving the atoms with external fields while they interact with the torsion pendulum. We propose a protocol to reconstruct the quantum state of motion of the torsion pendulum, combining these two techniques, Ramsey measurements and oscillator displacements. Our interfaces between a mechanical resonator and atoms provide alternative routes for the control of the state of motion, ultimately quantum mechanical, of a mechanical resonator, in which the latter is not restricted to be part of a cavity. We will thus ease quantum dynamical manipulations of mechanical resonators of sub micron scales, for which an efficient design of cavity opto- and electro-mechanical systems is hard.
39

Lichtabsorption und Energietransfer in molekularen Aggregaten

Roden, Jan 29 June 2011 (has links) (PDF)
Aggregate aus Molekülen, in denen die Moleküle über ihre elektronischen Übergangsdipole miteinander wechselwirken, finden wegen ihrer besonderen optischen und Energietransfer-Eigenschaften vielfach Anwendung in Natur, Technik, Biologie und Medizin. Beispiele sind die wechselwirkenden Farbstoffmoleküle, die in den Lichtsammelkomplexen Photosynthese betreibender Lebewesen Sonnenlicht absorbieren und die Energie als elektronische Anregung hocheffizient zu Reaktionszentren weiterleiten, oder Aggregate aus tausenden von organischen Farbstoffmolekülen in einem flüssigen Lösungsmittel. Die Wechselwirkung der Moleküle (Monomere) führt zu über mehrere Moleküle delokalisierten angeregten elektronischen Zuständen, die die Energietransfer-Dynamik und die Absorptionsspektren der Aggregate prägen. Die Lichtabsorption und der Energietransfer in molekularen Aggregaten werden oft stark von Vibrationen beeinflusst, sowohl von internen Vibrationsfreiheitsgraden der Monomere als auch von Vibrationen der Umgebung (z. B. das Proteingerüst in Lichtsammelkomplexen oder eine Flüssigkeitsumgebung), an die die elektronische Anregung koppelt. Da es schwierig ist, diese Vibrationen in die theoretische Beschreibung des Transfers und der Spektren einzubeziehen, ist ihr genauer Einfluss noch nicht gut verstanden. Um dieses Verständnis zu verbessern, entwickeln wir in dieser Arbeit neue Berechnungsmethoden und untersuchen damit die Auswirkungen der Vibrationen. Zuerst betrachten wir die diskreten internen Vibrationsfreiheitsgrade der Monomere. Dazu haben wir eine effiziente numerische Methode entwickelt, die es uns erlaubt, mehrere Freiheitsgrade pro Monomer explizit einzubeziehen und die volle Schrödinger-Gleichung zu lösen. Mit den Modellrechnungen können wir experimentelle Aggregat-Spektren der Helium-Nanotröpfchen-Isolation-Spektroskopie, mit der man die einzelnen Vibrationslinien der Monomere auflösen kann, zum ersten Mal quantitativ reproduzieren. In früheren theoretischen Behandlungen wurde oft nur ein einziger Vibrationsfreiheitsgrad pro Monomer berücksichtigt – nun zeigen wir, dass die Einbeziehung möglichst vieler Freiheitsgrade für eine realistische Beschreibung von Aggregat-Spektren wichtig ist. Um neben den internen Vibrationen auch den Einfluss der Umgebung beschreiben zu können, nutzen wir den Zugang offener Quantensysteme und nehmen an, dass die elektronische Anregung an ein strukturiertes Kontinuum von Vibrationsfreiheitsgraden koppelt. Erstmals wenden wir die sogenannte nicht-markovsche Quanten-Zustands-Diffusion auf die molekularen Aggregate an, wodurch wir mit Hilfe einer Näherung Spektren und Transfer mit einer sehr effizienten stochastischen Schrödinger-Gleichung berechnen können. So können wir Merkmale gemessener Aggregat-Spektren, wie das schmale J-Band und das breite strukturierte H-Band, in Abhängigkeit der Anzahl der Monomere und der Wechselwirkungsstärke zwischen den Monomeren beschreiben. Auch können wir den Übergang von kohärentem zu inkohärentem Transfer erfassen. Eine für den Transfer relevante Größe ist die Anzahl der kohärent gekoppelten Monomere im Aggregat. Diese schätzt man häufig aus der Verschmälerung des Aggregat-Spektrums ab. Wir finden jedoch für verschiedene Spektraldichten des Vibrationskontinuums sehr unterschiedliche Verschmälerungen des Aggregat-Spektrums, die wir analytisch erklären. So zeigen wir, dass die bisherige einfache Abschätzung der Anzahl der kohärent gekoppelten Monomere nicht gerechtfertigt ist, da die Verschmälerung stark vom angenommenen Modell abhängt.
40

Lichtabsorption und Energietransfer in molekularen Aggregaten

Roden, Jan 10 March 2011 (has links)
Aggregate aus Molekülen, in denen die Moleküle über ihre elektronischen Übergangsdipole miteinander wechselwirken, finden wegen ihrer besonderen optischen und Energietransfer-Eigenschaften vielfach Anwendung in Natur, Technik, Biologie und Medizin. Beispiele sind die wechselwirkenden Farbstoffmoleküle, die in den Lichtsammelkomplexen Photosynthese betreibender Lebewesen Sonnenlicht absorbieren und die Energie als elektronische Anregung hocheffizient zu Reaktionszentren weiterleiten, oder Aggregate aus tausenden von organischen Farbstoffmolekülen in einem flüssigen Lösungsmittel. Die Wechselwirkung der Moleküle (Monomere) führt zu über mehrere Moleküle delokalisierten angeregten elektronischen Zuständen, die die Energietransfer-Dynamik und die Absorptionsspektren der Aggregate prägen. Die Lichtabsorption und der Energietransfer in molekularen Aggregaten werden oft stark von Vibrationen beeinflusst, sowohl von internen Vibrationsfreiheitsgraden der Monomere als auch von Vibrationen der Umgebung (z. B. das Proteingerüst in Lichtsammelkomplexen oder eine Flüssigkeitsumgebung), an die die elektronische Anregung koppelt. Da es schwierig ist, diese Vibrationen in die theoretische Beschreibung des Transfers und der Spektren einzubeziehen, ist ihr genauer Einfluss noch nicht gut verstanden. Um dieses Verständnis zu verbessern, entwickeln wir in dieser Arbeit neue Berechnungsmethoden und untersuchen damit die Auswirkungen der Vibrationen. Zuerst betrachten wir die diskreten internen Vibrationsfreiheitsgrade der Monomere. Dazu haben wir eine effiziente numerische Methode entwickelt, die es uns erlaubt, mehrere Freiheitsgrade pro Monomer explizit einzubeziehen und die volle Schrödinger-Gleichung zu lösen. Mit den Modellrechnungen können wir experimentelle Aggregat-Spektren der Helium-Nanotröpfchen-Isolation-Spektroskopie, mit der man die einzelnen Vibrationslinien der Monomere auflösen kann, zum ersten Mal quantitativ reproduzieren. In früheren theoretischen Behandlungen wurde oft nur ein einziger Vibrationsfreiheitsgrad pro Monomer berücksichtigt – nun zeigen wir, dass die Einbeziehung möglichst vieler Freiheitsgrade für eine realistische Beschreibung von Aggregat-Spektren wichtig ist. Um neben den internen Vibrationen auch den Einfluss der Umgebung beschreiben zu können, nutzen wir den Zugang offener Quantensysteme und nehmen an, dass die elektronische Anregung an ein strukturiertes Kontinuum von Vibrationsfreiheitsgraden koppelt. Erstmals wenden wir die sogenannte nicht-markovsche Quanten-Zustands-Diffusion auf die molekularen Aggregate an, wodurch wir mit Hilfe einer Näherung Spektren und Transfer mit einer sehr effizienten stochastischen Schrödinger-Gleichung berechnen können. So können wir Merkmale gemessener Aggregat-Spektren, wie das schmale J-Band und das breite strukturierte H-Band, in Abhängigkeit der Anzahl der Monomere und der Wechselwirkungsstärke zwischen den Monomeren beschreiben. Auch können wir den Übergang von kohärentem zu inkohärentem Transfer erfassen. Eine für den Transfer relevante Größe ist die Anzahl der kohärent gekoppelten Monomere im Aggregat. Diese schätzt man häufig aus der Verschmälerung des Aggregat-Spektrums ab. Wir finden jedoch für verschiedene Spektraldichten des Vibrationskontinuums sehr unterschiedliche Verschmälerungen des Aggregat-Spektrums, die wir analytisch erklären. So zeigen wir, dass die bisherige einfache Abschätzung der Anzahl der kohärent gekoppelten Monomere nicht gerechtfertigt ist, da die Verschmälerung stark vom angenommenen Modell abhängt.

Page generated in 0.0572 seconds