Spelling suggestions: "subject:"cserine"" "subject:"buferine""
301 |
Desenvolvimento de Vioserpina para estudo de especificidade e inibição da calicreína tecidual humana 5 recombinante, utilizando mutantes da vioserpinaAndrade, Regina Aparecida de January 2017 (has links)
Orientador: Prof. Dr. Luciano Puzer / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Biossistemas, São Bernardo do Campo, 2017. / Serpina é o nome dado à superfamília de proteínas com uma vasta diversidade de funções biológicas, que tem como principal característica a inibição irreversível de serino proteases. A característica estrutural mais marcante das serpinas é a presença de uma alça na sua porção C-terminal, composta por 20 aminoácidos denominados alça do centro reativo (RCL). A RCL é a região da serpina que se liga covalentemente ao sítio ativo da serino protease, promovendo a inibição irreversível da enzima pela desarticulação de estruturas funcionais essenciais para a catálise enzimática. As calicreínas teciduais humanas (KLKs) são um grupo de 15 serino proteases (KLK1-KLK15) expressas em uma gama de tecidos. A rKLK5, estudada neste trabalho, é expressa abundantemente na pele humana, e parece que exerce importante papel no processo de descamação epidermal, podendo estar relacionada à patologias, como a psoríase e dermatite atópica. Assim, nesse trabalho foi realizada subclonagem, expressão e caracterização bioquímica da atividade inibitória dos mutantes (VSR344G e VSA345G) da serpina oriunda da cianobactéria Gloeobacter violaceus, identificada pelo nosso grupo e nomeada vioserpina. Os genes codificadores da vioserpina foram previamente clonados no vetor de expressão pET-28a e por meio da técnica de mutação sítio-dirigida foram produzidos dois mutantes substituindo os resíduos de aminoácidos arginina e alanina nas posições P1 e P2 da alça do centro reativo (RCL) da vioserpina, respectivamente, por um resíduo de aminoácido glicina (VSR344G e VSA345G). O sucesso das mutações foi avaliado através de sequenciamento de DNA. As vioserpinas mutantes foram expressas na cepa bacteriana E. coli BL21(D3), purificadas pela técnica de cromatografia de afinidade em resina de níquel (Ni-NTA) e obtidas na forma solúvel. Foi possível visualizar a formação do complexo covalente entre a vioserpina e a KLK5 por análise em SDS-PAGE 10% confirmados pela espectrometria de massas. Também foi analisada a ação inibitória dos mutantes (VSR344G e VSA345G) frente a KLK5. Os valores de SI (estequiometria de inibição) apresentaram valores altos o que indica que é preciso uma concentração grande de inibidor, no caso os mutantes da vioserpina, para que a enzima tenha sua atividade inibida, apresentando-se desta forma uma inibição ineficiente frente a rKLK5. Nesse estudo foi possível obter um inibidor específico (vioserpina) para a rKLK5, podendo assim contribuir para o desenvolvimento de novos procedimentos terapêuticos para patologias envolvidas com o processo de descamação epidermal. / Serpin is the name given to the superfamily of proteins with wide range of biological functions, and that has as main feature the irreversible inhibition of serine proteases. The most striking structural feature of serpins is the presence of a loop in the C-terminal portion of the protein, composed by 20 aminoacids called Reative Center Loop (RCL). The RCL is the region of the serpin that binds covalently to the serine protease active site, which causes the irreversible inhibition of the enzyme by the disarticulation of functional structures essencial for the enzymatic catalysis. Human tissue kalikreins (KLKs) are a group of 15 serine proteases (KLK1-KLK15) expressed in a plethora of tissues. The rKLK5, studied in this work, is abundantly expressed in human skin, and seems to play an important role in the epidermal desquamation process, and may be related to pathologies such as psoriasis and atopic dermatitis. Therefore, in this work the subcloning, expression and biochemical characterization of the inhibitory activity of serpin mutants (VSR344G e VSA345G) of the cyanobacteria Gloeobacter violaceus, recently described by our group and named vioserpin, was proposed. The genes coding for vioserpin were previously cloned into the pET-28a expression vector and through the site-directed mutation technique two mutants were produced by substituting the arginine and alanine amino acid residues at the P1 and P2 positions of the serine reactive center loop (RCL), respectively, by a glycine amino acid residue (VSR344G e VSA345G). The success of the mutations was assessed by DNA sequencing. The mutant vioserpin was expressed in the bacterial strain E. coli BL21 (D3), purified by the nickel resin affinity chromatography technique (Ni-NTA) and obtained in the soluble form. Covalent complex formation between vioserpin and rKLK5 could be visualized by 10% SDS-PAGE analysis confirmed by mass spectrometry. We also analyzed the inhibitory action of mutants (VSR344G and VSA345G) against rKLK5. The SI values (inhibition stoichiometry) presented high values indicating that a large inhibitor concentration is required in the case of the vioserpin mutants, so that the enzyme has its inhibited activity, thus presenting an inefficient inhibition in front To rKLK5. In this study it was possible to obtain a specific inhibitor (vioserpin) for rKLK5, thus contributing to the development of new therapeutic procedures for pathologies involved with the epidermal desquamation process.
|
302 |
Estudo dos efeitos das serinoproteinases PA-BJ e Giroxinas isoladas de venenos de serpentes em cultura de células endoteliais / Studies on the effects of the serine proteinases PA-BJ and gyroxin, isolated from snake venoms, on endothelial cells in cultureSergio Augusto de Lima 10 May 2010 (has links)
Neste estudo foram avaliados os efeitos das serinoproteinases PA-BJ e giroxina, isoladas dos venenos das serpentes Bothrops jararaca e Crotalus durissus terríficus, respectivamente, sobre células endoteliais (CEs) em cultura. Os resultados obtidos demonstraram que essas toxinas, nas concentrações utilizadas, não afetaram a viabilidade e a integridade das CEs. Por outro lado, induziram a liberação de PGI2, que foi significativamente reduzida por inibidores não seletivos e seletivos das ciclooxigenases -1 e -2 (COX-1 e -2), mas não afetaram a expressão protéica constitutiva das mesmas. Adicionalmente, foi demonstrado que o antagonista de receptores PAR-1, o SCH 79797, não alterou a liberação de PGI2, induzida pelas toxinas. Em conclusão, essas toxinas, em concentrações não citotóxicas, induziram a liberação de PGI2 a partir de CEs, de modo dependente da ativação das COX-1 e -2. Por outro lado, o receptor PAR-1 não parece ser importante para este efeito, nessas células. / In this study, the effects of PA-BJ and gyroxin, isolated from Bothrops jararaca and Crotalus durissus terrificus snake venoms, respectively, on endothelial cells in culture were investigated. Results showed that neither PA-BJ nor gyroxin affected the integrity of monolayers nor modified ECs viability in the periods of incubation tested. In contrast, these serine proteinases increased the release of prostacyclin from ECs. This effect was inhibited by both non-selective and selective COX-1 and COX-2 inhibitors, but these toxins did not affect the protein expression of COX-1 and -2. Inhibition of the catalytic activity of PA-BJ and gyroxin or pre-incubation of ECs with PAR-1 antagonist did not abrogate the ability of these toxins to induce PGI2 release. These findings demonstrate that these serine proteinases are able to stimulate production of prostacyclin by ECs by a mechanism dependent on stimulation of COX-1 and COX-2 enzyme activity. Moreover, neither enzyme activity of both serine proteinases nor the receptor PAR-1 contribute for this effect on endothelium.
|
303 |
Eficácia do soro antibotrópico produzido no Instituto Butantan: obtenção, caracterização e neutralização de serinopeptidases de interesse do veneno Bothrops jararaca. / Efficacy of the antibothropic serum produced by Butantan Institute: obtaining, characterizing and neutralizing serinopeptidases of interest from the Bothrops jararaca venom.Alexandre Kazuo Kuniyoshi 10 November 2017 (has links)
O envenenamento ofídico é considerado uma condição tropical negligenciada pela OMS, e no Brasil, o gênero Bothrops está envolvido na maioria dos casos. Primeiramente, estudamos a atividade hidrolítica do veneno de B. jararaca sobre peptídeos biologicamente ativos que podem estar relacionadas com o envenenamento. A hidrólise dos peptídeos que foram substratos para as serinopeptidases não foi eficientemente bloqueada pelo soro antibotrópico produzido pelo Instituto Butantan e, portanto, as causas dessas falhas foram investigadas. Para isso, purificamos quatro serinopeptidases não bloqueadas pelo soro e, por estudos imunoquímicos, observamos que apesar deste não bloquear as atividades destas enzimas, o mesmo é capaz de reconhecê-las. Portanto, decidimos obter soros experimentais contra estas moléculas utilizando camundongos, a fim de compará-los com o soro comercial. Os soros experimentais contra as serinopeptidases mostraram capacidade de reconhecimento e alta afinidade contra elas, e mais importante, capacidade de neutralizar suas atividades in vitro. / Snakebite is considered a neglected tropical condition by WHO, and in Brazil, the Bothrops genus is involved in most of the cases. Initially, we have studied the B. jararaca venom activity over bioactive peptides which could be related with the envenomation. The hydrolysis of the peptides substrate for serinepeptidases were not efficiently blocked by the Butantan Institute bothropic antivenom, therefore, the causes of this flaw were investigated. Thereafter, we purified four serinepeptidases not blocked by the antivenom and, by immunochemistry analysis, we observed that although it could not neutralize the activity, it could well recognize these proteins. Thus, we decided to obtain experimental sera against these serinepeptidases in mice, in order to compare it with the commercial antivenom. The experimental sera against these enzymes demonstrated recognition capability and high affinity, and most important, the ability to neutralize their activity in vitro.
|
304 |
Régulation du métabolisme énergétique : étude du remodelage bioénergétique du cancer / Regulation of energy metabolism : study of Bioenergetics remodeling in cancerObre, Emilie 12 December 2014 (has links)
Cette thèse étudie le remodelage métabolique des cellules cancéreuses. Trois modèles sont analysés par de nombreuses approches biochimiques et génétiques : (i) des cellules de poumon transduites avec une forme oncogénique de HRASG12V, (ii) des cellules HeLa soumises à une privation de glucose et (iii) des pièces chirurgicales de cancer du poumon. Sur chaque modèle, le remodelage métabolique observé met en jeu de nombreuses voies du catabolisme et de l’anabolisme, notamment la glutaminolyse et la biosynthèse de sérine. Ce travail révèle un rôle important des mitochondries dans ce remodelage, à la fois pour l’apport d’énergie et pour la synthèse d’antioxydants et d’acides aminés, mais aussi de phospholipides. J’ai montré l’impact étendu d’une simple mutation HRASG12V sur un très grand nombre de processus, révélant ainsi l’importance de la génétique dans le remodelage métabolique des cellules cancéreuses. Toutefois, la privation de glucose induit elle aussi un remarquable remodelage à de très nombreux niveaux, depuis l’épissage des ARN messagers jusqu’à la synthèse de sérine. Enfin, cette thèse identifie deux classes bioénergétiques de tumeurs du poumon, ouvrant de nombreuses perspectives pour le diagnostic et la compréhension de ce type de tumeurs, mais aussi pour proposer des stratégies thérapeutiques adaptées. Les résultats identifient des biomarqueurs et des cibles validées sur nos modèles in vitro. Les perspectives de cette thèse vont consister à la transposition de ces approches à la clinique. / This thesis investigates the metabolic remodeling of cancer cells. Three models are analyzed by different biochemical and genetic approaches: (i) lung cells transduced with oncogenic HRASG12V, (ii) HeLa cells challenged with glucose deprivation and (iii) surgical pieces of lung tumors. On each model the observed metabolic remodeling involves numerous catabolic and anabolic pathways, including glutaminolysis and serine biosynthesis. Our work revealed an important role of mitochondria in metabolic remodeling, both for the supply of energy and for the synthesis of antioxidants and amino acids, but also phospholipids. We show the extent of a single mutation HRASG12V on a very large number of metabolic processes, revealing the importance of genetics in the metabolic remodeling of cancer cells. However, glucose deprivation also induced a remarkable remodeling at many levels of cell metabolism, from the splicing of messenger RNAs to serine biosynthesis. In the third part, this thesis identified two bioenergetic classes of lung tumors, opening interesting opportunities for the diagnosis and understanding of this type of tumor, but also to propose appropriate therapeutic strategies. The results identify biomarkers and targets validated in our in vitro models. The outlook of this thesis will be to the implementation of these approaches in the clinic
|
305 |
Hodnocení enzymové kinetiky několika potenciálních inhibitorů lidských proteáz cysteinového a serinového typu / Enzyme kinetic evaluation of several potential inhibitors of certain human cysteine and serine proteasesHympánová, Michaela January 2018 (has links)
IN ENGLISH Charles University Faculty of Pharmacy in Hradec Králové Department of Biological and Medical Sciences Supervisors: prof. Dr. Michael Gütschow RNDr. Klára Konečná, Ph.D. Candidate: Michaela Hympánová Title of the diploma thesis: Enzyme kinetic evaluation of several potential inhibitors of certain human cysteine and serine proteases Background Cysteine and serine proteases are enzymes involved in many physiological processes. The imbalance between them and their endogenous inhibitors is associated with various diseases such as cancer and osteoporosis. Synthetic inactivators could be useful in the treatment of these enzyme-mediated pathological conditions. Therefore, there are ongoing attempts to develop low-molecular weight inactivators for therapeutically relevant cysteine and serine proteases. In the course of this thesis, compounds synthesized in prof. Gütschow's group were investigated as potential inhibitors of selected human proteases. They belong to imidazole compounds derived from N-protected cyclohexylalanine, 2-phenyl-7,8-dihydroimidazo[1,2- a]pyrazin-6(5H)-one derivatives, ,-unsaturated peptidomimetic compounds, carbamates, an N,N-dibenzylcrotonamide derivatives and peptoides. Aims This diploma thesis has been focused on the evaluation of new potential inhibitors against...
|
306 |
Molecular mechanisms of vaspin action: from adipose tissue to skin and bone, from blood vessels to the brainWeiner, Juliane, Zieger, Konstanze, Pippel, Jan, Heiker, John T. 27 January 2020 (has links)
Visceral adipose tissue derived serine protease inhibitor (vaspin) or SERPINA12 according to the serpin nomenclature was identified together with other genes and gene products that
were specifically expressed or overexpressed in the intra abdominal or visceral adipose tissue (AT) of the Otsuka Long-Evans Tokushima fatty rat. These rats spontaneously develop visceral obesity, insulin resistance, hyperinsulinemia and ‐glycemia, as well as hypertension and thus represent a well suited animal model of obesity and related metabolic disorders such as type 2 diabetes. The follow-up study reporting the cloning, expression and functional characterization of vaspin suggested the great and promising potential of this molecule to counteract obesity induced insulin resistance and inflammation and has since initiated over 300 publications, clinical and experimental, that have contributed to uncover the multifaceted functions and molecular mechanisms of vaspin action not only in the adipose, but in many different cells, tissues and organs. This review will give an update on mechanistic and structural aspects of vaspin with a focus on its serpin function, the physiology and regulation of vaspin expression, and will summarize the latest on vaspin function in various tissues such as the different adipose tissue depots as well as the vasculature, skin, bone and the brain.
|
307 |
Vaspin (serpinA12) in obesity, insulin resistance, and inflammationHeiker, John T. 06 March 2019 (has links)
While genome‐wide association studies as well as candidate gene studies have revealed a great deal of insight into the contribution of genetics to obesity development and susceptibility, advances in adipose tissue research have substantially changed the understanding of adipose tissue function. Its perception has changed from passive lipid storage tissue to active endocrine organ regulating and modulating whole‐body energy homeostasis and metabolism and inflammatory and immune responses by secreting a multitude of bioactive molecules, termed adipokines.
The expression of human vaspin (serpinA12) is positively correlated to body mass index and insulin sensitivity and increases glucose tolerance in vivo, suggesting a compensatory role in response to diminished insulin signaling in obesity. Recently, considerable insight has been gained into vaspin structure, function, and specific target tissue‐dependent effects, and several lines of evidence suggest vaspin as a promising candidate for drug development for the treatment of obesity‐related insulin resistance and inflammation. These will be summarized in this review with a focus on molecular mechanisms and pathways.
|
308 |
The RNA Binding Protein SRSF1 modulates Immune and Cancer pathways by regulating MyD88 transcriptionUnknown Date (has links)
Serine/Arginine splicing factor 1 (SRSF1), a member of the Serine/Arginine rich (SR) RNA-binding proteins (RBPs) family, regulates mRNA biogenesis at multiple steps and is deregulated in cancer and autoimmune diseases. Preliminary studies show that members of the SR protein family play a role in cellular transcription. We investigated SRSF1’s role in cellular gene transcription utilizing time-course RNA-Seq and nuclear run-on assays, validating a subset of genes transcriptionally regulated following SRSF1 overexpression. Pathway analysis showed that genes in the TNF/IL17 pathways were enriched in this dataset. Furthermore, we showed that MyD88, a strong activator of TNF transcription through transcription factors NF-κB and AP-1, is a primary target of SRSF1’s transcriptional activity. We propose that SRSF1 activates the transcription factors NF-κB and AP-1 through MyD88 pathway. SRSF1 overexpression regulates several genes that are deregulated in malignancies and immune disease, suggesting a role for SRSF1’s transcriptional activity in oncogenesis and immune response regulation. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2020. / FAU Electronic Theses and Dissertations Collection
|
309 |
Insights on Protein Structure and Dynamics from Temperature-Dependent Molecular Dynamics and Normal Mode AnalysisRehman, Habib Ur 17 May 2014 (has links)
In this thesis we have employed two computational approaches, temperature-dependent molecular dynamics (MD) and normal mode analysis (NMA), to gain insights into the structureunction relationships between three structurally-related proteins, each possessing a central alpha/beta core. The three proteins studied here are: pnbCE from Bacillus subtilis, cutinase from Fusarium solani - both belong to the serine hydrolase family - and TTHA1554, from the thermophile Thermus thermophilus. Mutations at the gate residue 362, located at the side-door of the pnbCE enzyme, are known to alter the catalytic activity of this enzyme. In this work the modifications induced by mutating LEU362 on the structural and dynamical properties of pnbCE are also explored. From MD simulations at several temperatures, we propose a mechanism by which mutations at position 362 of pnbCE affect the stability and functionality of this enzyme. We have identified two coil residues, SER218 and GLN276, whose interactions with residue 362 in wild-type and mutant pnbCE enzymes control the dynamics of the side-door domain of pnbCE. A hydrogen bond between the GLN276 and ARG362 residues in the arginine substituted (L362R) pnbCE mutant enzyme appears to be responsible for locking the sidedoor domain region of the L362R enzyme, thus lowering the catalytic rates of the L362R mutant pnbCE enzyme compared to the wild-type. Similarly, a hydrogen bond formed between SER218 and ARG362 in L362R provides thermal stability to the arginine substituted mutant enzyme. This hydrogen bond is not as prevalent in the wild-type or other mutated pnbCEs, making them prone to structural fluctuations upon increasing temperature. The predominant lowrequency mode, obtained from normal mode analysis, reveals a collective scissor-like motion of residues surrounding the openings to the active site that validates the results of MD simulations on pnbCE systems. The collective motion of large loops also appear in the lowrequency modes of cutinase and TTHA1554, which correspond to particularly mobile regions in these proteins. An attempt to locate a putative active site of the thermophilic protein TTHA1554 was inconclusive. In general, useful comparisons of the flexibility, stability, and dynamic changes were calculated for the three selected proteins.
|
310 |
Function of Nck-1 adaptor protein as modulator of elF2alpha phosphorylation by specific elF2alpha kinases and PKR activityCardin, Eric. January 2008 (has links)
No description available.
|
Page generated in 0.0563 seconds