• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 11
  • 9
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 129
  • 129
  • 42
  • 35
  • 27
  • 23
  • 21
  • 18
  • 15
  • 14
  • 14
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Transverse Resonance Island Buckets at BESSY II / A new Bunch Separation Scheme

Armborst, Felix 03 February 2022 (has links)
Die steigende Nachfrage nach Synchrotronstrahlungsanlagen hat zu einem stetig wachsenden Angebot auf der ganzen Welt geführt. Die wissenschaftliche Nutzergemeinde der Speicherring-basierten Lichtquellen benötigt immer höhere Brightness und viele sind auch an speziellen Zeitstrukturen der Strahlung, wie kurzen Pulslängen und bestimmten Wiederholungsraten, interessiert. Dies hat zu einer kontinuierlichen Verbesserung bestehender und zum Bau vieler neuer Anlagen geführt. Das Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB) betreibt den Berlin Electron Storage Ring Society for SYnchrotron Radiation (BESSY) II, eine Lichtquelle dritter Generation. Der Betrieb der Speicherring basierten Lichtquelle BESSY II nahe der transversalen, optischen Resonanz dritter Ordnung mit Transverse Resonance Island Buckets (TRIBs) Optik ermöglicht die Speicherung von Strom auf einer zweiten, stabilen Umlaufbahn. Der zweite Orbit windet sich im transversalen x-x′-Phasenraum über drei Umläufe um den Kernorbit und hat somit etwa den dreifachen Arbeitspunkt des Kernstrahls. Der stabile Inselorbit bietet die Möglichkeit, die Elektronen für jeden der 400, von der 500 MHz BESSY II Radio Frequency (RF) Kavität definierten, Buckets, fast beliebig zwischen dem Kern und den drei zugehörigen TRIBs zu verteilen. Dies eröffnet neue Möglichkeiten der Bunchtrennung. Durch Bevölkerung eines Orbits mit wenigen Elektronenpaketen, kann dieser dediziert für zeitaufgelöste Experimente genutzt werden. Es erhalten alle Strahlrohre mit hinreichender Akzeptanz die Möglichkeit, zeitaufgelöste Experimente durchzuführen. Die Bunchtrennung wird durch Ausrichtung der Strahlrohre auf den gewünschten Orbit erreicht. Somit stellt dieser Betriebsmodus eine Möglichkeit dar, die Timing-Fähigkeiten der BESSY II-Anlage und Speicherringbasierter Lichtquellen im Allgemeinen weiter auszubauen. / The increasing demand for synchrotron radiation facilities has led to a continuously increasing offer around the world. The scientific user community of storage-ring-based light sources requires ever-higher brightness and many are also interested in special time structures of the radiation such as short pulse lengths and certain repetition rates. This has led to continuous upgrades of existing and the construction of many new machines around the world. The Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB) operates the third generation light source Berlin Electron Storage Ring Society for SYnchrotron Radiation (BESSY) II. Operation of the storage-ring-based light source BESSY II in proximity of the third-order, transverse, optical tune resonance with Transverse Resonance Island Buckets (TRIBs) optics enables storage of current on a second stable orbit winding around the core orbit in the transverse x-x′ -phase space. This second orbit closes after three revolutions, resulting in a tune approximately three times that of the core tune. The stable island orbit provides the possibility to populate each of the 400 Radio Frequency (RF) buckets, defined by the 500 MHz cavities at BESSY II not only on the core but also additionally or exclusively on one or all three of the corresponding transverse island buckets of the threefold island orbit. This provides unique bunch separation possibilities with the appropriate population of each orbit. The population of one orbit with single bunches enables dedicated utilisation of this orbit for timing experiments and gives all beamlines with sufficient acceptance access to time-resolved experiments. The bunch separation is realised by aligning each beamline with the desired orbit. Thus, this operation mode represents a possibility to enhance the timing capabilities at BESSY II and storage ring based light sources in general.
122

Surface Plasmons Polaritons and Single Dust Particles

Cilwa, Katherine E. 20 July 2011 (has links)
No description available.
123

Detection and Characterisation of Nanoparticles using Inductively Coupled Plasma Mass Spectrometry

Schmidt, Benita 26 July 2019 (has links)
In dieser Doktorarbeit wurde eine analytische Methode zur Charakterisierung metallischer Nanopartikel (NPs) entwickelt und die Methode bei der Untersuchung natürlicher Proben angewendet. Mit einem analytisches System bestehend aus einem Mikrotropfengenerator (microdroplet generator, MDG) zusammen mit einem pneumatischen Zerstäuber und einem induktiv gekoppeltem Plasma-Massenspektrometer (ICP-MS) konnte eine quantitative und qualitative Charakterisierung von NPs durchgeführt werden. Der MDG wurde verwendet um die Kalibrierungsfunktion für die massenspektrometrische Quantifizierung der Metalle in den Nanopartikelproben, die über den pneumatischen Zerstäuber eingeführt wurden, einzurichten. Der Hauptvorteil dieser Anordnung besteht darin, dass mit dem MDG für jedes Metall Tropfen einer gewünschten Größe hergestellt werden können und eine 100 %-ige Transporteffizienz gegeben ist. Die eingeführte Masse korrelierte mit der Signalintensität von Nanopartikeln, so dass die mit dem MDG generierten Tropfen für die Kalibrierung verwendet werden konnten ohne dass Referenzmaterial erforderlich war. Die aufwändige und fehleranfällige Bestimmung der Effizienz eines Zerstäubers, die für die Bestimmung des Metallgehaltes von NPs mittels eines Einzelpartikel-ICP-MS (spICP-MS) erforderlich ist, konnte dadurch vermieden werden. Unter Anwendung dieser dualen Einführungsmethode wurden Größen und Konzentrationen einer Reihe von Standard Silber (Ag) NPs und Referenz Gold (Au) NPs mit hoher Genauigkeit bestimmt. Zusätzlich wurde mit einem neuen kommerziell verfügbaren ICP-Flugzeitmassenspektrometer (ICP-TOF-MS) Ag und Au NPs in unterschiedlichen Matrices charakterisiert: in verschiedenen Salzsäure (HCl)- und Salpetersäure (HNO3)- Konzentrationen und in Gegenwart verschiedener Elemente. Bei den unterschiedlichen Matrices war die Größenbestimmung innerhalb der gegebenen Standardabweichungen korrekt. / In this doctoral thesis an analytical method for characterising metal nanoparticles (NPs) was developed and its application for investigating natural samples verified. An analytical system consisting of a microdroplet generator (MDG) used in combination with a pneumatic nebuliser (PN) and an inductively coupled plasma mass spectrometer (ICP-MS) proved capable of quantitatively and qualitatively identifying NPs. The MDG was used to establish the calibration function for mass quantification of the metal present in the sample NPs introduced via the PN. The major advantage of this configuration is that the MDG generated droplets of tailored size for any given metal while offering a 100 % transport efficiency. The introduced mass correlated with signal intensities of NPs and thus the microdroplet generated droplets could be used for calibration purposes without the need for any reference material. Thus, the tedious and error-prone nebuliser efficiency determination step that is required when determining the NP metal content using the single particle mode ICP-MS (spICP-MS) approach, could be avoided. With this dual sample introduction method, the sizes and concentrations of a range of standard silver (Ag) NPs and gold (Au) reference NPs were determined with high accuracy. Additionally, together with a new commercially available ICP-time of flight-MS (ICP-TOF-MS) the characterisation of Ag- and Au-NPs was carried out in various matrices: In hydrochloric (HCl) and nitric acid (HNO3) at a range of concentration and in different elemental environments. In the presence of matrices, it was found that the size characterisation of the NPs is correct within the standard deviation.
124

Numerical modeling of moving carbonaceous particle conversion in hot environments / Numerische Modellierung der Konversion bewegter Kohlenstoffpartikel in heißen Umgebungen

Kestel, Matthias 24 June 2016 (has links) (PDF)
The design and optimization of entrained flow gasifiers is conducted more and more via computational fluid dynamics (CFD). A detailed resolution of single coal particles within such simulations is nowadays not possible due to computational limitations. Therefore the coal particle conversion is often represented by simple 0-D models. For an optimization of such 0-D models a precise understanding of the physical processes at the boundary layer and within the particle is necessary. In real gasifiers the particles experience Reynolds numbers up to 10000. However in the literature the conversion of coal particles is mainly regarded under quiescent conditions. Therefore an analysis of the conversion of single particles is needed. Thereto the computational fluid dynamics can be used. For the detailed analysis of single reacting particles under flow conditions a CFD model is presented. Practice-oriented parameters as well as features of the CFD model result from CFD simulations of a Siemens 200MWentrained flow gasifier. The CFD model is validated against an analytical model as well as two experimental data-sets taken from the literature. In all cases good agreement between the CFD and the analytics/experiments is shown. The numerical model is used to study single moving solid particles under combustion conditions. The analyzed parameters are namely the Reynolds number, the ambient temperature, the particle size, the operating pressure, the particle shape, the coal type and the composition of the gas. It is shown that for a wide range of the analyzed parameter range no complete flame exists around moving particles. This is in contrast to observations made by other authors for particles in quiescent atmospheres. For high operating pressures, low Reynolds numbers, large particle diameters and high ambient temperatures a flame exists in the wake of the particle. The impact of such a flame on the conversion of the particle is low. For high steam concentrations in the gas a flame appears, which interacts with the particle and influences its conversion. Furthermore the impact of the Stefan-flow on the boundary layer of the particle is studied. It is demonstrated that the Stefan-flow can reduce the drag coefficient and the Nusselt number for several orders of magnitude. On basis of the CFD results two new correlations are presented for the drag coefficient and the Nusselt number. The comparison between the correlations and the CFD shows a significant improvement of the new correlations in comparison to archived correlations. The CFD-model is further used to study moving single porous particles under gasifying conditions. Therefore a 2-D axis-symmetric system of non-touching tori as well as a complex 3-D geometry based on the an inverted settlement of monodisperse spheres is utilized. With these geometries the influence of the Reynolds number, the ambient temperature, the porosity, the intrinsic surface and the size of the radiating surface is analyzed. The studies show, that the influence of the flow on the particle conversion is moderate. In particular the impact of the flow on the intrinsic transport and conversion processes is mainly negligible. The size of the radiating surface has a similar impact on the conversion as the flow in the regarded parameter range. On basis of the CFD calculations two 0-D models for the combustion and gasification of moving particles are presented. These models can reproduce the results predicted by the CFD sufficiently for a wide parameter range.
125

Dynamik der Photo-Lumineszenz-Unterbrechung von Halbleiter-Nanokristallen in elektrischen Feldern

Krasselt, Cornelius 09 July 2015 (has links) (PDF)
Diese Arbeit untersucht die Photo-Lumineszenz (PL)-Unterbrechung (Blinken) einzelner in Polymer-Nanopartikeln eingebetteter CdSe/CdS Halbleiter-Nanokristalle (Quantenpunkte) im Einfluss elektrischer Gleich- und Wechselfelder mittels Weitfeld-Mikroskopie. Hierbei emittieren die einzelnen Quantenpunkte trotz kontinuierlicher Anregung mit einer zwischen hellen An- und dunklen Aus-Zuständen variierenden PL-Intensität. Die Ergebnisse zeigen, dass die Dynamik dieses Blinkens durch Wechselfelder stark beeinflusst wird und von deren Feldstärke, teilweise auch deren Feldfrequenz abhängt. Für zunehmende Feldstärken lässt sich ein schnellerer Wechsel zwischen An- und Aus-Zuständen (erhöhte Blinkfrequenz) beobachten, der von einer reduzierten Häufigkeit langer An- und Aus-Ereignisse begleitet wird. Der Verlauf der An-Zeit-Verteilungen bei kleinen Zeiten wird zunehmend (monoton) flacher, während die Verteilungen der Aus-Zeiten zunächst ebenfalls einem analogen Trend folgen, ab einer bestimmten und von der Feldfrequenz abhängenden Feldstärke jedoch wieder steiler verlaufen. Ein solcher Monotonie-Wechsel in der Blinkdynamik im Fall einer gleichbleibenden Variation einer äußeren Bedingung wurde bei Halbleiter-Nanokristallen so erstmalig beobachtet. Für Gleichfelder zeigen sich hingegen nahezu keine Auswirkungen. Lediglich die An-Zeit-Verteilungen sowie die Blinkfrequenz im Fall hoher Feldstärken werden modifiziert. Die Ergebnisse werden im Kontext verschiedener aktueller Modelle zur PL-Unterbrechung wie dem trapping-Modell, dem self-trapping-Mechanismus oder dem Modell multipler Rekombinationszentren diskutiert und diese entsprechend erweitert. Dabei stehen die dielektrischen Eigenschaften und die Relaxationsdynamik der lokalen Quantenpunkt-Umgebung im Mittelpunkt, deren Reaktion auf die externen Felder durch eine zeitabhängige Ausrichtung permanenter Dipole beschrieben werden kann.
126

Numerical modeling of moving carbonaceous particle conversion in hot environments

Kestel, Matthias 02 June 2016 (has links)
The design and optimization of entrained flow gasifiers is conducted more and more via computational fluid dynamics (CFD). A detailed resolution of single coal particles within such simulations is nowadays not possible due to computational limitations. Therefore the coal particle conversion is often represented by simple 0-D models. For an optimization of such 0-D models a precise understanding of the physical processes at the boundary layer and within the particle is necessary. In real gasifiers the particles experience Reynolds numbers up to 10000. However in the literature the conversion of coal particles is mainly regarded under quiescent conditions. Therefore an analysis of the conversion of single particles is needed. Thereto the computational fluid dynamics can be used. For the detailed analysis of single reacting particles under flow conditions a CFD model is presented. Practice-oriented parameters as well as features of the CFD model result from CFD simulations of a Siemens 200MWentrained flow gasifier. The CFD model is validated against an analytical model as well as two experimental data-sets taken from the literature. In all cases good agreement between the CFD and the analytics/experiments is shown. The numerical model is used to study single moving solid particles under combustion conditions. The analyzed parameters are namely the Reynolds number, the ambient temperature, the particle size, the operating pressure, the particle shape, the coal type and the composition of the gas. It is shown that for a wide range of the analyzed parameter range no complete flame exists around moving particles. This is in contrast to observations made by other authors for particles in quiescent atmospheres. For high operating pressures, low Reynolds numbers, large particle diameters and high ambient temperatures a flame exists in the wake of the particle. The impact of such a flame on the conversion of the particle is low. For high steam concentrations in the gas a flame appears, which interacts with the particle and influences its conversion. Furthermore the impact of the Stefan-flow on the boundary layer of the particle is studied. It is demonstrated that the Stefan-flow can reduce the drag coefficient and the Nusselt number for several orders of magnitude. On basis of the CFD results two new correlations are presented for the drag coefficient and the Nusselt number. The comparison between the correlations and the CFD shows a significant improvement of the new correlations in comparison to archived correlations. The CFD-model is further used to study moving single porous particles under gasifying conditions. Therefore a 2-D axis-symmetric system of non-touching tori as well as a complex 3-D geometry based on the an inverted settlement of monodisperse spheres is utilized. With these geometries the influence of the Reynolds number, the ambient temperature, the porosity, the intrinsic surface and the size of the radiating surface is analyzed. The studies show, that the influence of the flow on the particle conversion is moderate. In particular the impact of the flow on the intrinsic transport and conversion processes is mainly negligible. The size of the radiating surface has a similar impact on the conversion as the flow in the regarded parameter range. On basis of the CFD calculations two 0-D models for the combustion and gasification of moving particles are presented. These models can reproduce the results predicted by the CFD sufficiently for a wide parameter range.:List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .XIII Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XV Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIX 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 1.1 State of the Art in Carbon Conversion Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.1 Combustion of Solid Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.1.2 Gasification of Porous Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 Classification of the Present Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 1.3 Overview of the Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 2 Basic Theory and Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1 Geometry and Length Scales of Coal Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 2.2 Conditions in a Siemens Like 200 MW Entrained Flow Gasifier . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Velocity Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 2.2.2 Temperature Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.3 Particle Volume Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 2.3 Time Scales of the Physical Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Basic Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 2.5 Conservation Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6 Gas Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 2.7 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.8 Numerics and Solution Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 2.9 Mesh and Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 3 CFD-based Oxidation Modeling of a Non-Porous Carbon Particle . . . . . . . . . . . . . . . . . . . . .37 3.1 Chemical Reaction System for Combustion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 3.1.1 Heterogeneous Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 3.1.2 Homogeneous Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 3.1.3 Comparison of the Semi-Global vs. Reduced Reaction Mechanisms for the Gas Phase . .41 3.2 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 3.2.1 Validation Against an Analytical Solution of the Two-Film Model . . . . . . . . . . . . . . . . . .43 3.2.2 Validation Against Experiments I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.3 Validation Against Experiments II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 3.3 Influence of Ambient Temperature and Reynolds Number . . . . . . . . . . . . . . . . . . . . . . . .51 3.4 Influence of Heterogeneous Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.5 Influence of Atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61 3.6 Influence of Operating Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 3.7 Influence of Particle Diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .70 3.8 The influence of Particle Shape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.9 Impact of Stefan Flow on the Boundary Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 3.9.1 Impact of Stefan Flow on the Drag Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 3.9.2 Impact of Stefan Flow on the Nusselt and Sherwood Number . . . . . . . . . . . . . . . . . . . .85 3.10 Single-Film Sub-Model vs. CFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 3.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4 CFD-based Numerical Modeling of Partial Oxidation of a Porous Carbon Particle . . . . . . . . . .99 4.1 Chemical Reaction System for Gasification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 4.1.1 Heterogeneous Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100 4.1.2 Homogeneous Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2 Two-Dimensional Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2.2 Influence of Reynolds Number and Ambient Temperature . . . . . . . . . . . . . . . . . . . . . .109 4.2.3 Influence of Porosity and Internal Surface . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 120 4.3 Comparative Three-Dimensional Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 4.3.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126 4.3.2 Results of the 3-D Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 4.4 Extended Sub-Model for Gasification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . .141 5.1 Summary of This Work . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .141 5.2 Recommendations for Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145 6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.1 Appendix I: Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 6.2 Appendix II: Two-Film Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.3 Appendix III: Sub-Model for the Combustion of Solid Particles . . . . . . . . . . . . . . . . . . . . 160 6.4 Appendix IV: Sub-Model for the Gasification of Porous Particles . . . . . . . . . . . . . . . . . . . 161
127

Dynamik der Photo-Lumineszenz-Unterbrechung von Halbleiter-Nanokristallen in elektrischen Feldern

Krasselt, Cornelius 02 July 2015 (has links)
Diese Arbeit untersucht die Photo-Lumineszenz (PL)-Unterbrechung (Blinken) einzelner in Polymer-Nanopartikeln eingebetteter CdSe/CdS Halbleiter-Nanokristalle (Quantenpunkte) im Einfluss elektrischer Gleich- und Wechselfelder mittels Weitfeld-Mikroskopie. Hierbei emittieren die einzelnen Quantenpunkte trotz kontinuierlicher Anregung mit einer zwischen hellen An- und dunklen Aus-Zuständen variierenden PL-Intensität. Die Ergebnisse zeigen, dass die Dynamik dieses Blinkens durch Wechselfelder stark beeinflusst wird und von deren Feldstärke, teilweise auch deren Feldfrequenz abhängt. Für zunehmende Feldstärken lässt sich ein schnellerer Wechsel zwischen An- und Aus-Zuständen (erhöhte Blinkfrequenz) beobachten, der von einer reduzierten Häufigkeit langer An- und Aus-Ereignisse begleitet wird. Der Verlauf der An-Zeit-Verteilungen bei kleinen Zeiten wird zunehmend (monoton) flacher, während die Verteilungen der Aus-Zeiten zunächst ebenfalls einem analogen Trend folgen, ab einer bestimmten und von der Feldfrequenz abhängenden Feldstärke jedoch wieder steiler verlaufen. Ein solcher Monotonie-Wechsel in der Blinkdynamik im Fall einer gleichbleibenden Variation einer äußeren Bedingung wurde bei Halbleiter-Nanokristallen so erstmalig beobachtet. Für Gleichfelder zeigen sich hingegen nahezu keine Auswirkungen. Lediglich die An-Zeit-Verteilungen sowie die Blinkfrequenz im Fall hoher Feldstärken werden modifiziert. Die Ergebnisse werden im Kontext verschiedener aktueller Modelle zur PL-Unterbrechung wie dem trapping-Modell, dem self-trapping-Mechanismus oder dem Modell multipler Rekombinationszentren diskutiert und diese entsprechend erweitert. Dabei stehen die dielektrischen Eigenschaften und die Relaxationsdynamik der lokalen Quantenpunkt-Umgebung im Mittelpunkt, deren Reaktion auf die externen Felder durch eine zeitabhängige Ausrichtung permanenter Dipole beschrieben werden kann.
128

Mikroskopie und optische Spektroskopie an heterogenen Nano- und Mikrostrukturen: Halbleiter-Nanokristalle, molekulare Farbstofffilme und funktionalisierte Hybridstrukturen

Trenkmann, Ines 16 July 2015 (has links)
In dieser Arbeit wird die Abhängigkeit der Photolumineszenz (PL) von CdSe/ZnS-Nanokristallen von der Umgebung und der Einfluss der Filmdicke und -morphologie auf die optische Absorption von Farbstofffilmen untersucht sowie die Oberfläche von Hybridstrukturen durch Funktionalisierung mit Farbstoff analysiert. Untersuchungen von CdSe/ZnS-Nanokristallen in Toluol-Lösung zeigen, dass die PL-Intensität der Nanopartikel durch Zugabe des organischen Halbleiters TPD gequencht wird. Die zusätzliche Auswertung der PL-Lebensdauer verdeutlicht, dass die Abnahme (fast) vollständig durch statisches Quenchen, infolge der Abnahme der Anzahl der mittierenden Nanokristalle verursacht wird, bei einem Anstieg der langlebigsten Lebensdauerkomponente. Die Analyse der PL-Unterbrechung einzelner Nanokristalle auf PVA und Siliziumoxid sowie eingebettet in PS und TPD zeigt eine Ab- bzw. Zunahme der Häufigkeit langer An- bzw. Aus-Zeiten und somit eine deutliche Abhängigkeit der PL-Unterbrechung von den dielektrischen Eigenschaften der Umgebung. Bei Variation der Anregungsleistung zeigt sich für einzelne Nanokristalle auf Siliziumoxid und eingebettet in TPD eine lineare Zunahme der Blinkaktivität und eine Abnahme des An-Zeit-Anteils. Die Änderung der Verteilungen der An- und Aus-Zeiten zeigen eine deutliche Abhängigkeit von der Matrix. Die Untersuchung der optischen Absorption von aufgedampften MePTCDI- und Cl4MePTCDI-Filmen zeigt eine Verschiebung des energieärmsten optischen Überganges mit wachsender mittlere Filmdicke. Es wird ein (geometrisches) Schicht-Modell vorgestellt, das die energetische Verschiebung mit der mittleren Filmdicke korreliert und dabei die kristalline, nadelförmige Morphologie von MePTCDIFilmen und die amorphe Kugelkappen-Struktur von Cl4MePTCDI-Filmen berücksichtigt. Die Oberfläche von Hybridfilmen aus PMMA mit Siliziumoxid-Partikeln wird durch Anbindung von R6G an die Oxid-Partikel gezielt funktionalisiert. Die Ergebnisse von fluoreszenzmikroskopischen Untersuchungen zeigen, dass dadurch der Anteil der freien Oxid-Oberfläche bestimmt werden kann.
129

Characterisation of Photo-Physical Properties of Upconversion Nanocrystals at Ensemble and Single Particle Level

Frenzel, Florian 19 July 2022 (has links)
Aufkonvertierungs-Nanokristalle (UCNPs), wie NaYF4 Kristalle, welche mit Yb3+ and Er3+ Ionen dotiert sind, emittieren höher energetisches Licht im ultravioletten/sichtbaren und nahinfraroten Bereich, nachdem sie mit weniger energiereichem nahinfraroten Licht angeregt wurden. Damit besitzen sie einzigartige optische Eigenschaften, wie verschiedenfarbige Emissionsbanden, verringerte Hintergrundfluoreszenz, größere Eindringtiefen in organisches Probenmaterial und eine hohe Lichtstabilität. Diese Eigenschaften sind besonders in der optischen Bioanalyse, in medizinischen und technischen Anwendungen von Vorteil. In dieser Arbeit werden die photophysikalischen und spektralen Eigenschaften von UCNPs im Ensemble und an Einzelpartikeln untersucht. Ein dafür entwickeltes konfokales Mikroskop ermöglicht Einzelpartikelmessungen bis in den Sättigungsbereich der UCNPs bei hohen Laser Anregungsleistungsdichten (P). Die erste Studie dieser Arbeit umfasst Ensemble- und Einzelpartikelmessungen an Kern und Kern-Schale 𝛽-NaYF4 Kristallen, welche mit 20% Yb3+ und 1% bis 3% Er3+ Ionen dotiert sind, wobei die optischen Eigenschaften P-abhängig über sechs Größenordnungen untersucht wurden. Die zweite Studie diskutiert die Einflüsse bei starker Änderung der Yb3+/Er3+ Ionen Dotierung anhand von drei verschiedenen Probensystemen. Diese unterscheiden sich sowohl in der Partikelgröße als auch in der Synthesevorschrift. Bei der dritten Studie wurde die direkte Anregung von Yb3+ mit der von Nd3+ Ionen an Nd/Yb/Er dotierten NaYF4 Partikeln bezüglich des aufkonvertierten Lumineszenz Verhaltens in Wasser verglichen. In weiteren Messungen wurde sowohl der Lumineszenz Resonanz Energie Transfer (LRET) ausgehend von einem UCNP zu dem Farbstoff Sulforhodamine B, als auch plasmonische Wechselwirkungen von Au-Schale UCNPs bei Einzelpartikelmessungen untersucht. / Upconversion nanoparticles (UCNPs), such as, NaYF4 crystals co-doped with Yb3+ and Er3+ ions, emit higher energetic light in the UV/vis and NIR range under lower energetic NIR excitation. This generates unique optical properties, for example, multi-colour band emissions, reduced background fluorescence, deeper tissue penetration depths and high photostability rendering UCNPs attractive options for bioimaging, medicinal and engineering applications. In this thesis the influence of multi-factor parameters on the photo-physical and spectroscopic properties of UCNPs are investigated under ensemble and single particle (SP) condition. For this purpose, a confocal laser scanning microscope was constructed to enable the characterisation of individual UCNPs up to their saturation conditions at high laser power densities (P). At first, ensemble and SP studies of core- and core-shell 𝛽-NaYF4 crystals co-doped with 20% Yb3+ and 1% to 3% Er3+ are performed over a P-range of six orders of magnitude. The second part of this thesis discusses influences in a wide variation in Yb3+/Er3+ ion doping concentration. Thereby, three different sample sets of varying size have been studied, using different synthesis approaches. A comparison of the Nd- and Yb-excitation of Nd/Yb/Er triple-doped NaYF4 UCNPs regarding their upconversion luminescence performance in water is provided in the third section of the thesis. In further studies, the process of luminescence resonance energy transfer (LRET) from an UCNP to the sulforhodamine B dye and the plasmonic interaction of an Au-shelled UCNP have been examined at the SP level.

Page generated in 0.0818 seconds