61 |
Modélisation numérique de l'interaction d'un écoulement de fluide viscoplastique avec un obstacle rigide par la méthode SPH : Application aux laves torrentielles / Numerical modelling of the interaction between a viscoplastic fluid and a rigid obstacle, using the SPH method. Application to debris flows.Labbé, Mathieu 20 March 2015 (has links)
Dans le présent travail, nous étudions l'impact sur un obstacle rigide d'un écoulement transitoire à surface libre de fluide viscoplastique. Cette étude est conduite numériquement à l'aide de la méthode SPH (Smoothed Particle Hydrodynamics), en y intégrant le modèle rhéologique de Herschel-Bulkley. Le code employé est adapté à nos besoins et validé sur des cas test classiques. Les caractéristiques locales de l'écoulement à proximité de l'obstacle sont analysées et deux régimes d'impact sont mis en évidence en fonction de la pente d'écoulement. L'étude des pressions exercées sur l'obstacle, conduite spatialement et temporellement en fonction de ces régimes d'impact, nous permet de mettre en évidence les rôles respectifs des composantes gravitationnelle et cinétique de la pression. Nos résultats sont comparés systématiquement à des résultats expérimentaux issus de travaux précédents et sont cohérents avec ces derniers. Une étude comparative de nos écoulements de fluide viscoplastique avec des écoulements de matériau granulaires de propriétés similaires nous conduit à mettre en évidence des caractéristiques communes entre les deux matériaux. / In this work, we study the impact of a transient free-surface flow of viscoplastic fluid on a rigid obstacle. This study is conducted numerically using the SPH (Smoothed Particle Hydrodynamics) method, and the Herschel-Bulkley rheological model. The SPH code is adapted to our needs and validated on classic benchmarks. The local characteristics of the flow near the obstacle are analysed and two impact regimes are highlighted depending on the slope angle. By studying of the pressure exerted on the obstacle, both spatially and temporally, with regards to these impact regimes, we evidence the respective roles of the gravitational and kinetic components of the pressure. Our results are systematically compared with experimental data from a previous work and are shown to be consistent. A comparative study conducted on both our viscoplastic flows and flows of granular material of similar properties highlights common characteristics of the two materials.
|
62 |
Évolution de la porosité des grains : une solution aux problèmes de formation planétaire ? / Evolution of grain porosity during growth : a solution to planetary formation barriers?Garcia, Anthony 04 September 2018 (has links)
Dans les disques protoplanétaires, les grains micrométriques croissent jusqu'à atteindre des tailles de planétésimaux avant de finalement former des planètes. Cependant,des études dynamiques ont montré qu'une fois que les grains atteignent une taille critique, ils dérivent rapidement vers l'étoile et y sont accrétés. Ce problème est connu comme la barrière de dérive radiale. De plus, des expériences en laboratoire ont montré que les grains peuvent fragmenter ou rebondir et ainsi arrêter la croissance avant les tailles kilométriques.Afin de passer outre ces barrières, plusieurs méthodes ont été proposés comme les pièges à particules (dans les vortex ou les sillons planétaires) qui demandent des évolutions dynamiques à grande échelle. Dans ce travail, nous choisissons d'étudier les propriétés intrinsèques de la poussière pendant leur croissance et plus particulièrement leur porosité.Nous développons un modèle d'évolution de la porosité pendant la croissance en fonction de la masse des grains pour plusieurs régimes d'expansion/compression (Kataoka et al. 2013, Okuzumi et al. 2012) et l'implémentons dans notre code SPH bifluide (Barrière-Fouchet et al. 2005). Nous trouvons que la croissance des grains poreux est accélérée en comparaison aux grains compacts et leur taille peut atteindre plusieurs kilomètres. De surcroît,la dérive est légèrement ralentie pour les grains poreux qui peuvent croître jusqu'à de plus grandes tailles avant de commencer à dériver vers l'étoile. Nous constatons aussi que les grains des régions externes du disque grossissent plus que quand l'effet de la porosité est négligé. Ces deux mécanismes peuvent aider les grains à outrepasser la barrière de dérive radiale, notamment en passant dans le régime de traînée de Stokes, et ainsi former des planétésimaux.Nous étudions aussi l'effet de la fragmentation et du rebond sur le comportement des grains. En considérant un seuil de fragmentation constant, nous observons que la croissance de grains poreux est retardée un temps par la fragmentation mais qu'elle se poursuit vers de grandes tailles et par conséquent, permet de passer outre les problèmes dus à la fragmentation et à la dérive radiale. Cependant, les grains très poreux sont plus fragiles et peuvent se fragmenter plus facilement entraînant une accrétion massive des poussières dans l'étoile. De plus, nous montrons que les effets du rebond peuvent être négligés devant ceux de la fragmentation.Enfin, nous observons également que la taille des monomères et du paramètre de viscosité turbulente peut avoir une influence sur l'évolution de la porosité et donc de la poussière dans le disque.La porosité permet donc de favoriser la croissance des grains et accélérer le découplage des grains. Les grains très poreux peuvent être plus sensibles à la fragmentation.Cependant, les effets collectifs de la poussière couplés à la porosité peuvent aider les grains à outrepasser les barrières de formation planétaire. La barrière de rebond peut être négligée dans le cas de grains poreux devant les autres barrières. Enfin,l'intensité de la turbulence altère la croissance et ainsi le devenir de la poussière.La taille des monomères modifie le facteur de remplissage sans toutefois impacter le découplage des grains dans les parties internes / In protoplanetary discs, micron-sized grains should grow up to planetesimal sizes in order to ultimately form planets. However, dynamical studies show that once they reach a critical size, they drift rapidly into the accreting star. This is known as the radial-drift barrier. Moreover, laboratory experiments have shown that grains can fragment or bounce, stopping the growth towards planetesimal sizes.In order to overcome those barriers, several methods have been proposed such as particles traps (e.g. vortices or planet gaps) which all involve large-scale dynamics.In this work, we choose to investigate the intrinsic properties of the grains during their growth, in particular their porosity.We thus consider the growth of grains with variable porosity as a function of their mass in several regimes of compression/expansion (Kataoka et al. 2013, Okuzumiet al. 2012) and implement it in our 3D SPH two-fluid code (Barrière-Fouchetet al. 2005).We find that growth is accelerated for porous grains that can reach kilometersizes. On the other hand, drift is slightly slowed down for porous grains that can grow up to larger sizes before drifting towards the star. As a result, grains in the outer regions of the disc reach larger sizes than when porosity is neglected. Those two mechanisms can help grains overcome the radial-drift barrier and form planetesimals.The Stokes drag regime appears to play a substantial part in maintaining grains in the disc.Considering a constant fragmentation threshold, we also find out that growth is delayed because of fragmentation but reaching large sizes and thus overcoming problems due to fragmentation and radial drift is still possible. However, very fluffy grains are fragile and can be easily disrupted leading to a massive accretion of dust into the star. Moreover, we show that the effects due to dust bouncing can be neglected compared to fragmentation.Finally, we investigate the influence of the size of monomers and -parameter on the evolution of porosity and then dust in the disc.Dust growth is accelerated by porosity and thus promotes grains decoupling. Very fluffy grains are more affected by fragmentation. However, dust collective effects and porosity can help grains to overcome planet formation barriers. Besides,the bouncing barrier can be neglected in the case of porous dust compared to other barriers. Finally, the intensity of turbulence can alter the growth and so the outcome of dust. The size of monomers modifies the grain filling factor without impacting dust decoupling in the inner parts of the disc
|
63 |
Uma análise comparativa de métodos aproximativos baseados em smoothed particle hydrodynamics para animação de fluidos / A comparative analysis of approximation methods based on smoothed particle hydrodynamics for fluid animationBarbosa, Charles Welton Ferreira January 2013 (has links)
BARBOSA, Charles Welton Ferreira. Uma análise comparativa de métodos aproximativos baseados em smoothed particle hydrodynamics para animação de fluidos. 2013. 59 f. : Dissertação (mestrado) - Universidade Federal do Ceará, Centro de Ciências, Departamento de Computação, Fortaleza-CE, 2013. / Submitted by guaracy araujo (guaraa3355@gmail.com) on 2016-06-14T18:05:54Z
No. of bitstreams: 1
2013_dis_cwfbarbosa.pdf: 4026755 bytes, checksum: 3808122d6233e5855d6891854317c373 (MD5) / Approved for entry into archive by guaracy araujo (guaraa3355@gmail.com) on 2016-06-14T18:07:17Z (GMT) No. of bitstreams: 1
2013_dis_cwfbarbosa.pdf: 4026755 bytes, checksum: 3808122d6233e5855d6891854317c373 (MD5) / Made available in DSpace on 2016-06-14T18:07:17Z (GMT). No. of bitstreams: 1
2013_dis_cwfbarbosa.pdf: 4026755 bytes, checksum: 3808122d6233e5855d6891854317c373 (MD5)
Previous issue date: 2013 / Animations of fluids, such as water or smoke, are used to add details to virtual games or films. Various methods exist for simulating fluids using particle systems, including the Smoothed Particle Hydrodynamics (SPH) method. The SPH method is a good choice for simulating fluids for its easy description and implementation. This work describes some methods based on SPH for general fluid simulation, and for the interaction between fluids and solids. These methods are analysed and compared on their realism, and a few weak points of each method are presented. This analysis may be used for the creation of better methods based on SPH, and for the realistic animation of fluids / Animações de fluidos, como a água ou fumaça, são utilizadas para introduzir detalhes em jogos virtuais ou filmes. Vários métodos existem para a simulação de fluidos utilizando sistemas de partículas e, em especial, utilizando o método Smoothed Particle Hydrodynamics, ou SPH. O método SPH é uma boa escolha para a simulação de fluidos por sua fácil descrição e implementação. Este trabalho apresenta alguns métodos baseados no SPH para a simulação de fluidos gerais, e para a interação entre fluidos e sólidos. Esses métodos são analisados e comparados relativos ao seu realismo, apresentando alguns pontos fracos de cada método. Essa análise pode ser utilizada para guiar a implementação de melhores métodos baseados no SPH, e para a animação realista de fluidos.
|
64 |
Etude physique et numérique de l'écoulement dans un dispositif d'injection de turbine PeltonLeduc, Julien 13 December 2010 (has links)
La turbine Pelton est une turbine hydraulique dont le fonctionnement se caractérise par l’interaction d’un jet d’eau avec les augets d’une roue. Cette étude a pour but de comprendre les phénomènes influençant le jet et son interaction avec les augets. Pour cela deux actions différentes ont été menées. Une première a visé à caractériser expérimentalement la fragmentation d’un jet de turbine Pelton. La seconde s’est attachée à développer une méthode numérique pouvant mener`à la simulation précise de jets réels de turbines Pelton. La partie expérimentale a permis de déterminer le mode de fragmentation de ces jets (atomisation turbulente), mais aussi l’influence de la rugosité des parois de l’injecteur sur les performances de la turbine. La participation de ce travail à un projet expérimental a permis de montrer l’influence de l’écoulement en sortie d’injecteur sur la fragmentation du jet. Les phénomènes physiques influençant principalement l’évolution du jet ont ainsi été déterminés. La partie numérique a eu pour but de mettre en place une méthode permettant de simuler l’évolution d’un jet de turbine Pelton (fragmentation) et son interaction avec un auget. Etant donnés les progrès de la méthode SPH-ALE pour la simulation d’impact de jets pour les turbines Pelton, il a été décidé d’adapter cette méthode pour les simulations visées. Ainsi une étude du choix de la vitesse des interfaces de problème de Riemann a permis de réaliser un modèle multiphase stable pour les forts rapports de densité (eau-air). Cette méthode s’est avérée garantir les propriétés de continuité de vitesse normale et de pression à l’interface entre les fluides. L’ajout des phénomènes de tension de surface s’est fait par l’adaptation du modèle CSF (Continuum Surface Force) et le développement d’un second modèle nommé Laplace Law Pressure Correction (LLPC).L’intégration du saut de pression dans le solveur de Riemann a nécessité une étude précise du calcul de la courbure et a permis d’améliorer la simulation de loi de Laplace. La méthode numérique a été ensuite validée sur les cas académiques d’onde gravitaire, de rupture de barrage et d’oscillation de goutte. Les ressources en mémoire et le temps de calcul associé à cette méthode ont nécessité la parallélisation du code de calcul. Le caractère lagrangien de la méthode a très largement influencé la méthode de découpe de domaine pour permettre une bonne répartition de la charge de calcul entre les différents processeurs. En conclusion les phénomènes physiques influençant la fragmentation de jets issus d’injecteurs de turbine Pelton sont désormais mieux connus et ils ont pu être introduits dans la méthode numérique. Les prochains développements porteront sur la simulation de jets dont la condition d’entrée s’attachera à être représentative des caractéristiques d’un écoulement en sortie d’un injecteur de turbine Pelton. / A Pelton turbine is characterized by a water jet which is impacting rotating buckets. The main goal of this study is to understand the phenomena which are impacting the jet and its interaction with the bucket. This study was considering two main works. One is considering experiments which allow determining the jet fragmentation. The second part considers development of a numerical code able to reproduce phenomena linked to Pelton jet fragmentation. The experimental part succeeds to associate Pelton jet behavior with mode of jet fragmentation (turbulent dispersion) and shows the impact of hydraulic roughness on Pelton turbine performances. The access to experimental results from a project involving this PhD work, demonstrates the role of the inlet velocity/turbulence profile on the jet fragmentation. The numerical part used the SPH-ALE (Smoothed Particle Hydrodynamics - Arbitrary Lagrange Euler) method to implement physical models linked with jet fragmentation. This choice was done because of its ability to predict pressure fields resulting of the interaction of a water jet and a rotating bucket. A multiphase model was developed based on a modification of the velocity of the interface of Riemann problem. This model does not diffuse the interface and recovers continuity of normal velocity and pressure at the interface between both fluids. Surface tension effect was implemented through an adaptation of the CSF (Continuum Surface Force) model and through amodel called LLPC for Laplace Law Pressure Correction. A study of the computational methods to determine the interface curvature was performed for the integration of the pressure jump in the Riemann solver. Validation was done on academicals test cases as gravity waves, dam breakor droplet oscillations. The numerical code was parallelized to perform large numerical simulations.To conclude, the numerical code integrates physical phenomena which were shown as important in the experiments. The developments will try to perform jet simulation with inlet condition which will be representative of flow conditions at the outlet of a Pelon turbine injector.
|
65 |
Simulation numérique par la méthode SPH de fuites de fluide consécutives à la déchirure d'un réservoir sous impact / Numerical simulation with the SPH method of fluid leackage resulting from the rupture of a tank under impactCaleyron, Fabien 28 October 2011 (has links)
Le récent développement des menaces terroristes renforce l'effort de recherche du CEA et d'EDF pour la protection des citoyens et des installations. De nombreux scénarios doivent être envisagés comme, par exemple, la chute d'un avion de ligne sur une structure de génie civil. La dispersion du carburant dans la structure, son embrasement sous forme de boule de feu et les effets thermiques associés sont des éléments essentiels du problème. L'utilisation de modèles numériques est indispensable car des expériences seraient difficiles à mettre en œuvre, coûteuses et dangereuses. Le problème type que l'on cherche à modéliser est donc l'impact d'un réservoir rempli de fluide, sa déchirure et la dispersion de son contenu. C'est un problème complexe qui fait intervenir une structure mince avec un comportement fortement non-linéaire allant jusqu'à rupture, un fluide dont la surface libre peut varier drastiquement et des interactions fluide-structure non permanentes. L'utilisation des méthodes numériques traditionnelles pour résoudre ce problème semble difficile, essentiellement parce qu'elles reposent sur un maillage. Cela complique la gestion des grandes déformations, la modélisation des interfaces variables et l'introduction de discontinuités telles que les fissures. Afin de s'affranchir de ces problèmes, la méthode sans maillage SPH (\og Smoothed Particle Hydrodynamics \fg) a été utilisée pour modéliser le fluide et la structure. Ce travail, inscrit dans la continuité de recherches précédentes, a permis d'étendre un modèle de coque SPH à la modélisation des ruptures. Un algorithme de gestion des interactions fluide-structure a également été adapté à la topologie particulière des coques. Afin de réduire les coûts de calcul importants liés à ce modèle, un couplage avec la méthode des éléments finis a également été élaboré. Il permet de n'utiliser les SPH que dans les zones d'intérêt où la rupture est attendue. Finalement, des essais réalisés par l'ONERA sont étudiés pour valider la méthode. Ces travaux ont permis de doter le logiciel de dynamique rapide Europlexus d'un outil original et efficace pour la simulation des impacts de structures minces en interaction avec un fluide. Un calcul démonstratif montre enfin la pertinence de l'approche et sa mise en œuvre dans un cadre industriel. / The recent development of terrorist threats increases the research effort of the french Atomic Energy Commission (CEA) and the French Electricity company (EDF) for the protection of citizens and facilities. Many scenarios should be considered as, for example, the fall of an airliner on a civil engineering structure. The dispersion of fuel in the structure, the formation of a fireball and associated thermal effects are essential elements of the problem. The use of numerical models is essential because experiences would be difficult to organize, costly and dangerous. The typical problem that we want to model is the impact of a tank filled with fluid, its rupture and the dispersion of its contents. It is a complex problem which involves a thin structure with a highly non-linear behavior up to rupture, a fluid with a free surface that can vary drastically and non permanent fluid-structure interactions. The use of traditional numerical methods to solve this kind of problems is difficult, mainly because they rely on a mesh. This complicates the management of large deformations, the modeling of moving interfaces and the introduction of discontinuities such as cracks. To overcome these problems, the meshfree method SPH (Smoothed Particle Hydrodynamics) was used to model both the fluid and the structure. This work, which is a continuation of previous research, has extended a model of SPH shell to the modeling of ruptures. An algorithm for managing fluid-structure interactions has also been adapted to the particular topology of shells. To reduce the important computational costs associated with this model, a coupling with the finite element method was also developed. It allows the use of SPH in areas of interest where the rupture is expected. Finally, tests performed by the french Aerospace Lab (ONERA) are studied to validate the method. This work helped to provide fast dynamic software Europlexus an original and effective tool for the simulation of the impact of thin structures interacting with fluid. A demonstrative calculation finally shows the relevance of the approach and its use within an industrial framework.
|
66 |
Couplage SPH-DEM pour l'étude de l'érosion dans les ouvrages hydrauliquesSjah, Jessica 18 December 2013 (has links)
L’érosion est un phénomène d’arrachage et de transport de particules solides par des efforts hydrauliques au sein des ouvrages hydrauliques. Cette pathologie très représentée dans les ouvrages en terre peut conduire à la rupture, aussi, la comprendre et la maîtriser constituent des enjeux sociétaux et industriels très forts. L’érodabilité des matériaux se caractérise au travers notamment d’un essai dit d’érosion de conduit et sa modélisation numérique constitue le pivot de ce travail de thèse. Le phénomène d’érosion est un problème couplé entre le fluide et le solide et nous utiliserons deux codes construits sur des approches particulaires pour aborder le problème : ASPHODEL (ANDRITZLMFA) pour la partie fluide (méthode SPH-ALE Smoothed Particle Hydrodynamics – Arbitrary Lagrangian Eulerian) et YADE (L3S-R) pour la fraction solide (méthode DEM Discrete Element Method). Alors que YADE a été largement utilisé pour modéliser des problèmes géotechniques, ASPHODEL n’a pas encore été évalué dans un tel contexte. Ce travail constituera alors une étude de faisabilité pour l’utilisation d’ASPHODEL dans un contexte du génie civil et donnera les conditions pour espérer obtenir des résultats quantitatifs pour les phénomènes étudiés. Dans un deuxième temps, le couplage entre les deux codes sera construit dans le but d’étudier les phénomènes d’arrachage de particules le long de conduits formés à travers des matériaux granulaires cohérents. La validation du code ASPHODEL à l’échelle de la particule a été effectuée par l’étude de l’écoulement visqueux autour d’un objet 2D (cylindre) fixe et isolé de section circulaire mais aussi carrée ou triangulaire. Les forces de trainée, de portance, le coefficient de pression autour du cylindre et le nombre de Strouhal sont comparés à des résultats issus de la littérature pour différents Reynolds en régime laminaire. La validation du code ASPHODEL à l’échelle de l’échantillon a consisté à étudier un écoulement fluide entre des parois lisses ainsi que des parois constituées de particules solides fixes créant une rugosité. Le coefficient de frottement a été systématiquement calculé et comparé aux résultats issus de la littérature et le torseur fluide sur chaque particule solide des parois a été aussi évalué. Enfin, le couplage partitionné entre les deux codes fluide et solide a été construit et validé qualitativement pour le problème de la sédimentation sous gravité d’un grain solide rigide dans un fluide visqueux. / Erosion is a phenomenon related to the detachment and transport of solid particles by hydraulic efforts in hydraulic structures. This pathology which is common in earth structures can lead to their failure, therefore, the understanding and the prediction of this risk is of paramount importance. Soil erodibility is in many cases characterized through the hole erosion test and its numerical modeling is the pivot point of this thesis. The phenomenon of erosion is a coupled problem between the fluid and solid, and two particle based codes are chosen to address this problem : ASPHODEL (ANDRITZ - LMFA) for the fluid phase (method SPH – ALE Smoothed Particle Hydrodynamics - Arbitrary Lagrangian Eulerian) and YADE (L3S -R) for the solid phase (method DEM Discrete Element method). While YADE has widely been used to model geotechnical problems, ASPHODEL has not been evaluated in this context. This work will constitute a feasibility study for the use of ASPHODEL and its ability to obtain quantitative results for the studied phenomena is addressed. Furthermore, the coupling between the two codes will be carried out in order to study the phenomena of particles detachment along conducts which walls are made with cohesive granular materials. To validate the code ASPHODEL at the particle scale, a study of the viscous flow around a 2D fixed object (cylinder) with different sections (circular, triangular and square) is performed. The drag force, the lift force, the pressure coefficient around the cylinder and the Strouhal number are compared to results obtained from the literature for different Reynolds in the laminar regime. In addition, the coefficient of friction is systematically calculated and also compared with results taken from the literature. The fluid forces on each solid particle are also evaluated. Finally, the partitioned coupling between the solid and fluid codes is developed and qualitatively validated with the problem of sedimentation under gravity of a rigid solid grain in a viscous fluid.
|
67 |
Simulation de fluides, approche lagrangienneWattez, Adrien January 2014 (has links)
Avec la généralisation du recours à l’infographie dans l’industrie des loisirs, la demande concernant la production de scènes de simulation de fluides d’un réalisme croissant a fortement augmenté durant les deux dernières décennies. Nous proposons de nombreux éléments pertinents pour simuler le fluide, essentiellement tournés vers l’approche lagrangienne (les méthodes particulaires). Cette présentation a donc pour objet l’étude et la mise au point de techniques permettant de reproduire le comportement des fluides s’appuyant sur l’aspect particulaire du fluide. Les algorithmes de ces dernières années permettent un gain de performance significatif, nous permettant d’obtenir des simulations de fluides incompressibles en temps réel. L’usage des noyaux constants par morceaux, nouvel outil de calcul numérique, au sein de simulations de fluides dites lagrangiennes sera également abordé. Avec l’augmentation continue de la puissance de calcul et de nouvelles avancées telles que la programmation dite GPGPU, nous verrons également comment obtenir une recherche de voisinage efficace permettant d’augmenter grandement les performances de calcul.
|
68 |
Numerical Modeling of Tsunami-induced Hydrodynamic Forces on Free-standing Structures Using the SPH MethodSt-Germain, Philippe 23 November 2012 (has links)
Tsunamis are among the most terrifying and complex physical phenomena potentially affecting almost all coastal regions of the Earth. Tsunami waves propagate in the ocean over thousands of kilometres away from their generating source at considerable speeds. Among several other tsunamis that occurred during the past decade, the 2004 Indian Ocean Tsunami and the 2011 Tohoku Tsunami in Japan, considered to be the deadliest and costliest natural disasters in the history of mankind, respectively, have hit wide stretches of densely populated coastal areas. During these major events, severe destruction of inland structures resulted from the action of extreme hydrodynamic forces induced by tsunami flooding. Subsequent field surveys in which researchers from the University of Ottawa participated ultimately revealed that, in contrast to seismic forces, such hydrodynamic forces are not taken into proper consideration when designing buildings for tsunami prone areas. In view of these limitations, a novel interdisciplinary hydraulic-structural engineering research program was initiated at the University of Ottawa, in cooperation with the Canadian Hydraulic Centre of the National Research Council, to help develop guidelines for the sound design of nearshore structures located in such areas.
The present study aims to simulate the physical laboratory experiments performed within the aforementioned research program using a single-phase three-dimensional weakly compressible Smoothed Particle Hydrodynamics (SPH) numerical model. These experiments consist in the violent impact of rapidly advancing tsunami-like hydraulic bores with individual slender structural elements. Such bores are emulated based on the classic dam-break problem. The quantitatively compared measurements include the time-history of the net base horizontal force and of the pressure distribution acting on columns of square and circular cross-sections, as well as flow characteristics such as bore-front velocity and water surface elevation. Good agreement was obtained. Results show that the magnitude and duration of the impulsive force at initial bore impact depend on the degree of entrapped air in the bore-front. The latter was found to increase considerably if the bed of the experimental flume is covered with a thin water layer of even just a few millimetres.
In order to avoid large fluctuations in the pressure field and to obtain accurate simulations of the hydrodynamic forces, a Riemann solver-based formulation of the SPH method is utilized. However, this formulation induces excessive numerical diffusion, as sudden and large water surface deformations, such as splashing at initial bore impact, are less accurately reproduced. To investigate this particular issue, the small-scale physical experiment of Kleefsman et al. (2005) is also considered and modeled.
Lastly, taking full advantage of the validated numerical model to better understand the underlying flow dynamics, the influence of the experimental test geometry and of the bed condition (i.e. dry vs. wet) is investigated. Numerical results show that when a bore propagates over a wet bed, its front is both deeper and steeper and it also has a lower velocity compared to when it propagates over a dry bed. These differences significantly affect the pressure distributions and resulting hydrodynamic forces acting on impacted structures.
|
69 |
A parallel explicit incompressible smoothed particle hydrodynamics (ISPH) model for nonlinear hydrodynamic applicationsYeylaghi, Shahab 09 December 2016 (has links)
Fluid structure interactions in the presence of a free surface includes complex phenomena, such as slamming, air entrainment, transient loads, complex free surface profiles and turbulence. Hence, an appropriate and efficient numerical method is required to deal with these type of problems (efficient both in problem setup and numerical solution). Eulerian mesh-based methods can be used to solve different types of problems, however they have difficulties in problems involving moving boundaries and discontinuities (e.g. fluid structure interactions in the presence of a free surface).
Smoothed Particle Hydrodynamics (SPH) is a mesh-less Lagrangian particle method, ideal for solving problems with large deformation and fragmentation such as complex free surface flows. The SPH method was originally invented to study astrophysical applications and requires modifications in order to be applied for hydrodynamic applications. Applying solid boundary conditions for hydrodynamic applications in SPH is a key difference to the original SPH developed for astrophysics. There are several methods available in literature to apply solid boundaries in SPH. In this research, an accurate solid boundary condition is used to calculate the pressure at the boundary particles based on the surrounding fluid particles. The two main methods to calculate the pressure in the SPH method are the weakly compressible SPH (WCSPH) and the incompressible SPH (ISPH) approaches. The WCSPH uses the equation of state while ISPH solves Poisson's equation to determine the pressure. In this dissertation, an explicit incompressible SPH (ISPH) method is used to study nonlinear free surface applications. In the explicit ISPH method, Poisson's equation is explicitly solved to calculate the pressure within a projection based algorithm. This method does not require solving a set of algebraic equations for pressure at each time step unlike the implicit method. Here, an accurate boundary condition along with an accurate source term for Poisson's equation is used within the explicit method. Also, the sub-particle turbulent calculation is applied to the explicit ISPH method (which handles large-scale turbulent structures implicitly) in order to calculate the flow field quantities and consequently forces on the device more accurately.
The SPH method is typically computationally more expensive than Eulerian-based CFD methods. Therefore, parallelization methods are required to improve the performance of the method, especially for 3D simulations. In this dissertation, two novel parallel schemes are developed based on Open Multi Processing (OpenMP) and Message Passing Interface (MPI) standards. The explicit ISPH approach is an advantage for parallel computing but our proposed method could also be applied to the WCSPH or implicit ISPH. The proposed SPH model is used to simulate and analyze several nonlinear free surface problems. First, the proposed explicit ISPH method is used to simulate a transient wave overtopping on a horizontal deck. Second, a wave impacting on a scaled oscillating wave surge converter (OWSC) is simulated and studied. Third, the performance and accuracy of the code is tested for a dam-break impacting on tall and short structures. Forth, the hydrodynamic loads from the spar of a scaled self-reacting point absorber wave energy converter (WEC) design is studied. Finally, a comprehensive set of landslide generated waves are modeled and analyzed and a new technique is proposed to calculate the motion of a slide on an inclined ramp implicitly without using a prescribed motion. / Graduate
|
70 |
Gas flow and star formation in the centre of the Milky Way : investigations with smoothed particle hydrodynamicsLucas, William January 2015 (has links)
The centre of the Milky Way, commonly referred to as the Galactic Centre, is roughly that region within 500 pc of the central black hole, Sagittarius A*. Within the innermost parsec around the supermassive black hole Sagittarius A* are more than a hundred massive young stars whose orbits align to form one or possibly two discs. At about 100 pc is a ring containing more than ten million solar masses of molecular gas which could be the origin of some of the most massive star clusters in the Galaxy. I have performed a number of numerical simulations to help us understand how it is that these structures may have been formed. I firstly describe and test an improvement to the smoothed particle hydrodynamics code I used. This improves conservation of energy and momentum in certain situations such as in strong shocks from supernovae, which were to be included in a later chapter. The discs of massive stars around Sagittarius A* are believed to have been born there within fragmenting gaseous discs. This is problematic, as the formation of two stellar discs would require two gaseous counterparts. A method is described of forming multiple discs around a black hole from a single cloud's infall and subsequent tidal destruction. This is due to its prolate shape providing a naturally large distribution in the direction of the angular momentum vectors within the cloud. The resulting discs may then go on to form stars. Energetically, it would appear that a sequence of supernovae could potentially cause a giant molecular cloud to fall inwards towards the central black hole from an originally large orbit around the Galactic Centre. I simulate the impact on a giant molecular cloud of supernovae originating from a massive stellar cluster located a parsec away. Ultimately, the supernovae are found to have little effect. Finally, I simulate the formation of the dense ring of clouds observed in the Central Molec- ular Zone at a distance of about 100 pc from Sgr A*. Infalling gas is shown to be subject to such extreme tidal forces that a single cloud of gas is extended to form a long stream. The ribbon grows to the point that it self-intersects and forms a ring-like structure. Its complexity depends on the orbit of the original cloud. The position-velocity data is compared with observations, and similarities are noted.
|
Page generated in 0.0243 seconds