• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 107
  • 51
  • 18
  • 14
  • 13
  • 6
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 285
  • 75
  • 58
  • 46
  • 46
  • 44
  • 38
  • 30
  • 30
  • 29
  • 28
  • 24
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Výroba tělesa pro klíčový zámek / Body manufacture of a key lock

Leden, Pavel January 2011 (has links)
The diploma thesis is focused on the production of body for cylinder locks. This is production of very small and accurate parts. In the first part there is described the function of the lock, the sort of cylinder locks, their components and the basic types of safety elements. The second part is focused on the production of given type of body. The thesis deals with either existing production technology or proposals of possible innovation. This firstly consists in new organization of manufacturing operations. At the close we can find comparison of existing technology and new proposal.
272

Pohon vřeten pětivřetenového soustružnického automatu / Desingn of independent drives for five-spindle automatic lathe

Pavelka, Radomil January 2014 (has links)
The subject of the thesis is design of independent spindle drive for multi-spindle automatic lathe MORI-SAY TMZ 520 CNC manufactured by TAJMAC-ZPS. The thesis will introduce the representatives of manufacturing program of TAJMAC-ZPS multi-spindle automatic lathes division and there will be a brief description of their main constructional parts. The main objective of the thesis is an engineering design of testing device which will be bulit for verification of the correct drive concept. There is also many calculations and detailed description of the engineering design. The testing device is made for internal needs of TAJMAC-ZPS.
273

Konstrukce CNC frézky / Design of CNC milling machine

Žák, Petr January 2015 (has links)
The diploma thesis includes design of vertical CNC milling machine. It also includes research in the field of CNC milling machines on the world market, which is carried out to select the appropriate machine parameters and the structural configuration of the machine. Another part of the thesis deals with the selection of suitable components, design calculations, manufacturing drawings and the 3D model showing the final design solution of proposed machine.
274

Regulation of Mitotic Spindle Assembly in Caenorhabditis elegans Embryos

Schlaitz, Anne-Lore 05 June 2007 (has links)
The mitotic spindle is a bipolar microtubule-based structure that mediates proper cell division by segregating the genetic material and by positioning the cytokinesis cleavage plane. Spindle assembly is a complex process, involving the modulation of microtubule dynamics, microtubule focusing at spindle poles and the formation of stable microtubule attachments to chromosomes. The cellular events leading to spindle formation are highly regulated, and mitotic kinases have been implicated in many aspects of this process. However, little is known about their counteracting phosphatases. A screen for genes required for early embryonic cell divisions in C. elegans identified rsa-1 (for regulator of spindle assembly 1), a putative Protein Phosphatase 2A (PP2A) regulatory subunit whose silencing causes defects in spindle formation. Upon rsa-1(RNAi), spindle poles collapse onto each other and microtubule amounts are strongly reduced. My thesis work demonstrates that RSA-1 indeed functions as a PP2A regulatory subunit. RSA-1 associates with the PP2A enzyme and recruits it to centrosomes. The centrosome binding of PP2A furthermore requires the new protein RSA-2 as well as the core centrosomal protein SPD-5 and is based on a hierarchical protein-protein interaction pathway. When PP2A is lacking at centrosomes after rsa-1(RNAi), the centrosomal amounts of two critical mitotic effectors, the microtubule destabilizer KLP-7 and the kinetochore microtubule stabilizer TPXL-1, are altered. KLP-7 is increased, which may account for the reduction of microtubule outgrowth from centrosomes in rsa-1(RNAi) embryos. TPXL-1 is lost from centrosomes, which may explain why spindle poles collapse in the absence of RSA-1. TPXL-1 physically associates with RSA-1 and RSA-2, suggesting that it is a direct target of PP2A. In summary, this work defines the role of a novel PP2A complex in mitotic spindle assembly and suggests a model for how different microtubule re-organization steps might be coordinated during spindle formation.
275

A quantitative analysis of the optical and material properties of metaphase spindles

Biswas, Abin 16 October 2020 (has links)
Die Metaphasenspindel ist eine selbstorganisierende molekulare Maschine, die die entscheidende Funktion erfüllt, das Genom während der Zellteilung gleichmäßig zu trennen. Spindellänge und -form sind emergente Eigenschaften, die durch komplexe Wechselwirkungsnetzwerke zwischen Molekülen hervorgerufen werden. Obwohl erhebliche Fortschritte beim Verständnis der einzelnen molekularen Akteure erzielt wurden, die ihre Länge und Form beeinflussen, haben wir erst kürzlich damit begonnen, die Zusammenhänge zwischen Spindelmorphologie, Dynamik und Materialeigenschaften zu untersuchen. In dieser Arbeit untersuchte ich zunächst quantitativ die Rolle zweier molekularer Kraftgeneratoren - Kinesin-5 und Dynein - bei der Regulierung der Spindelform von Xenopus-Eiextrakt. Eine Störung ihrer Aktivität veränderte die Spindelmorphologie, ohne die Gesamtmasse der Mikrotubuli zu beeinflussen. Um die Spindelform physikalisch zu stören, wurde ein Optical Stretcher (OS) -Aufbau entwickelt. Obwohl das OS Vesikel in Extrakten verformen könnte, konnte keine Kraft auf Spindeln ausgeübt werden. Die Untersuchung des Brechungsindex der Struktur mittels optischer Beugungstomographie (ODT) ergab, dass es keinen Unterschied zwischen Spindel und Zytoplasma gab. Korrelative Fluoreszenz- und ODT-Bildgebung zeigten, wie sich die Materialeigenschaften innerhalb verschiedener Biomoleküle räumlich unterschieden. Die Gesamttrockenmasse der Spindel skalierte mit der Länge, während die Gesamtdichte konstant blieb. Interessanterweise waren die Spindeln in HeLa-Zellen dichter als das Zytoplasma. Schließlich deckte eine störende Mikrotubulusdichte auf, wie die Gesamttubulinkonzentration die Spindelgröße, die Gesamtmasse und die Materialeigenschaften regulierte. Insgesamt bietet diese Studie eine grundlegende Charakterisierung der physikalischen Eigenschaften der Spindel und hilft dabei, Zusammenhänge zwischen der Biochemie und der Biophysik einer aktiven Form weicher Materie zu beleuchten. / The metaphase spindle is a self-organising molecular machine that performs the critical function of segregating the genome equally during cell division. Spindle length and shape are emergent properties brought about by complex networks of interactions between molecules. Although significant progress has been made in understanding the individual molecular players influencing its length and shape, we have only recently started exploring the links between spindle morphology, dynamics, and material properties. A thorough analysis of spindle material properties is essential if we are to comprehend how such a dynamic structure responds to forces, and maintains its steady-state length and shape. In this work, I first quantitatively investigated the role of two molecular force generators– Kinesin-5 and Dynein in regulating Xenopus egg extract spindle shape. Perturbing their activity altered spindle morphology without impacting total microtubule mass. To physically perturb spindle shape, an Optical Stretcher (OS) setup was developed. Although the OS could deform vesicles in extracts, force could not be exerted on spindles. Investigating the structure’s refractive index using Optical Diffraction Tomography (ODT) revealed that there was no difference between the spindle and cytoplasm. Correlative fluorescence and ODT imaging revealed how material properties varied spatially within different biomolecules. Additionally, spindle mass density and the microtubule density were correlated. The total dry mass of the spindle scaled with length while overall density remained constant. Interestingly, spindles in HeLa cells were denser than the cytoplasm. Finally, perturbing microtubule density uncovered how total tubulin concentration regulated spindle size, overall mass and material properties. Overall, this study provides a fundamental characterisation of the spindle’s physical properties and helps illuminate links between the biochemistry and biophysics of an active form of soft matter.
276

A Numerical Model of the Friction Stir Plunge

McBride, Stanford Wayne 17 April 2009 (has links) (PDF)
A Lagrangian finite-element model of the plunge phase of the friction stir welding process was developed to better understand the plunge. The effects of both modeling and experimental parameters were explored. Experimental friction stir plunges were made in AA 7075-T6 at a plunge rate of 0.724 mm/s with spindle speeds ranging from 400 to 800 rpm. Comparable plunges were modeled in Forge2005. Various simulation parameters were explored to assess the effect on temperature prediction. These included the heat transfer coefficient between the tool and workpiece (from 0 to 2000 W/m-K), mesh size (node counts from 1,200 to 8,000), and material model (five different constitutive relationships). Simulated and measured workpiece temperatures were compared to evaluate model quality. As spindle speed increases, there is a statistically significant increase in measured temperature. However, over the range of spindle speeds studied, this difference is only about 10% of the measured temperature increase. Both the model and the simulation show a similar influence of spindle speed on temperature. The tool-workpiece heat transfer coefficient has a minor influence (<25% temperature change) on simulated peak temperature. Mesh size has a moderate influence (<40% temperature change) on simulated peak temperature, but a mesh size of 3000 nodes is sufficient. The material model has a high influence (>60% temperature change) on simulated peak temperature. Overall, the simulated temperature rise error was reduced from 300% to 50%. It is believed that this can be best improved in the future by developing improved material models.
277

Разработка “интеллектуальных” систем термостабилизации подшипников шпиндельного узла металлорежущего станка в среде MATLAB : магистерская диссертация / Development of "intelligent" systems of thermal stabilization of bearings of the spindle Assembly of the metal-cutting machine in MATLAB

Гараев, Е. С., Garaev, E. S. January 2018 (has links)
The aim of the work is to develop systems of thermal stabilization of metal-cutting machine spindle assembly with artificial intelligence in MATLAB environment. The paper analyzes the existing systems of thermal stabilization of the supports of spindle units of metal-cutting machines and the known methods of compensation of thermal deformations of machines that occur during machining. The advantages and disadvantages of such systems are shown and attention is drawn to the thermal stabilization systems based on fuzzy logic. Two new variants of such systems are considered, which realize control on deviation and combined (on deviation and disturbance). Both systems are implemented programmatically in MATLAB. According to the results of programs in MATLAB, a scientific article was written, which in the international competition US-2017-02 took 3rd place in the direction of “Technical Sciences” in the category “Research project”. Diploma for 3rd place and the text of the article from the collection are attached. The explanatory note to the project contains 153 sheets and is accompanied by 23 demonstration sheets. / Цель работы – разработка “интеллектуальных” систем термостабилизации шпиндельного узла металлорежущего станка с искусственным интеллектом в среде MATLAB. В работе анализируются существующие системы термостабилизации опор шпиндельных узлов металлорежущих станков и известные способы компенсации тепловых деформаций станков, возникающих при обработке резанием. Показываются достоинства и недостатки таких систем и обращается внимание на системы термостабилизации, построенные на основе нечеткой логики. Рассматриваются два новых варианта таких систем, которые разработаны аппаратно и реализующие управление по отклонению и комбинированное (по отклонению и возмущению). Обе системы реализуются программно в MATLAB. По результатам создания программ в MATLAB, была написана научная статья, которая в международном конкурсе US-2017-02 заняла 3-е место по направлению “Технические науки” в номинации “Исследовательский проект”. Диплом за 3-е место и текст статьи из сборника прикреплены в приложении. Пояснительная записка к проекту содержит 153 листа и сопровождается 23 демонстрационными листами.
278

Model Identification, Updating, and Validation of an Active Magnetic Bearing High-Speed Machining Spindle for Precision Machining Operation

Wroblewski, Adam C. 13 October 2011 (has links)
No description available.
279

Analytical Modeling and Experimental Analysis of Metalworking Fluids in theMilling Process

Al Sofyani, Sharaf January 2017 (has links)
No description available.
280

Dynamics of Active Filament Systems / The Role of Filament Polymerization and Depolymerization / Dynamik aktiver Filament-Systeme

Zumdieck, Alexander 14 January 2006 (has links) (PDF)
Aktive Filament-Systeme, wie zum Beispiel das Zellskelett, sind Beispiele einer interessanten Klasse neuartiger Materialien, die eine wichtige Rolle in der belebten Natur spielen. Viele wichtige Prozesse in lebenden Zellen wie zum Beispiel die Zellbewegung oder Zellteilung basieren auf dem Zellskelett. Das Zellskelett besteht aus Protein-Filamenten, molekularen Motoren und einer großen Zahl weiterer Proteine, die an die Filamente binden und diese zu einem Netz verbinden können. Die Filamente selber sind semifexible Polymere, typischerweise einige Mikrometer lang und bestehen aus einigen hundert bis tausend Untereinheiten, typischerweise Mono- oder Dimeren. Die Filamente sind strukturell polar, d.h. sie haben eine definierte Richtung, ähnlich einer Ratsche. Diese Polarität begründet unterschiedliche Polymerisierungs- und Depolymerisierungs-Eigenschaften der beiden Filamentenden und legt außerdem die Bewegungsrichtung molekularer Motoren fest. Die Polymerisation von Filamenten sowie Krafterzeugung und Bewegung molekularer Motoren sind aktive Prozesse, die kontinuierlich chemische Energie benötigen. Das Zellskelett ist somit ein aktives Gel, das sich fern vom thermodynamischen Gleichgewicht befindet. In dieser Arbeit präsentieren wir Beschreibungen solcher aktiven Filament-Systeme und wenden sie auf Strukturen an, die eine ähnliche Geometrie wie zellulare Strukturen haben. Beispiele solcher zellularer Strukturen sind Spannungsfasern, kontraktile Ringe oder mitotische Spindeln. Spannungsfasern sind für die Zellbewegung essentiell; sie können kontrahieren und so die Zelle vorwärts bewegen. Die mitotische Spindel trennt Kopien der Erbsubstanz DNS vor der eigentlichen Zellteilung. Der kontraktile Ring schließlich trennt die Zelle am Ende der Zellteilung. In unserer Theorie konzentrieren wir uns auf den Einfluß der Polymerisierung und Depolymerisierung von Filamenten auf die Dynamik dieser Strukturen. Wir zeigen, dass der kontinuierliche Umschlag (d.h. fortwährende Polymerisierung und Depolymerisierung) von Filamenten unabdingbar ist für die kontraktion eines Rings mit konstanter Geschwindigkeit, so wie in Experimenten mit Hefezellen beobachtet. Mit Hilfe einer mikroskopisch motivierten Beschreibung zeigen wir, wie &amp;quot;filament treadmilling&amp;quot;, also Filament Polymerisierung an einem Ende mit der gleichen Rate wie Depolymerisierung am anderen Ende, zur Spannung in Filament Bündeln und Ringen beitragen kann. Ein zentrales Ergebnis ist, dass die Depolymerisierung von Filamenten in Anwesenheit von filamentverbindenden Proteinen das Zusammenziehen dieser Bündel sogar in Abwesenheit molekulare Motoren herbeiführen kann. Ferner entwickeln wir eine generische Kontinuumsbeschreibung aktiver Filament-Systeme, die ausschließlich auf Symmetrien der Systeme beruht und von mikroskopischen Details unabhängig ist. Diese Theorie erlaubt uns eine komplementäre Sichtweise auf solche aktiven Filament-Systeme. Sie stellt ein wichtiges Werkzeug dar, um die physikalischen Mechanismen z.B. in Filamentbündeln aber auch bei der Bildung von Filamentringen im Zellkortex zu untersuchen. Schließlich entwickeln wir eine auf einem Kräftegleichgewicht basierende Beschreibung für bipolare Strukturen aktiver Filamente und wenden diese auf die mitotische Spindel an. Wir diskutieren Bedingungen für die Bildung und Stabilität von Spindeln. / Active filament systems such as the cell cytoskeleton represent an intriguing class of novel materials that play an important role in nature. The cytoskeleton for example provides the mechanical basis for many central processes in living cells, such as cell locomotion or cell division. It consists of protein filaments, molecular motors and a host of related proteins that can bind to and cross-link the filaments. The filaments themselves are semiflexible polymers that are typically several micrometers long and made of several hundreds to thousands of subunits. The filaments are structurally polar, i.e. they possess a directionality. This polarity causes the two distinct filament ends to exhibit different properties regarding polymerization and depolymerization and also defines the direction of movement of molecular motors. Filament polymerization as well as force generation and motion of molecular motors are active processes, that constantly use chemical energy. The cytoskeleton is thus an active gel, far from equilibrium. We present theories of such active filament systems and apply them to geometries reminiscent of structures in living cells such as stress fibers, contractile rings or mitotic spindles. Stress fibers are involved in cell locomotion and propel the cell forward, the mitotic spindle mechanically separates the duplicated sets of chromosomes prior to cell division and the contractile ring cleaves the cell during the final stages of cell division. In our theory, we focus in particular on the role of filament polymerization and depolymerization for the dynamics of these structures. Using a mean field description of active filament systems that is based on the microscopic processes of filaments and motors, we show how filament polymerization and depolymerization contribute to the tension in filament bundles and rings. We especially study filament treadmilling, an ubiquitous process in cells, in which one filament end grows at the same rate as the other one shrinks. A key result is that depolymerization of filaments in the presence of linking proteins can induce bundle contraction even in the absence of molecular motors. We extend this description and apply it to the mitotic spindle. Starting from force balance considerations we discuss conditions for spindle formation and stability. We find that motor binding to filament ends is essential for spindle formation. Furthermore we develop a generic continuum description that is based on symmetry considerations and independent of microscopic details. This theory allows us to present a complementary view on filament bundles, as well as to investigate physical mechanisms behind cell cortex dynamics and ring formation in the two dimensional geometry of a cylinder surface. Finally we present a phenomenological description for the dynamics of contractile rings that is based on the balance of forces generated by active processes in the ring with forces necessary to deform the cell. We find that filament turnover is essential for ring contraction with constant velocities such as observed in experiments with fission yeast.

Page generated in 0.0437 seconds