• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 111
  • 29
  • 25
  • 15
  • 12
  • 7
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 253
  • 253
  • 231
  • 101
  • 99
  • 62
  • 39
  • 34
  • 31
  • 29
  • 27
  • 25
  • 23
  • 23
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Contrôle de la réactivité chimique de surface et des propriétés optiques dans les verres / Design of surface chemical reactivity and optical properties in glasses

Lepicard, Antoine 04 October 2016 (has links)
Le poling thermique est une technique consistant à appliquer un fort champ électrique (DC) à un substrat de verre chauffé. Après traitement, un champ électrique est figé au sein de la matrice vitreuse, brisant sa centrosymmétrie. La présence de ce champ permet d’accéder à des propriétés d’optique nonlinéaire du second ordre, habituellement interdite dans un milieu centrosymmétrique tel que le verre. En plus des propriétés d’optique nonlinéaire, la présence du champ électrique a été associée à des modifications structurelles et compositionnelles mais également à des changements de propriétés de surface. Notre objectif a été d’utiliser cette technique pour modifier les propriétés de réactivité de surface et optique de verres d’oxyde (borosilicate et borophosphate de niobium (BPN)) et de verres de chalcogénures. Après poling, les modifications structurelles ont été caractérisée par spectroscopie vibrationnelle Raman et infrarouge. L’intensité et la localisation du champ électrique ont été caractérisées par des techniques de génération de seconde harmonique (SHG) : une analyse quantitative avec les franges de Maker et une d’imagerie μSHG. Le traitement a permis d’augmenter localement la réactivité de surface du verre borosilicate. Dans les verres BPN et chalcogénures, le traitement a permis de contrôler les propriétés optiques à la fois linéaire et nonlinéaire à l’échelle micrométrique. Ces résultats permettent d’envisager l’utilisation du poling thermique pour des applications en photonique intégrée. / Thermal poling is a technique which consists in the application of a strong DC electric field to a heated glass substrate. Following the treatment, a static electric field is frozen inside the glass matrix, effectively breaking its centrosymmetry. Presence of the electric field allows for second order non-linear optical properties usually forbidden in centrosymmetric medium such as glasses. In addition to nonlinear optical properties, the presence of the electric field has been associated with structural/compositional modifications as well as surface property changes. Our objective was to use this technique to tailor surface reactivity and optical properties in oxide (borosilicate and niobium borophosphate) and chalcogenide glasses. After poling, structural modifications were investigated using Raman and infrared spectroscopy. Strength and localization of the electric field were characterized by Second Harmonic Generation (SHG) techniques: quantitative Maker fringes analysis and μSHG imaging. The treatment has successfully allowed to locally enhanced the surface reactivity of a borosilicate glass. In niobium borophosphate and chalcogenide glasses, the treatment has permitted to control optical properties both linearly and non-linearly at the micrometric scale. These results show that thermal poling could be used to create functional devices for applications in integrated photonics.
192

Diffusion de second harmonique par les nanoparticules métalliques à symétrie sphérique / Second harmonic scattering from spherical metallic nanoparticles

Butet, Jérémy 06 July 2012 (has links)
Ce travail de thèse a porté sur l’étude de la génération de second harmonique par lesnanoparticules métalliques. La présence de résonances de plasmon de surface localisées dans lesnanoparticules métalliques accroit la section efficace non linéaire et le but de ce travail a été decomprendre comment ce couplage peut être mis à profit. D’un point de vue fondamental, lacomparaison entre expérience et théorie a permis de mettre en évidence le mode d’émissionoctupolaire ainsi que de pondérer les contributions de surface et de volume au signal total émis.Il a également été démontré que des profils de Fano non linéaire pouvaient être observés dans lecas de nano-objets très simples. Des applications pratiques, telle que les capteurs plasmoniques,ont été abordées montrant que les propriétés intrinsèques de la génération de second harmoniqueoffrent plusieurs avantages et augmentent la sensibilité de tels capteurs. Des mesuresexpérimentales ont également été effectuées sur des nanoparticules d’or uniques enfermées dansune matrice homogène, ouvrant la voie pour une compréhension plus fine de l’impact de lamorphologie des nanoparticules sur leur réponse non linéaire. / This work is devoted to the study of the second harmonic scattering from spherical metallicnanoparticles. The optical properties of noble metal nanoparticles are known to be dominated bythe localized surface plasmon resonances which increase the second harmonic intensity. From afundamental point of view, the octupolar emission mode is revealed for the first time bycomparison between experiments and theory. The origin of the second harmonic generation(SHG) in metallic nanoparticles is discussed showing that bulk contributions are needed. It wasshown that Fano profiles can be observed in a very simple configuration. Practical applicationsare also addressed demonstrating that the properties of SHG increase the plasmonic sensorperformances. The second harmonic generation form single gold nanoparticles embedded in ahomogeneous medium is also reported for the first time paving the way toward a betterunderstanding of the morphology impact on the nonlinear response of metallic nanoparticles.
193

Génération de second harmonique sur des films moléculaires chiraux / Second harmonic generation on chiral molecular films

Bruyère, Aurélie 01 December 2016 (has links)
Le manuscrit présente une étude de la réponse non linéaire de films moléculaires chiraux. Ces recherches s'inscrivent dans le contexte général d'une meilleure compréhension de la brisure de symétrie dans les films moléculaires et l'apparition de la chiralité. Ces systèmes moléculaires laissent envisager des perspectives intéressantes notamment le développement d'une nouvelle technologie de guides optiques chiraux.Dans un premier temps, la description des systèmes moléculaires, la fabrication des films ainsi que la modélisation de la réponse non linéaire sont présentées. Dans une seconde partie, les études menées sur des monocouches moléculaires formées sur une interface liquide ont démontré la possibilité de suivre la transition entre une chiralité intrinsèque à la molécule vers une chiralité supramoléculaire induite par une compression mécanique de la monocouche. Il s'avère que ce processus est réversible si la compression du film n'est pas maintenue. Dans une troisième partie, l'analyse du signal optique non linéaire provenant de films solides minces a mis en avant la présence d'une structuration et d'une orientation particulière des molécules dans ce film / The manuscript presents a study of the nonlinear response of chiral molecular films. This research is within the general context of a better understanding of the symmetry breaking in molecular films and the emergence of chirality. These molecular systems presage interesting perspectives including the development of a new chiral optical guides technology.Initially, we describe molecular systems, films formation as well as the modeling of the nonlinear response. In the second part, studies of molecular monolayers formed on a liquid interface demonstrated the ability to monitor the transition between intrinsic chirality of molecule to a supramolecular chirality induced by mechanical compression of the monolayer. It turns out that this process is reversible if the films compression is not maintained. In the third part, the analysis of the nonlinear optical signal from thin solid films bring out the presence of a particular structure and orientation of molecules in the film
194

Diffusion de second harmonique en milieux liquides : approche comparée des réponses de volume et de surface / Second harmonic scattering in liquids media : comparison between volume and surface

Maurice, Anthony 15 December 2016 (has links)
Ce manuscrit décrit le processus optique non linéaire de Génération de Second Harmonique (acronyme anglais SHG pour Second Harmonic Generation) réalisé en phase liquide. En particulier, la propriété de cohérence de ce processus est étudiée en détail. En effet, en raison de la parité du processus SHG, cette cohérence est perdue dans les liquides. Ces études portent ainsi sur plusieurs géométries afin d’accéder aux réponses de volume et de surface. Les avantages d’une méthode combinée sont aussi discutés. Dans une première partie, la configuration classique de la Diffusion Hyper Rayleigh (acronyme anglais HRS pour Hyper Rayleigh Scattering ou SHS Second harmonic scattering) est utilisée pour l’étude de systèmes simples comme les solvants purs. Cette étude porte en particulier sur les méthodes de normalisation des hyperpolarisabilités moléculaires. Une voie alternative est proposée basée sur l’introduction d’une section efficace HRS ou SHS. Par la suite, les effets liés aux ordres non linéaires supérieurs sont démontrés et interprétés, ceux-ci pouvant altérer les valeurs absolues qui peuvent être mesurées.La seconde partie porte sur l’introduction de plusieurs améliorations dans les mesures HRS ou SHS. En particulier, l’évolution vers des géométries non conventionnelles s’éloignant de la géométrie standard ainsi que sur des évolutions permettant d’accéder aux aspects dynamiques sont proposées. Des expériences sont réalisées sur des systèmes simples comme les solvants purs, des composés moléculaires et des nanoparticules, tous présentant des spécificités propres. Cette partie finit sur l’exploration des systèmes aléatoires diffusants et les problèmes associés. Enfin, dans une dernière partie, la réponse HRS ou SHS de solutions aqueuses de sels est discutée. Les mesures portent plus particulièrement sur une étude comparée des aspects cohérents et incohérents et les propriétés qu’il est possible de mesurer dans ces systèmes / This manuscript describes the nonlinear optical process of Second Harmonic Generation (SHG acronym for Second Harmonic Generation) carried out in liquid phase. In particular, this process coherence property is studied in detail. Indeed, due to the parity of the SHG process, this coherence is lost in liquids. These studies covers several geometries to access the volume and surface responses. The benefits of a combined method are also discussed. In the first part, the typical configuration of the Hyper Rayleigh Scattering(HRS or SHS for Second harmonic scattering) is used for the study of simple systems like pure solvents. This particular study focuses on methods of standardization of molecular hyperpolarizabilities. An alternative route is proposed based on the introduction of a HRS or SHS cross. Subsequently, the effects of the higher nonlinear orders are demonstrated and interpreted, they can alter the absolute values that can be measured.The second part deals with the introduction of several improvements in the HRS or SHS measurement. In particular, the trend towards unconventional geometries away from the standard geometry as well as developments for accessing dynamic aspects are proposed. Experiments are performed on simple systems such as pure solvents, molecular compounds and the nanoparticles, all presenting specificities. This part ends on exploring the random scattering systems and associated problems. Finally, in the last part, the HRS or SHS response of aqueous salt solutions is discussed. The measures focus specifically on a comparative study of coherent and incoherent aspects and properties that can be measured in these systems
195

Study on preparation, structures and non linear optical properties of novel chalcogenide glasses and fibers

Zheng, Xiaolin 08 July 2011 (has links)
Pas de résumé en français / Being compared with oxide glasses, chalcogenide glasses have fine infrared transmissivity and higher optical nonlinearity, and also could be drawn into optical fibers. So chalcogenide glasses and fibers have potential wide applications in the fields of all-optical information processing, infrared lasers, nonlinear optical devices, and so on, the studies of their optical nonlinearity are one of the attractive subjects in the area of optoelectronics at present. The main purpose of this paper is to improve the stability and enhance the intensity of nonlinearity in chalcogenide glasses and fibers by means of exploring new glass compositions, optimizing the external field poling method, designing and fabricating fibers with special structures, all of these will promote their real applications. The main results are concluded as follows . The glass-forming region of GeS2-GA2S3-AgX (X=Cl, Br, I) and GeS2-Ga (In)2S3-CuI systems were determined , the maximal content of the additive halides are 70% and 12% respectively. In both two systems glasses, with the increasing addition of halides, the thermal stability reduce, density and linear refractive index increase, the ultraviolet cut-off edges shift to longer wavelength, while the infrared cut-off edges keep almost the same. 30GeS2 35Ga2S3 35AgCl and 47.5GeS2 17.5Ga2S3 35AgCl surface- and bulk-crystallized glasses that contain AgGaGeS4 nonlinear optical crystallites were prepared. Obvious second harmonic generation (SHG) could be observed in these crystallized glasses, and their intensity relate to the distribution and size of the precipitated AgGaGeS4 crystals, the maximal second-order nonlinearity coefficients is as high as 12.4pm/V. These crystallized glasses have good chemical and SHG stability. For GeS2-Ga (In)2S3-CuI systems glasses, due to their small glass-forming region, they are not suit for the preparation of crystallized glasses that contain CuGaS2 or CuInS2 nonlinear optical crystals. According to the structural studies of two system glasses, the main structural units of theses glasses are [YS4-xXx] (Y=Ge, Ga, In. X=Cl, Br, I) mixed anion tetrahedrons, they form a three-dimensional glassy network through bridging sulphur bonds. When the contents of halides MX(M=Ag, Cu. X=Cl, Br, I) are low, some [XxS3-xGe(Ga)S3-xXx] (X=Cl, Br, I) mixed ethane-like structural units exist in the glass network, and they will gradually transform to [YS4-xXx] (Y=Ge, Ga, In. X=Cl, Br, I) mixed anion tetrahedrons with the increasing content of halides, till totally disappear. Both two system glasses have ultrafast (~150fs) third-order optical nonlinearity and reverse saturation absorption, they belong to self-focusing medium. The third-order optical nonlinearity mainly originate from the distortion of electron cloud of Y-X (Y=Ge, Ga, In, X=Cl, Br, I, S) bonds in the structural units. For GeS2-GA2S3-AgX (X=Cl, Br, I) system glasses, the largest nonlinear susceptibility n2 is 10.50x10-18 m/W, the smallest figure of merit (FOM) is 0.606. In addition, the relation of n2 with n0 do not obey Miller’s rule, but in accordance with the structural variation. Among the glass compositions with different additive halogens, Br-containing glasses have relatively best third-order nonlinearities. For GeS2-Ga (In)2S3-CuI system glasses, the largest nonlinear susceptibility n2 is 9.37x10-18 m/W, the smallest figure of merit (FOM) is 2.237. High purity AS2S3 glass performs and low loss single index fibers with diameter of 100~400µm that drawn form these performs were prepared, the transmission losses between 2~6 µm is only 0.5dB/m. AS2S3 tapered fibers have a uniform diameter of taper wasit, fine surface smoothness, and sharp taper transition part.
196

Theory of Image Formation in Non-linear Optical Microscopy

van der Kolk, Jarno Nicolaas January 2017 (has links)
Nonlinear optical microscopy is a collection of very powerful imaging techniques. Linear optical microscopes probe the refractive index and absorption, which both stem from the first-order linear electric susceptibility. Especially in biological tissue, the variation in the refractive index is often small and the tissue is, in many cases, transparant. Nonlinear optical microscopes on the other hand probe the nonlinear higher-order susceptibilities, which can be chemically sensitive, leading to the capability to achieve label-free imaging. Nonlinear optical microscopes have been in development for more than thirty years and they are based on numerous nonlinear optical processes. The ones I will concentrate on in this thesis are second harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and stimulated Raman Scattering (SRS). The first technique is commonly used to image collagen as those molecules have a particularly large second-order nonlinear susceptibility due to their chiral structure. CARS and SRS on the other hand are often used because they resonantly target vibrational resonances in molecules, giving rise to the aforementioned label-free imaging. Deep understanding of the nonlinear imaging process is crucial to the interpretation of the images these techniques produce. Computational tools are exceptionally suited for this task as they allow studying the electromagnetic field anywhere in the sample as well as the far-field, and one can change any of the material properties to study their effect. One such tool is finite-difference time-domain (FDTD) that our group developed for nonlinear optical microscopy simulations. It is a direct discretization of Maxwell's equation. While computationally costly, it does allow any arbitrary shaped sample to be simulated. The sample can have frequency dependent refractive indexes, and also nonlinear media with third-order nonlinearities such as Kerr media and Raman-active media, but also second-order nonlinearities for SHG. The code is designed in such a way that it can run on thousands of CPUs on a wide variety of compute cluster which allows our group to obtain nanoscale resolution. Another computational tool I use is the free-space Green's function solution to the Helmholtz equation, which can be used to calculate the Hertz vector in the frequency domain, both in the near- and far-field, based on the induced nonlinear polarization. The electric field is then calculated from this Hertz vector. This technique is much faster then FDTD and also allows for arbitrary shapes of the nonlinear electric susceptibility in the sample. However, it assumes a homogeneous refractive index throughout the entire spatial domain and requires complete knowledge of the input beam or beams that induce the nonlinear polarization. In this thesis, I use these tools to study the image formation process of various nonlinear optical processes mentioned earlier. For example, I study the effect of an inhomogeneous refractive index on the images produced by these microscopes. In literature the index of refraction is almost always assumed to be homogeneous, because, as mentioned before, the inhomogeneity of the refractive index is often small. However, I show that these small differences in the index of refraction can have a significant effect on the measured far-field intensity signal. For example, in SRS and CARS images, the measured signal can increase by an order of magnitude depending on the index mismatch and structure of the sample. Additionally, significant shifts in perceived position occur. Even nonresonant nonlinear signals can be evoked purely through a mismatch in linear refractive index. Computational modelling can also help reveal additional detail. As SHG is a coherent process, subwavelength information can be inferred through the phase information. Our experimental collaborators built an interferometric SHG (I-SHG) microscope for exactly that purpose. We used this to image collagen fibrils, which are all aligned in a parallel fashion. However, because collagen fibrils have a chiral molecular structure, they can point either ``up'' or ``down''. Using my Green's function simulations of the SHG imaging process of collagen fibrils, I was able to predict the standard deviation in the measured phase and link it to the orientation of collagen fibrils in the focal spot of the probing laser beam, even though the diameters are far below the minimum resolvable capabilities of the microscope. We found that the ``upwards'' fibrils make up 46--53% of the sample. Even with a normal SHG microscope that does not measures phase, additional subresolution information is obtainable. With our collaborators we measured the ratio of the forward SHG intensity signal to that in the backward direction and with my simulations, we are able to link this to the fibril diameters in collagen tissue. Thus we inferred that the fibril diameter increases as a function of tissue depth. Furthermore, a computational technique called ptychography is able to retrieve phase information without an interferometric reference beam. Additionally, it increases resolution to the theoretical limit, independent of the laser focal spot size, and corrects for distortions in the input beam as well. I have developed this technique for use with nonlinear optical microscopy and was able to show it is a viable alternative to I-SHG by imaging simulated rat tail tendon at the diffraction limit while retrieving the orientation of the fibrils through the phase of the SHG signal. I also implemented the algorithm for CARS, where the phase information can be used to greatly increase the signal-to-noise ratio by reducing the nonresonant background radiation that results from competing nonlinear optical processes. I showed an example of this by imaging a simulated fibroblast cell where the CARS process was tuned to the lipid droplets inside of the cell. I am currently in talk with experimentalists to apply this theoretical technique to experiments as that would further demonstrate the impact of my work. Finally, keeping in theme with the collagen fibrils, I show that the ratio of the forward SHG signal to the backward signal, the F/B ratio, is affected by a mismatch in the refractive index for fibrils larger than 100nm. This measure is an indicator of fibril diameter and thus important for making qualitative predictions. Single fibrils are generally too small to be significantly affected by near-field effects, but the bigger fibrils can be. Fibrils in rat tail tendon have a distribution of fibrils diameters and the large fibrils occur infrequent. However, I found that the large fibrils are largely responsible for the forward as well as backward signal, thus refractive index mismatches still affect the F/B ratio significantly despite their infrequency. The F/B ratio for a collection of fibrils placed in a n=1.47 medium was found to be 31.8±0.7% higher than for those in a n=1.33 medium. Our experimental colleagues have done preliminary measurements on mouse tail tendon where they found an increase of 40±20%, in line with the value of 28.1±0.6% that I found for simulations with mouse tail tendon. In conclusion, the theoretical tools I have used in my thesis have provided me with the ability to study nonlinear optical image formation processes with a level of detail that would be near-impossible to do experimentally. I have used this ability to show how refractive index mismatches, such as those found in biological tissue, can significantly distort the far-field intensity signals. I have shown this for SRS and CARS where the far-field intensity signal appeared an order-of-magnitude larger compared to the same sample without a refractive index mismatch with the background medium. Additionally, shifts in the perceived position of the object under investigation were observed and I showed the presence of a nonresonant background signal in AM-SRS. Likewise I showed that in the SHG imaging of collagen fibrils significant changes in the F/B ratio can occur. All of these effects have important implications as these types of images as biomedical researches rely on the correct interpretation of nonlinear optical microscopy images for both research and diagnostics. Apart from showing the effect of a refractive index mismatch, I have also shown that computation modelling can be used to infer subwavelength features in SHG imaging experiments of collagen fibril such as fibril orientation and fibril diameter. These methods have the potential to aid medical researchers as changes in the structure of collagen are often an early indicator of diseases such as osteoarthritis. Finally, I showed that the ptychography algorithm I developed for nonlinear optical microscopy is able to retrieve phase information of the nonlinear electric susceptibility in SHG and CARS imaging while also enhancing the resolution and correcting for distortions in the input beams. I can also use much larger laser spot sizes than in conventional experiments without compromising the obtained resolution, thus fewer measurements are required. The technique is not limited to SHG and CARS either; it will work for other nonlinear optical processes as well. Experimental verification of nonlinear ptychography will be done soon. This technique has to potential to significantly improve current imaging techniques since access to the phase information allows one to observe additional information about the sample as we showed with the I-SHG microscope.
197

Contrôle de l'orientation de molécules pour la réalisation de nanosources de lumière / Control of the orientation of molecules towards the realization of nanosources of light

Hsia, Patrick 25 November 2015 (has links)
Ce travail concerne le développement d’un nouveau type de microscopie optique en champ proche (SNOM) basé sur la mise en œuvre de sondes dite actives qui utilisent le signal de génération de seconde harmonique (SHG) d’un petit nombre de molécules orientées. L’orientation de ces molécules est obtenue par l’application d’un champ électrique statique dans une jonction constituée d’une pointe métallique effilée placée à proximité d’un substrat conducteur et immergée dans une solution de molécules dipolaires non-linéaires. L’excitation laser de ces molécules localement orientées permet d’obtenir une polarisation non-lineaire à fréquence double qui constitue une nanosource de lumière intrinsèquement localisée et pouvant interagir avec le champ proche du substrat. Nous nous sommes intéressés à l’imagerie de nano-objets lithographiés par cette technique de SNOM-SHG. Nous avons pu démontrer la possibilité d’obtenir une résolution de l’ordre de 200 nm, soit une résolution meilleure d’un facteur 2 par rapport à la limite de diffraction.Nous avons ensuite étudié les moyens d’optimiser les performances de ce nouveau type de sondes SNOM-SHG. Une voie consiste à exploiter les propriétés d’antenne optique de pointes métalliques effilées, qui peuvent être le siège d’effets d’exaltation du champ électromagnétique résultant de la singularité géométrique de ces objets (extrémité effilée) ou de l’excitation de résonances plasmons. Afin de pouvoir quantifier ces effets, nous avons entrepris la caractérisation, par luminescence à 2 photons (TPL), de nanofils d’or considérés comme objets de référence pour mimer une pointe. Des fils lithographiés ainsi que des fils issus de chimie colloïdale ont été étudiés de façon à mieux comprendre à la fois l’influence de la forme et de la cristallinité des objets sur les exaltations de champ. Des études simultanées de la géométrie et des propriétés optiques d'un nanofil unique ont été menées au moyen d'un microscope optique inversé associé à une excitation laser et couplé à un microscope à force atomique (AFM) dont la pointe est préalablement réglée pour coïncider avec le spot laser. En balayant l’échantillon, nous pouvons directement confronter l’image topographique de l’objet à la cartographie de points chauds enregistrés à sa surface, le signal de TPL étant directement corrélé à la densité locale d’états électromagnétiques. Nous avons pu montrer que les fils lithographiés et les fils colloïdaux présentaient des facteurs d’exaltation locale de champ différents, la cristallinité des objets pouvant aussi être révélée que via l’analyse spectrale du signal de TPL émis. Enfin, un dernier volet important de mon travail a consisté à faire évoluer le banc expérimental précédemment développé au laboratoire de façon à pouvoir réaliser simultanément des caractérisations de type SNOM-SHG et des caractérisations topographiques. Dans ce but, nous avons travaillé à l’intégration d’une tête AFM diapason sur notre banc de microscopie non-linéaire. Au-delà des aspects électroniques liés à l’optimisation du fonctionnement de ce diapason, le couplage du faisceau laser dans le microscope a également été entièrement reconfiguré. / This work deals with the development of a new kind of scanning near-field optical microscopy (SNOM) based on the realization of so-called active probes taking advantage of the second harmonic generation (SHG) signal coming from a few oriented molecules. The orientation of these molecules is obtained by applying a static electric field in a junction made of a sharp metallic tip placed close to a conductive substrate and immersed in a solution containing dipolar non-linear molecules. A second order nonlinear polarization is obtained from these locally oriented molecules following their excitation with a laser beam finally leading to a nanosource of light intrinsically localized and able to interact with the near-field of the substrate.We have investigated this SNOM-SHG technique to image nano-objects made by e-beam lithography. We were able to demonstrate that a resolution of about 100 nm could be reached, which appears better (of a factor2) than the diffraction limit.We have then been focusing on the way to improve the capabilities of this new type of SNOM-SHG probes. One approach consists in taking advantage of the optical antenna effects that can occur at the end of sharp tips, where the electromagnetic field can be enhanced due to geometrical effects (sharp extremities) or due to the excitation of plasmon resonances. In order to quantify these field enhancements, we have carried out the characterization of gold nanowires using two-photon luminescence (TPL) ; considering these wires as reference objects that can mimic tips. Nanowires made by e-beam lithography and nanowires synthesized by colloidal chemistry have both been studied in order to have a better understanding of the influence of the shape and the crystallinity on the field enhancements. Simultaneous analysis of the geometry and the optical properties of a single nanowire has been carried out using an inverted microscope associated to a laser excitation and coupled to an atomic force microscopy (AFM) which tip is previously aligned with the laser spot. When scanning the sample, we can directly correlate the topographic image of the object to the mapping of the hotspots recorded on its surface, the TPL signal being directly linked to the electromagnetic local density of states. We were able to evidence that both nanowires made by e-beam lithography or synthesized by colloidal chemistry exhibit different field enhancement factors, the crystallinity of the objects being also revealed following the spectral analysis of the emitted TPL signal.Finally, a last important part of my work has dealt with the evolution of the experimental setup previously developed in the laboratory in order to be able to achieve simultaneously SNOM-SHG type and topographic characterizations. We have therefore been working on the integration of an AFM tuning fork head to our nonlinear optical bench. Above the electronic aspects related on the optimization of the tuning fork implementation, the coupling of the laser beam in the microscope has also been reconfigured.
198

Kolagenní struktury od buněčných kultur k šlaše / Collagen structures from cell culture to intact tendon

Hadraba, Daniel January 2017 (has links)
CHARLES UNIVERSITY and HASSELT UNIVERSITY / tUL Doctoral dissertation Collagen structures from cell culture to intact tendon ABSTRACT Author: Daniel Hadraba Promoters: Assoc. Prof. Karel Jelen | Charles University Prof. Marcel Ameloot | Hasselt University Co-promoters: Dr. Frantisek Lopot | Charles University Prof. Virginie Bito | Hasselt University Annotation Author: Ing. Mgr. Daniel Hadraba Doctoral thesis title: Collagen structures from cell culture to intact tendon Year: 2010 - 2017 Doctoral program: Doctor of Biomechanics at Charles University Doctor of Biomedical Science at Hasselt University / transnational University Limburg Departments: Dept. Anatomy and Biomechanics | Faculty of Physical Education and Sport | Charles University Dept. Biophysics | Hasselt University Promoters: Assoc. Prof. Karel Jelen | Dept. Anatomy and Biomechanics | Faculty of Physical Education and Sport | Charles University Prof. Marcel Ameloot | Hasselt University / transnational University Limburg Co-promoters: Dr. Frantisek Lopot | Dept. Anatomy and Biomechanics | Faculty of Physical Education and Sport | Charles University Prof. Virginie Bito | Hasselt University / transnational University Limburg Bibliography details: Pages 102 Figures 30 Tables 2 Equations 17 Keywords: tendon, collagen, crimps, orientation, aging,...
199

Das unstetige Galerkin-Verfahren in der Nanooptik: Das unstetige Galerkin-Verfahren in der Nanooptik

Hille, Andreas 21 December 2012 (has links)
Die Nanooptik beschäftigt sich mit der Wechselwirkung von Licht mit Materie, deren charakteristische Dimension im Nanometer Bereich liegt. Insbesondere wenn die Materie aus Metall besteht, zeigen sich interessante, wellenlängenabhängige Unterschiede in der Stärke der Wechselwirkung. Die Ursache dafür sind die kollektiven Moden der quasifreien Ladungsträger, die Plasmonen. Obgleich sich experimentelle Methoden in den letzten Jahren stetig verbessert haben, ist es nach wie vor nur mit erheblichem Aufwand möglich, sich Einblicke in die mikroskopischen Zusammenhänge zu verschaffen. Eine Ergänzung zu den Experimenten bieten theoretische Modelle. Auf Grund der sich mit der Zeit stetig verbesserten Leistung der Rechentechnik, kommen dabei zunehmend numerische Verfahren zum Einsatz. Eines dieser Verfahren ist das Unstetige Galerkin Verfahren, welches in dieser Arbeit auf folgende Fragestellungen der plasmonischen Nanooptik angewandt wurde: • Bei dem unstetigen Galerkin Verfahren werden die zu simulierenden Körper üblicherweise mittels Dreiecke und Tetraeder approximiert. Da die Geometrie der metallischen Systeme einen entscheidenden Einfluss auf die Wechselwirkung hat, wurde untersucht, inwieweit sich durch Einsatz von Elementen mit gekrümmten Flächen die Genauigkeit oder die Geschwindigkeit der Simulation steigern lässt. Es konnte gezeigt werden, dass runde Elemente die Genauigkeit bei gleicher Diskretisierung um bis zu zwei Größenordnungen steigern oder die Rechenzeit bei gleicher Genauigkeit auf ein Sechstel verkürzen können. • Bestrahlt man Metallnanopartikel mit intensiven Laserpulsen, so strahlen diese nicht nur bei der Frequenz des eingestrahlten Lichtes, sondern auch bei der doppelten Frequenz ab. Dieses Phänomen der Frequenzverdopplung (SHG, engl.: „Second-Harmonic-Generation“) ist unter anderem von der Form der Partikel und der Wellenlänge des Pulses abhängig. Da durchstimmbare gepulste Laser sehr teuer sind, wurde untersucht, ob sich mit Hilfe der linearen Partikelspektren Vorhersagen über die Stärke der Frequenzverdopplung machen lassen. Dabei wurde festgestellt, dass die Effizienz der Frequenzverdopplung zunimmt, wenn man die linearen Resonanzen der Partikel auf die SHG- oder Anregungswellenlänge abstimmt. Schafft man es, das plasmonische System so einzustellen, dass sowohl die Anregungswellenlänge, wie auch die SHG- Wellenlänge auf einer linearen Resonanz liegen, so kann die Effizienz der SHG weiter gesteigert werden. / Nanooptics is a discipline dealing with the interaction of light with matter where its characteristic dimensions are defined to be in the range of nanometers. In particular, if the matter consists of metal, i.e. conductive material, interesting wavelength dependent phenomena can be observed, which scale with the strength of the interaction. These phenomena are caused by the formation of collective modes between quasi-free charge carriers resulting in so called plasmons. Although improved experimental methods have evolved over the last few years, insight into the microscopic relationship between light and matter is only achievable with high effort. Supplemental information to experimental findings can be drawn from theoretical models. Due to the constantly improving computational power, numerical methods are progressively more employed. One of these methods is the discontinuous Galerkin method, which was applied to the following problems in plasmonic nanooptics: • Within the discontinuous Galerkin method the simulated objects are usually approximated by triangles or tetrahedrons. Since the geometry of conductive systems has a major impact on the interaction between light and matter, the usability of elements with curved surfaces for the discretisation of the space has been investigated with respect to accuracy and speed of the simulation. In this work, it could be shown that curved elements improve the simulations precision up to two orders of magnitude with the same amount of discretisation compared to linear elements. Related to speed, it has been found that the computational time is reduced by a factor of 6 with a comparable simulation accuracy. • By irradiating metallic nanoparticles with high power laser pulses these particles do not only emit light of the same frequency as the incident electromagnetic wave, but also with the doubled frequency (SHG, second harmonic generation). Among other things, this phenomenon of frequency doubling mainly depends on the geometry of the particle and the wavelength of the pulse. Since tunable pulsed laser sources are very expensive, it has been theoretically investigated if the strength of the frequency doubling can be deduced from the particles linear spectra. By this, it has been discovered that the efficiency of frequency doubling can be improved by adjusting the linear resonances of the particle to the SHG or excitation wavelength. The SHG efficiency can be increased even further, if the plasmonic system is tuned to a point where both the excitation and the SHG wavelength correspond to a linear resonance of the nanoparticle.
200

Non-Collinear Second Harmonic Generation in Strontium Barium Niobate

Tunyagi, Arthur. R. 17 September 2004 (has links)
Refractive index measurements of the Strontium-Barium-Niobate (SBN) crystals show that none of the known second-harmonic-generation scheme (SHG) can be hold responsible for the SHG in SBN. Based on observations of the SHG experiments carried out with several compositions of the crystals in different setup-geometries a new model of second harmonic generaion was developed. The new SHG model, domain-induced second-harmonic generation (DISHG), which considers that the needle-like domain structure of this material plays an active role in the quasi phase matching of the produced second harmonic light has been experimentally proved using two different experiments. The new SHG process in the SBN crystals is a potential light source of cylindrically polarized light. The easy way of obtaining cylindrically polarized light with the SBN crystal broadens the potential applications for this material. The (DISHG) allows to investigate several properties of the ferroelectric domains. Using SHG measurements it was possible to analyze the development of the domain densities for domains of different sizes during the poling of the crystal. SHG measurements allow us to determine the minimum length of the ferroelectric domains. It was shown that this does not depend on the [Sr]/[Ba] ratio and domains are not getting longer after the sample was poled, except for the case of doped SBN. The ferroelectric-paraelectric phase transition has also been investigated. From the inflection point of the nonlinear susceptibility as function of the temperature the phase transition temperature was determined. The non fully-linear dependence of the phase transition temperature as function of the [Sr]/[Ba] ratio can be explained by a system of three different sublattices at the crystallographic positions of Strontium and Barium atoms.

Page generated in 0.0869 seconds