• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 399
  • 212
  • 78
  • 64
  • 42
  • 30
  • 23
  • 22
  • 18
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 1010
  • 244
  • 219
  • 210
  • 121
  • 120
  • 113
  • 111
  • 105
  • 104
  • 103
  • 99
  • 96
  • 95
  • 91
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
521

Tensile-Strained Ge/InₓGa₁₋ₓAs Heterostructures for Electronic and Photonic Applications

Clavel, Michael Brian 25 June 2016 (has links)
The continued scaling of feature size in silicon (Si)-based complimentary metal-oxide-semiconductor (CMOS) technology has led to a rapid increase in compute power. Resulting from increases in device densities and advances in materials and transistor design, integrated circuit (IC) performance has continued to improve while operational power (VDD) has been substantially reduced. However, as feature sizes approach the atomic length scale, fundamental limitations in switching characteristics (such as subthreshold slope, SS, and OFF-state power dissipation) pose key technical challenges moving forward. Novel material innovations and device architectures, such as group IV and III-V materials and tunnel field-effect transistors (TFETs), have been proposed as solutions for the beyond Si era. TFETs benefit from steep switching characteristics due to the band-to-band tunneling injection of carriers from source to channel. Moreover, the narrow bandgaps of III-V and germanium (Ge) make them attractive material choices for TFETs in order to improve ON-state current and reduce SS. Further, Ge grown on InₓGa₁₋ₓAs experiences epitaxy-induced strain (ε), further reducing the Ge bandgap and improving carrier mobility. Due to these reasons, the ε-Ge/InₓGa₁₋ₓAs system is a promising candidate for future TFET architectures. In addition, the ability to tune the bandgap of Ge via strain engineering makes ε-Ge/InₓGa₁₋ₓAs heterostructures attractive for nanoscale group IV-based photonics, thereby benefitting the monolithic integration of electronics and photonics on Si. This research systematically investigates the material, optical, and heterointerface properties of ε-Ge/InₓGa₁₋ₓAs heterostructures on GaAs and Si substrates. The effect of strain on the heterointerface band alignment is comprehensively studied, demonstrating the ability to modulate the effective tunneling barrier height (Ebeff) and thus the threshold voltage (VT), ON-state current, and SS in future ε-Ge/InₓGa₁₋ₓAs TFETs. Further, band structure engineering via strain modulation is shown to be an effective technique for tuning the emission properties of Ge. Moreover, the ability to heterogeneously integrate these structures on Si is demonstrated for the first time, indicating their viability for the development of next-generation high performance, low-power logic and photonic integrated circuits on Si. / Master of Science
522

Emerging Power-Gating Techniques for Low Power Digital Circuits

Henry, Michael B. 29 November 2011 (has links)
As transistor sizes scale down and levels of integration increase, leakage power has become a critical problem in modern low-power microprocessors. This is especially true for ultra-low-voltage (ULV) circuits, where high levels of leakage force designers to chose relatively high threshold voltages, which limits performance. In this thesis, an industry-standard technique known as power-gating is explored, whereby transistors are used to disconnect the power from idle portions of a chip. Present power-gating implementations suffer from limitations including non-zero off-state leakage, which can aggregate to a large amount of wasted energy during long idle periods, and high energy overhead, which limits its use to long-term system-wide sleep modes. As this thesis will show however, by vastly increasing the effectiveness of power-gating through the use of emerging technologies, and by implementing aggressive hardware-oriented power-gating policies, leakage in microprocessors can be eliminated to a large extent. This allows the threshold voltage to be lowered, leading to ULV microprocessors with both low switching energy and high performance. The first emerging technology investigated is the Nanoelectromechnical-Systems (NEMS) switch, which is a CMOS-compatible mechanical relay with near-infinite off-resistance and low on-resistance. When used for power-gating, this switch completely eliminates off-state leakage, yet is compact enough to be contained on die. This has tremendous benefits for applications with long sleep times. For example, a NEMS-power-gated architecture performing an FFT per hour consumes 30 times less power than a transistor-power-gated architecture. Additionally, the low on-resistance can lower power-gating area overhead by 36-83\%. The second technology targets the high energy overhead associated with powering a circuit on and off. This thesis demonstrates that a new logic style specifically designed for ULV operation, Sense Amplifier Pass Transistor Logic (SAPTL), requires power-gates that are 8-10 times smaller, and consumes up to 15 times less boot-up energy, compared to static-CMOS. These abilities enable effective power-gating of an SAPTL circuit, even for very short idle periods. Microprocessor simulations demonstrate that a fine-grained power-gating policy, along with this drastically lower overhead, can result in up to a 44\% drop in energy. Encompassing these investigations is an energy estimation framework built around a cycle-accurate microprocessor simulator, which allows a wide range of circuit and power-gating parameters to be optimized. This framework implements two hardware-based power-gating schedulers that are completely invisible to the OS, and have extremely low hardware overhead, allowing for a large number of power-gated regions. All together, this thesis represents the most complete and forward-looking study on power-gating in the ULV region. The results demonstrate that aggressive power-gating allows designers to leverage the very low switching energy of ULV operation, while achieving performance levels that can greatly expand the capabilities of energy-constrained systems. / Ph. D.
523

Design, Fabrication and Characterization of a GaAs/InxGa1-xAs/GaAs Heterojunction Bipolar Transistor

Lidsky, David 16 October 2014 (has links)
Designs for PnP GaAs/InxGa1-xAs/GaAs heterojunction bipolar transistors (HBTs) are proposed and simulated with the aid of commercial software. Band diagrams, Gummel plots and common emitter characteristics are shown for the specific case of x=1, x=0.7, and x linearly graded from 0.75 to 0.7. Of the three designs, it is found that the linearly graded case has the lowest leakage current and the highest current gain. IV curves for all four possible classes of InAs/GaAs heterojunction (nN, nP, pN, pP) are calculated. A pN heterojunction is fabricated and characterized. In spite of the 7% lattice mismatch between InAs and GaAs, the diode has an ideality factor of 1.26 over three decades in the forward direction. In the reverse direction, the leakage current grows exponentially with the magnitude of the bias, and shows an effective ideality factor of 3.17, in stark disagreement with simulation. IV curves are taken over a temperature range of 105 K to 405 and activation energies are extracted. For benchmarking the device processing and the characterization apparatus, a conventional GaAs homojunction diode was fabricated and characterized, showing current rectification ratio of 109 between plus one volt and minus one volt. Because the PnP material for the optimal HBT design was not available, an Npn GaAs/InAs/InAs HBT structure was processed, characterized, and analyzed. The Npn device fails in both theory and in practice; however, by making a real structure, valuable lessons were learned for crystal growth, mask design, processing, and metal contacts. / Master of Science
524

Electrical Characterisation of Ferroelectric Field Effect Transistors based on Ferroelectric HfO2 Thin Films

Yurchuk, Ekaterina 06 February 2015 (has links)
Ferroelectric field effect transistor (FeFET) memories based on a new type of ferroelectric material (silicon doped hafnium oxide) were studied within the scope of the present work. Utilisation of silicon doped hafnium oxide (Si:HfO2) thin films instead of conventional perovskite ferroelectrics as a functional layer in FeFETs provides compatibility to the CMOS process as well as improved device scalability. The influence of different process parameters on the properties of Si:HfO2 thin films was analysed in order to gain better insight into the occurrence of ferroelectricity in this system. A subsequent examination of the potential of this material as well as its possible limitations with the respect to the application in non-volatile memories followed. The Si:HfO2-based ferroelectric transistors that were fully integrated into the state-of-the-art high-k metal gate CMOS technology were studied in this work for the first time. The memory performance of these devices scaled down to 28 nm gate length was investigated. Special attention was paid to the charge trapping phenomenon shown to significantly affect the device behaviour.:1 Introduction 2 Fundamentals 2.1 Non-volatile semiconductor memories 2.2 Emerging memory concepts 2.3 Ferroelectric memories 3 Characterisation methods 3.1 Memory characterisation tests 3.2 Ferroelectric memory specific characterisation tests 3.3 Trapping characterisation methods 3.4 Microstructural analyses 4 Sample description 4.1 Metal-insulator-metal capacitors 4.2 Ferroelectric field effect transistors 5 Stabilisation of the ferroelectric properties in Si:HfO2 thin films 5.1 Impact of the silicon doping 5.2 Impact of the post-metallisation anneal 5.3 Impact of the film thickness 5.4 Summary 6 Electrical properties of the ferroelectric Si:HfO2 thin films 6.1 Field cycling effect 6.2 Switching kinetics 6.3 Fatigue behaviour 6.4 Summary 7 Ferroelectric field effect transistors based on Si:HfO2 films 7.1 Effect of the silicon doping 7.2 Program and erase operation 7.3 Retention behaviour 7.4 Endurance properties 7.5 Impact of scaling on the device performance 7.6 Summary 8 Trapping effects in Si:HfO2-based FeFETs 8.1 Trapping kinetics of the bulk Si:HfO2 traps 8.2 Detrapping kinetics of the bulk Si:HfO2 traps 8.3 Impact of trapping on the FeFET performance 8.4 Modified approach for erase operation 8.5 Summary 9 Summary and Outlook
525

Robustness and Stability of Gallium Nitride Transistors in Dynamic Power Switching

Song, Qihao 16 September 2024 (has links)
Wide-bandgap gallium nitride (GaN) high electron mobility transistors (HEMTs) are gaining increased adoption in applications like mobile electronics and data centers. Benefitting from the high channel mobility and the high breakdown field of GaN, GaN power HEMTs enable low specific on-resistance and small capacitance and thus become attractive for high-frequency applications. In addition, most commercial GaN power HEMTs are fabricated on Si substrates up to 8 inches, allowing for a remarkable cost advantage. However, a by-product of the low-cost GaN-on-Si wafer (and conductive Si substrate) is the high voltage drop and high electric field (E-field) in the GaN buffer layers and transition layers sandwiched between the GaN channel and Si substrate. To boost the vertical blocking capability and minimize the leakage current, the GaN buffer layer is usually doped with carbon or iron, which can introduce complex carrier traps. This can further lead to the dynamic shifts of various parameters in GaN-on-Si HEMTs, which can cause their stability and robustness issues in practical circuit operations. This dissertation work studies the robustness and stability of GaN power HEMTs in dynamic power switching. The structures of most GaN power devices are fundamentally different from Si or Silicon Carbide (SiC) power devices, leading to numerous open questions on GaN power device robustness and stability. Simple equipment-level static characterization may not reflect the real device characteristics in circuit-level operation. Based on the relevance between the stress condition and the device's safe operating area (SOA), this dissertation is divided into two parts. In each part, two representative GaN power devices, the standalone GaN HEMT, and the GaN-Si cascode HEMT, are studied. The dissertation's first half discusses the GaN HEMT behavior outside of SOA, with a focus on the robustness of GaN HEMTs in overvoltage power switching. This focus is motivated by the lack of avalanche capability of GaN HEMTs, which is a unique device physics distinct from SiC/Si power transistors. Instead of withstanding the surge energy through avalanching, GaN HEMTs rely on their high breakdown voltage margin to withstand the surge energy, which can trigger new degradation and failure mechanisms. Therefore, investigating the GaN HEMTs' robustness in overvoltage switching is of great interest. The robustness study begins with a standalone depletion-mode (D-mode) MIS (Metal-Insulator-Semiconductor) HEMT in an overvoltage hard-switching. The device is found to show a decreased threshold voltage and increased saturation current after stress. These parametric shifts increase as switching cycles increase but reach a saturation point before one million cycles. The root cause is believed to be the impact-ionization-generated holes trapped underneath the insulated gate. This is verified by the physics-based TCAD (Technology Computer-Aided Design) simulation. After the stress, MIS-HEMT cannot fully recover naturally. Applying at positive gate-to-source bias (VGS) is found to be able to accelerate the threshold voltage recovery but not the saturation current recovery, while a 50-V substrate bias is shown to fully recover both parameters. These findings provide new insight into the hole trapping/de-trapping dynamics and the benefits of substrate voltage control in GaN MIS-HEMTs. Then, a cascode GaN HEMT, which contains a D-mode GaN MIS-HEMT and an enhancement-mode (E-mode) Si MOSFET, is studied similarly in overvoltage stress produced by an inductive switching circuit. Parametric shifts are found in cascode GaN HEMTs, including the unstable breakdown voltage and increased on-resistance. The crosstalk between Si MOSFET and GaN HEMT is believed to account for these parametric shifts. A decapsulated device is developed based on the commercial part to monitor the Si MOSFET behavior. Si MOSFET is found to avalanche during the overvoltage switching. The parametric shifts are believed to be due to the avalanche-generated electrons, which are injected into the GaN HEMTs and trapped in the GaN buffer layer. These electron traps alter the E-field distribution of the GaN HEMT and induce parametric shifts. The second half of the dissertation focuses on the GaN HEMT's stability inside the SOA, with a focus on the non-ideal power loss generated in high-frequency switching. The output capacitance (COSS) loss has recently been found to be the dominant loss in soft switching, which is the loss associated with GaN HEMT's COSS when it is charged and discharged. This process should be lossless for an ideal capacitor, but GaN HEMT experiences a hysteresis COSS loss during each charging-discharging cycle due to the COSS instability in dynamic power switching. The COSS loss study starts with an accurate and easy-to-implement test platform, which is proven to have good robustness and repeatability. The measured COSS loss of different types of GaN HEMTs is modeled, followed by the investigation of the COSS loss origin. TCAD simulation reveals the fundamental role of trappings in the cause of COSS loss in standalone GaN HEMTs. For the cascode GaN HEMT, two additional loss mechanisms are involved as compared to the standalone GaN HEMTs: Si avalanche energy loss and GaN early turn-on loss. This makes cascode GaN HEMT experiences much higher COSS loss than standalone GaN HEMTs. The COSS loss of cascode GaN HEMT is quantitively analyzed, and a mitigation strategy is proposed for suppressing the COSS loss of cascode GaN HEMTs. Then, a circuit-level method is proposed to reduce the COSS loss of standalone GaN HEMT by dynamically tuning the substrate bias, which is verified with a standalone D-mode GaN HEMT. The Si substrate bias can follow the drain voltage in a certain ratio by tuning the capacitance ratio between the drain, substrate, and source. It is found that with a substrate bias of 1/4 to 1/2 of the drain voltage, the COSS loss can be reduced by 86%. This result removes a critical roadblock for deploying GaN HEMTs in high-frequency, soft-switching applications. Finally, the COSS loss of similarly rated Si and SiC power transistors is characterized using the developed test platform. The capability of the setup is further broadened to testing power diodes. Some similarities and distinctions are found in the COSS loss behavior between GaN HEMTs and Si/SiC devices. Also, an EDISS validation process is provided for the UIS-based method in an operating class-E converter, verifying the effectiveness and accuracy of the proposed method. This provides important references for selecting the optimal power devices for high-frequency applications. / Doctor of Philosophy / Gallium Nitride (GaN) high electron mobility transistors (HEMTs) are reshaping the power electronics field. They have become increasingly popular in many applications like smartphones, electric vehicles, and data centers. They offer smaller on-resistance and can handle higher voltages compared to traditional silicon-based devices. GaN transistors are built on large-diameter silicon substrates, making them cost-effective but can lead to unique stability and robustness issues. This dissertation investigates the stability and robustness of GaN power HEMTs in high-voltage and high-frequency power switching. Based on the relevance of the studied stress to the device safe-operating-area, the discussion is divided into two parts: The first part looks at how GaN transistors handle situations where they are pushed beyond their safe operating limits, such as during power surges and overvoltage events. These transistors are found to experience changes in their electrical properties after being stressed, which might affect their performance across their lifetime. In addition to unveiling the physics and evolution of such parametric shifts, this work also discovers ways to recover the device parameters and maintain the device functionality. The second part of the research focuses on the stability and non-ideal power loss of GaN transistors within their safe operating area. The high-frequency soft-switching application is being investigated, as it has become a common trend for future power electronics. The study reveals that GaN transistors can produce additional power loss due to the intrinsic electrical instabilities. In addition to unveiling the key impact factors and physics of this loss, this work also develops device designs to suppress this non-ideal power loss significantly, improving the device efficiency in high-frequency applications. Overall, this work provides valuable insights into improving the robustness and efficiency of GaN transistors, which provide guidelines and insights for GaN designers and users to achieve optimal device and system performance.
526

Characterizing and Manipulating Intra-Die Performance Variation of FPGAs and its Application in Security

Cook, Hayden C 09 July 2024 (has links) (PDF)
Field Programmable Gate Arrays (FPGAs) are reconfigurable, high-performing devices that are often used in critical applications. However, like all semiconductors, FPGAs experience transistor aging that can lower performance and lead to device failures. Additionally, device aging also has several security implications. Therefore, understanding the aging mechanisms behind transistor aging is necessary to ensure the reliability of FPGAs. However, current aging studies either rely on simulation alone or are unable to isolate aging effects on specific elements within the FPGA. This dissertation uses the reconfigurability of FPGAs to develop novel aging techniques that allow for the targeted aging of specific areas of the FPGA fabric. This allows us to manipulate the performance variation of a device, which allows for several interesting security applications. In addition, we use precise characterization methods that, when combined with our fine-grained aging techniques, allow us to isolate the effects of aging on individual paths and elements within the FPGA. This provides valuable insights into FPGA aging which can be used to develop new aging mitigation strategies. This dissertation is comprised of five major contributions. The first contribution uses thousands of short circuits to induce a non-uniform slowdown of an FPGA's programmable fabric. The second contribution demonstrates how modifier circuits can be inserted into a region of short circuits to perform more precise aging to a targeted region and allow us to manipulate performance variation at the tile level of an FPGA. The third contribution uses our targeted aging technique to demonstrate two security applications: frequency watermark and cloning a ring oscillator physical unclonable function (RO PUF) on an FPGA. The fourth contribution uses carefully crafted stress circuits and precise characterization methods to isolate the effects of transistor aging on individual paths within the FPGA. The final contribution uses elements of our precise characterization techniques to create a more reliable configurable RO PUF (CRO PUF) for cryptographic key generation on FPGAs.
527

Entwicklung und Herstellung rekonfigurierbarer Nanodraht-Transistoren und Schaltungen / Development and fabrication of reconfigurable nanowire transistors and circuits

Heinzig, André 28 April 2016 (has links) (PDF)
Die enorme Steigerung der Leistungsfähigkeit integrierter Schaltkreise wird seit über 50 Jahren im Wesentlichen durch eine Verkleinerung der Bauelementdimensionen erzielt. Aufgrund des Erreichens physikalischer Grenzen kann dieser Trend, unabhängig von der Lösung technologischer Probleme, langfristig nicht fortgesetzt werden. Diese Arbeit beschäftigt sich mit der Entwicklung und Herstellung neuartiger Transistoren und Schaltungen, welche im Vergleich zu konventionellen Bauelementen funktionserweitert sind, wodurch ein zur Skalierung alternativer Ansatz vorgestellt wird. Ausgehend von gewachsenen und nominell undotierten Silizium-Nanodrähten wird die Herstellung von Schottky-Barrieren-Feldeffekttransistoren (SBFETs) mit Hilfe etablierter und selbst entwickelter Methoden beschrieben und die Ladungsträgerinjektion unter dem Einfluss elektrischer Felder an den dabei erzeugten abrupten Metall–Halbleiter-Grenzflächen analysiert. Zur Optimierung der Injektionsvorgänge dienen strukturelle Modifikationen, welche zu erhöhten ambipolaren Strömen und einer vernachlässigbaren Hysterese der SBFETs führen. Mit dem rekonfigurierbaren Feldeffekttransistor (RFET) konnte ein Bauelement erzeugt werden, bei dem sich Elektronen- und Löcherinjektion unabhängig und bis zu neun Größenordnungen modulieren lassen. Getrennte Topgate-Elektroden über den Schottkybarrieren ermöglichen dabei die reversible Konfiguration von unipolarer Elektronenleitung (n-Typ) zu Löcherleitung (p-Typ) durch eine Programmierspannung, wodurch die Funktionen konventioneller FETs in einem universellen Bauelement vereint werden. Messungen und 3D-FEM-Simulationen geben einen detaillierten Einblick in den elektrischen Transport und dienen der anschaulichen Beschreibung der Funktionsweise. Systematische Untersuchungen zu Änderungen im Transistoraufbau, den Abmessungen und der Materialzusammensetzung verdeutlichen, dass zusätzliche Strukturverkleinerungen sowie die Verwendung von Halbleitern mit niedrigem Bandabstand die elektrische Charakteristik dieser Transistoren weiter verbessern. Im Hinblick auf die Realisierung neuartiger Schaltungen wird ein Konzept beschrieben, die funktionserweiterten Transistoren in einer energieeffizienten Komplementärtechnologie (CMOS) nutzbar zu machen. Die dafür notwendigen gleichen Elektronen- und Löcherstromdichten konnten durch einen modifizierten Ladungsträgertunnelprozess infolge mechanischer Verspannungen an den Schottkyübergängen erzielt und weltweit erstmalig an einem Transistor gezeigt werden. Der aus einem <110>-Nanodraht mit 12 nm Si-Kerndurchmesser erzeugte elektrisch symmetrische RFET weist dabei eine bisher einzigartige Kennliniensymmetrie auf.Die technische Umsetzung des Schaltungskonzepts erfolgt durch die Integration zweier RFETs innerhalb eines Nanodrahts zum dotierstofffreien CMOS-Inverter, der flexibel programmiert werden kann. Die rekonfigurierbare NAND/NOR- Schaltung verdeutlicht, dass durch die RFET-Technologie die Bauelementanzahl reduziert und die Funktionalität des Systems im Vergleich zu herkömmlichen Schaltungen erhöht werden kann. Ferner werden weitere Schaltungsbeispiele sowie die technologischen Herausforderungen einer industriellen Umsetzung des Konzeptes diskutiert. Mit der funktionserweiterten, dotierstofffreien RFET-Technologie wird ein neuartiger Ansatz beschrieben, den technischen Fortschritt der Elektronik nach dem erwarteten Ende der klassischen Skalierung zu ermöglichen. / The enormous increase in performance of integrated circuits has been driven for more than 50 years, mainly by reducing the device dimensions. This trend cannot continue in the long term due to physical limits being reached. The scope of this thesis is the development and fabrication of novel kinds of transistors and circuits that provide higher functionality compared to the classical devices, thus introducing an alternative approach to scaling. The fabrication of Schottky barrier field effect transistors (SBFETs) based on nominally undoped grown silicon nanowires using established and developed techniques is described. Further the charge carrier injection in the fabricated metal to semiconductor interfaces is analyzed under the influence of electrical fields. Structural modifications are used to optimize the charge injection resulting in increased ambipolar currents and negligible hysteresis of the SBFETs. Moreover, a device has been developed called the reconfigurable field-effect transistor (RFET), in which the electron and hole injection can be independently controlled by up to nine orders of magnitude. This device can be reversibly configured from unipolar electron conducting (ntype) to hole conducting (p-type) by the application of a program voltage to the two individual top gate electrodes at the Schottky junctions. So the RFET merges the functionality of classical FETs into one universal device. Measurements and 3D finite element method simulations are used to analyze the electrical transport and to describe the operation principle. Systematic investigations of changes in the device structure, dimensions and material composition show enhanced characteristics in scaled and low bandgap semiconductor RFET devices. For the realization of novel circuits, a concept is described to use the enhanced functionality of the transistors in order to realize energy efficient complementary circuits (CMOS). The required equal electron and hole current densities are achieved by the modification of charge carrier tunneling due to mechanical stress and are shown for the first time ever on a transistor. An electrically symmetric RFET based on a compressive strained nanowire in <110> crystal direction and 12 nm silicon core diameter exhibits unique electrical symmetry. The circuit concept is demonstrated by the integration of two RFETs on a single nanowire, thus realizing a dopant free CMOS inverter which can be programmed flexibly. The reconfigurable NAND/NOR shows that the RFET technology can lead to a reduction of the transistor count and can increase the system functionality. Additionally, further circuit examples and the challenges of an industrial implementation of the concept are discussed.The enhanced functionality and dopant free RFET technology describes a novel approach to maintain the technological progress in electronics after the expected end of classical device scaling.
528

Entwicklung und Herstellung rekonfigurierbarer Nanodraht-Transistoren und Schaltungen

Heinzig, André 15 July 2014 (has links)
Die enorme Steigerung der Leistungsfähigkeit integrierter Schaltkreise wird seit über 50 Jahren im Wesentlichen durch eine Verkleinerung der Bauelementdimensionen erzielt. Aufgrund des Erreichens physikalischer Grenzen kann dieser Trend, unabhängig von der Lösung technologischer Probleme, langfristig nicht fortgesetzt werden. Diese Arbeit beschäftigt sich mit der Entwicklung und Herstellung neuartiger Transistoren und Schaltungen, welche im Vergleich zu konventionellen Bauelementen funktionserweitert sind, wodurch ein zur Skalierung alternativer Ansatz vorgestellt wird. Ausgehend von gewachsenen und nominell undotierten Silizium-Nanodrähten wird die Herstellung von Schottky-Barrieren-Feldeffekttransistoren (SBFETs) mit Hilfe etablierter und selbst entwickelter Methoden beschrieben und die Ladungsträgerinjektion unter dem Einfluss elektrischer Felder an den dabei erzeugten abrupten Metall–Halbleiter-Grenzflächen analysiert. Zur Optimierung der Injektionsvorgänge dienen strukturelle Modifikationen, welche zu erhöhten ambipolaren Strömen und einer vernachlässigbaren Hysterese der SBFETs führen. Mit dem rekonfigurierbaren Feldeffekttransistor (RFET) konnte ein Bauelement erzeugt werden, bei dem sich Elektronen- und Löcherinjektion unabhängig und bis zu neun Größenordnungen modulieren lassen. Getrennte Topgate-Elektroden über den Schottkybarrieren ermöglichen dabei die reversible Konfiguration von unipolarer Elektronenleitung (n-Typ) zu Löcherleitung (p-Typ) durch eine Programmierspannung, wodurch die Funktionen konventioneller FETs in einem universellen Bauelement vereint werden. Messungen und 3D-FEM-Simulationen geben einen detaillierten Einblick in den elektrischen Transport und dienen der anschaulichen Beschreibung der Funktionsweise. Systematische Untersuchungen zu Änderungen im Transistoraufbau, den Abmessungen und der Materialzusammensetzung verdeutlichen, dass zusätzliche Strukturverkleinerungen sowie die Verwendung von Halbleitern mit niedrigem Bandabstand die elektrische Charakteristik dieser Transistoren weiter verbessern. Im Hinblick auf die Realisierung neuartiger Schaltungen wird ein Konzept beschrieben, die funktionserweiterten Transistoren in einer energieeffizienten Komplementärtechnologie (CMOS) nutzbar zu machen. Die dafür notwendigen gleichen Elektronen- und Löcherstromdichten konnten durch einen modifizierten Ladungsträgertunnelprozess infolge mechanischer Verspannungen an den Schottkyübergängen erzielt und weltweit erstmalig an einem Transistor gezeigt werden. Der aus einem <110>-Nanodraht mit 12 nm Si-Kerndurchmesser erzeugte elektrisch symmetrische RFET weist dabei eine bisher einzigartige Kennliniensymmetrie auf.Die technische Umsetzung des Schaltungskonzepts erfolgt durch die Integration zweier RFETs innerhalb eines Nanodrahts zum dotierstofffreien CMOS-Inverter, der flexibel programmiert werden kann. Die rekonfigurierbare NAND/NOR- Schaltung verdeutlicht, dass durch die RFET-Technologie die Bauelementanzahl reduziert und die Funktionalität des Systems im Vergleich zu herkömmlichen Schaltungen erhöht werden kann. Ferner werden weitere Schaltungsbeispiele sowie die technologischen Herausforderungen einer industriellen Umsetzung des Konzeptes diskutiert. Mit der funktionserweiterten, dotierstofffreien RFET-Technologie wird ein neuartiger Ansatz beschrieben, den technischen Fortschritt der Elektronik nach dem erwarteten Ende der klassischen Skalierung zu ermöglichen.:Kurzzusammenfassung Abstract 1 Einleitung 2 Nanodrähte als aktivesGebiet fürFeldeffekttransistoren 2.1 Elektrisches Potential und Ladungsträgertransport in Transistoren 2.1.1 Potentialverlauf 2.1.2 Ladungsträgerfluss und Steuerung 2.2 Der Metall-Halbleiter-Kontakt 2.2.1 Ladungsträgertransport über den Schottky-Kontakt 2.2.2 Thermionische Emission 2.2.3 Ladungsträgertunneln 2.2.4 Methoden zur Beschreibung der Gesamtinjektion 2.3 Der Schottkybarrieren-Feldeffekttransistor 2.4 Stand der Technik 2.4.1 Elektronische Bauelemente auf Basis von Nanoröhren und Nanodrähten 2.4.2 Rekonfigurierbare Transistoren und Schaltungen 2.5 Zusammenfassung 3 TechnologienzurHerstellung vonNanodraht-Transistoren 3.1 Herstellung von SB-Nanodraht-Transistoren mit Rückseitengatelektrode 3.1.1 Nanodraht-Strukturbildung durch VLS-Wachstum 3.1.2 Drahttransfer 3.1.3 Herstellung von Kontaktelektroden 3.1.4 Herstellung von Schottky-Kontakten innerhalb eines Nanodrahtes 3.2 Strukturerzeugung mittels Elektronenstrahllithographie 3.2.1 Schichtstrukturierung mittels Elektronenstrahllithographie 3.2.2 Strukturierung mittels ungerichteter Elektronenstrahllithographie 3.2.3 Justierte Strukturierung mittels Elektronenstrahllithographie 3.2.4 Justierte Strukturierung mittels feinangepasster Elektronenstrahllithographie 3.2.5 Justierte Strukturierung mittels kombinierter optischer und Elektronenstrahllithographie 3.3 Zusammenfassung 4 Realisierung und Optimierung siliziumbasierter Schottkybarrieren- Nanodraht-Transistoren 4.1 Nanodraht-Transistor mit einlegierten Silizidkontakten 4.1.1 Transistoren auf Basis von Nanodrähten in <112>-Richtung 4.1.2 Transistoren mit veränderten Abmessungen 4.2 Analyse und Optimierung der Gatepotentialverteilung im Drahtquerschnitt in Kontaktnähe 4.3 Si/SiO2 - Core/Shell Nanodrähte als Basis für elektrisch optimierte Transistoren 4.3.1 Si-Oxidation im Volumenmaterial 4.3.2 Si-Oxidation am Draht 4.3.3 Silizidierung innerhalb der Oxidhülle 4.3.4 Core/Shell-Nanodraht-Transistoren mit Rückseitengate 4.4 Analyse der Gatepotentialwirkung in Abhängigkeit des Abstands zur Barriere 4.5 Zusammenfassung 5 RFET - Der Rekonfigurierbare Feldeffekttransistor 5.1 Realisierung des RFET 5.2 Elektrische Charakteristik 5.2.1 Elektrische Beschaltung und Funktionsprinzip 5.2.2 Elektrische Messungen 5.2.3 Auswertung 5.3 Transporteigenschaften des rekonfigurierbaren Transistors 5.3.1 Tunnel- und thermionische Ströme im RFET 5.3.2 Analyse der Transportvorgänge mit Hilfe der numerischen Simulation 5.3.3 Schaltzustände des RFET 5.3.4 On-zu-Off Verhältnisse des RFET 5.3.5 Einfluss der Bandlücke auf das On- zu Off-Verhältnis 5.3.6 Abhängigkeiten von geometrischen, materialspezifischen und physikalischen Parametern 5.3.7 Skalierung des RFET 5.3.8 Längenskalierung des aktiven Gebietes 5.4 Vergleich verschiedener Konzepte zur Rekonfigurierbarkeit 5.5 Zusammenfassung 6 Schaltungen aus rekonfigurierbaren Bauelementen 6.1 Komplementäre Schaltkreise 6.1.1 Inverter 6.1.2 Universelle Gatter 6.1.3 Anforderungen an komplementäre Bauelemente 6.1.4 Individuelle Symmetrieanpassung statischer Transistoren 6.2 Rekonfigurierbare Transistoren als Bauelemente für komplementäre Elektronik 6.2.1 Analyse des RFET als komplementäres Bauelement 6.2.2 Bauelementbedingungen für eine rekonfigurierbare komplementäre Elektronik 6.3 Erzeugung eines RFETs für rekonfigurierbare komplementäre Schaltkreise 6.3.1 Möglichkeiten der Symmetrieanpassung 6.3.2 Erzeugung eines RFET mit elektrischer Symmetrie 6.3.3 Erzeugung und Aufbau des symmetrischen RFET 6.3.4 Elektrische Eigenschaften des symmetrischen RFET 6.4 Realisierung von komplementären rekonfigurierbaren Schaltungen 6.4.1 Integration identischer RFETs 6.4.2 RFET-basierter komplementärer Inverter 6.4.3 Rekonfigurierbarer CMOS-Inverter 6.4.4 PMOS/NMOS-Inverter 6.4.5 Zusammenfassung zur RFET-Inverterschaltung 6.4.6 Rekonfigurierbarer NAND/NOR-Schaltkreis 6.5 Zusammenfassung und Diskussion 7 Zusammenfassung und Ausblick 7.1 Zusammenfassung 7.2 Ausblick Anhang Symbol- und Abkürzungsverzeichnis Literaturverzeichnis Publikations- und Vortragsliste Danksagung Eidesstattliche Erklärung / The enormous increase in performance of integrated circuits has been driven for more than 50 years, mainly by reducing the device dimensions. This trend cannot continue in the long term due to physical limits being reached. The scope of this thesis is the development and fabrication of novel kinds of transistors and circuits that provide higher functionality compared to the classical devices, thus introducing an alternative approach to scaling. The fabrication of Schottky barrier field effect transistors (SBFETs) based on nominally undoped grown silicon nanowires using established and developed techniques is described. Further the charge carrier injection in the fabricated metal to semiconductor interfaces is analyzed under the influence of electrical fields. Structural modifications are used to optimize the charge injection resulting in increased ambipolar currents and negligible hysteresis of the SBFETs. Moreover, a device has been developed called the reconfigurable field-effect transistor (RFET), in which the electron and hole injection can be independently controlled by up to nine orders of magnitude. This device can be reversibly configured from unipolar electron conducting (ntype) to hole conducting (p-type) by the application of a program voltage to the two individual top gate electrodes at the Schottky junctions. So the RFET merges the functionality of classical FETs into one universal device. Measurements and 3D finite element method simulations are used to analyze the electrical transport and to describe the operation principle. Systematic investigations of changes in the device structure, dimensions and material composition show enhanced characteristics in scaled and low bandgap semiconductor RFET devices. For the realization of novel circuits, a concept is described to use the enhanced functionality of the transistors in order to realize energy efficient complementary circuits (CMOS). The required equal electron and hole current densities are achieved by the modification of charge carrier tunneling due to mechanical stress and are shown for the first time ever on a transistor. An electrically symmetric RFET based on a compressive strained nanowire in <110> crystal direction and 12 nm silicon core diameter exhibits unique electrical symmetry. The circuit concept is demonstrated by the integration of two RFETs on a single nanowire, thus realizing a dopant free CMOS inverter which can be programmed flexibly. The reconfigurable NAND/NOR shows that the RFET technology can lead to a reduction of the transistor count and can increase the system functionality. Additionally, further circuit examples and the challenges of an industrial implementation of the concept are discussed.The enhanced functionality and dopant free RFET technology describes a novel approach to maintain the technological progress in electronics after the expected end of classical device scaling.:Kurzzusammenfassung Abstract 1 Einleitung 2 Nanodrähte als aktivesGebiet fürFeldeffekttransistoren 2.1 Elektrisches Potential und Ladungsträgertransport in Transistoren 2.1.1 Potentialverlauf 2.1.2 Ladungsträgerfluss und Steuerung 2.2 Der Metall-Halbleiter-Kontakt 2.2.1 Ladungsträgertransport über den Schottky-Kontakt 2.2.2 Thermionische Emission 2.2.3 Ladungsträgertunneln 2.2.4 Methoden zur Beschreibung der Gesamtinjektion 2.3 Der Schottkybarrieren-Feldeffekttransistor 2.4 Stand der Technik 2.4.1 Elektronische Bauelemente auf Basis von Nanoröhren und Nanodrähten 2.4.2 Rekonfigurierbare Transistoren und Schaltungen 2.5 Zusammenfassung 3 TechnologienzurHerstellung vonNanodraht-Transistoren 3.1 Herstellung von SB-Nanodraht-Transistoren mit Rückseitengatelektrode 3.1.1 Nanodraht-Strukturbildung durch VLS-Wachstum 3.1.2 Drahttransfer 3.1.3 Herstellung von Kontaktelektroden 3.1.4 Herstellung von Schottky-Kontakten innerhalb eines Nanodrahtes 3.2 Strukturerzeugung mittels Elektronenstrahllithographie 3.2.1 Schichtstrukturierung mittels Elektronenstrahllithographie 3.2.2 Strukturierung mittels ungerichteter Elektronenstrahllithographie 3.2.3 Justierte Strukturierung mittels Elektronenstrahllithographie 3.2.4 Justierte Strukturierung mittels feinangepasster Elektronenstrahllithographie 3.2.5 Justierte Strukturierung mittels kombinierter optischer und Elektronenstrahllithographie 3.3 Zusammenfassung 4 Realisierung und Optimierung siliziumbasierter Schottkybarrieren- Nanodraht-Transistoren 4.1 Nanodraht-Transistor mit einlegierten Silizidkontakten 4.1.1 Transistoren auf Basis von Nanodrähten in <112>-Richtung 4.1.2 Transistoren mit veränderten Abmessungen 4.2 Analyse und Optimierung der Gatepotentialverteilung im Drahtquerschnitt in Kontaktnähe 4.3 Si/SiO2 - Core/Shell Nanodrähte als Basis für elektrisch optimierte Transistoren 4.3.1 Si-Oxidation im Volumenmaterial 4.3.2 Si-Oxidation am Draht 4.3.3 Silizidierung innerhalb der Oxidhülle 4.3.4 Core/Shell-Nanodraht-Transistoren mit Rückseitengate 4.4 Analyse der Gatepotentialwirkung in Abhängigkeit des Abstands zur Barriere 4.5 Zusammenfassung 5 RFET - Der Rekonfigurierbare Feldeffekttransistor 5.1 Realisierung des RFET 5.2 Elektrische Charakteristik 5.2.1 Elektrische Beschaltung und Funktionsprinzip 5.2.2 Elektrische Messungen 5.2.3 Auswertung 5.3 Transporteigenschaften des rekonfigurierbaren Transistors 5.3.1 Tunnel- und thermionische Ströme im RFET 5.3.2 Analyse der Transportvorgänge mit Hilfe der numerischen Simulation 5.3.3 Schaltzustände des RFET 5.3.4 On-zu-Off Verhältnisse des RFET 5.3.5 Einfluss der Bandlücke auf das On- zu Off-Verhältnis 5.3.6 Abhängigkeiten von geometrischen, materialspezifischen und physikalischen Parametern 5.3.7 Skalierung des RFET 5.3.8 Längenskalierung des aktiven Gebietes 5.4 Vergleich verschiedener Konzepte zur Rekonfigurierbarkeit 5.5 Zusammenfassung 6 Schaltungen aus rekonfigurierbaren Bauelementen 6.1 Komplementäre Schaltkreise 6.1.1 Inverter 6.1.2 Universelle Gatter 6.1.3 Anforderungen an komplementäre Bauelemente 6.1.4 Individuelle Symmetrieanpassung statischer Transistoren 6.2 Rekonfigurierbare Transistoren als Bauelemente für komplementäre Elektronik 6.2.1 Analyse des RFET als komplementäres Bauelement 6.2.2 Bauelementbedingungen für eine rekonfigurierbare komplementäre Elektronik 6.3 Erzeugung eines RFETs für rekonfigurierbare komplementäre Schaltkreise 6.3.1 Möglichkeiten der Symmetrieanpassung 6.3.2 Erzeugung eines RFET mit elektrischer Symmetrie 6.3.3 Erzeugung und Aufbau des symmetrischen RFET 6.3.4 Elektrische Eigenschaften des symmetrischen RFET 6.4 Realisierung von komplementären rekonfigurierbaren Schaltungen 6.4.1 Integration identischer RFETs 6.4.2 RFET-basierter komplementärer Inverter 6.4.3 Rekonfigurierbarer CMOS-Inverter 6.4.4 PMOS/NMOS-Inverter 6.4.5 Zusammenfassung zur RFET-Inverterschaltung 6.4.6 Rekonfigurierbarer NAND/NOR-Schaltkreis 6.5 Zusammenfassung und Diskussion 7 Zusammenfassung und Ausblick 7.1 Zusammenfassung 7.2 Ausblick Anhang Symbol- und Abkürzungsverzeichnis Literaturverzeichnis Publikations- und Vortragsliste Danksagung Eidesstattliche Erklärung
529

Synthèse et caractérisation de semi-conducteurs organiques pour des applications optoelectroniques et capteurs

Aboubakr, Hecham 22 November 2012 (has links)
Le travail rapporté dans ce mémoire de thèse concerne la synthèse et la caractérisation de nouveaux semi-conducteurs organiques basés sur un coeur bithiophène. Ce travail s'inscrit dans le prolongement de précédents travaux réalisés au laboratoire portant sur des dérivés du type distyryl-oligothiophènes. Au cours de ce travail, plusieurs voies de synthèse ont été développées afin de fonctionnaliser un coeur bithiophène, rigide ou non, avec différents groupements fonctionnels, principalement pour trois types d'applications : (i) la réalisation de transistors à base de couche mince organique (OFETs), (ii) l'élaboration de cellules solaires à partir de composés push-pull et (iii) le développement de capteurs. Le premier chapitre est consacré à la fonctionnalisation du benzo-[2,1-b:3,4-b']dithiophène-4,5-dione soit par des groupements mésogéniques soit par des motifs aminostyryles. L'objectif est la possibilité de préparer des OFETs par la voie liquide et de tirer profit des propriétés cristal liquide pour améliorer les performances électriques. Les propriétés cristal liquides ont été décrites, et les transistors réalisés. Malheureusement aucune mobilité de porteur de charge n'a pu être enregistrée. Dans un deuxième temps, des modifications structurales ont été apportées sur certaine des structures synthétisées afin d'améliorer les propriétés recherchées. Toutefois, au moment de la rédaction de ce manuscrit, les OFETs n'étaient pas réalisés. Dans le deuxième chapitre, de nouvelles molécules push-pull de type cruciformes ont été synthétisées dans le but d'évaluer leurs performances en tant que composés organiques actifs dans des dispositifs photovoltaïques. / The work reported herein concerns the synthesis and the characterization of new organic semiconductors built around the bithiophene core. It was relied on an extended work carried out previously in our laboratory on distyryloligothiophene derivatives. The main part of this work was dedicated to develop new functionalized organic semi-conductors with the aim to improve their properties for optoelectronic applications, mainly for: i) the realization of transistors with organic thin layer (OFETs), ii) the elaboration of solar cells from push-pull derivatives and iii) the development of sensors. The first chapter is devoted to the functionalization of the benzo-[2,1-b:3,4-b ']bithiophene-4,5-dione core either by mesogenic or aminostyryl groups with the purpose to improve, using liquid crystal properties, the microscopic ordering and the electrical performances of the synthetized organic semiconductors as well as their solution processability. Besides the liquid crystal properties characterization showing interesting behavior, the OFET devices have been made from those semiconductors but unfortunately have led to, as unexpected, poor charge transport properties. Some structural modifications have been done in order to optimize the charge transport characteristics nevertheless their electrical characterization still under progress up to now. In a second part, some push-pull derivatives, having a cruciform-like structure, have been synthetized and characterized in order to use them as an active organic layer in photovoltaic devices. Their optoelectronic properties have been evaluated and reported.
530

HEMTs cryogéniques à faible puissance dissipée et à bas bruit / Low-noise and low-power cryogenic HEMTs

Dong, Quan 16 April 2013 (has links)
Les transistors ayant un faible niveau de bruit à basse fréquence, une faible puissance de dissipation et fonctionnant à basse température (≤ 4.2 K) sont actuellement inexistants alors qu’ils sont très demandés pour la réalisation de préamplificateurs à installer au plus près des détecteurs ou des dispositifs à la température de quelques dizaines de mK, dans le domaine de l’astrophysique, de la physique mésoscopique et de l’électronique spatiale. Une recherche menée depuis de nombreuses années au LPN vise à réaliser une nouvelle génération de HEMTs (High Electron Mobility Transistors) cryogéniques à haute performance pour répondre à ces demandes. Cette thèse, dans le cadre d’une collaboration entre le CNRS/LPN et le CEA/IRFU, a pour but la réalisation de préamplificateurs cryogéniques pour des microcalorimètres à 50 mK.Les travaux de cette thèse consistent en des caractérisations systématiques des paramètres électriques et des bruits des HEMTs (fabriqués au LPN) à basse température. En se basant sur les résultats expérimentaux, l’une des sources de bruit à basse fréquence dans les HEMTs a pu être identifiée, c’est-à-dire la part du courant tunnel séquentiel dans le courant de fuite de grille. Grâce à ce résultat, les hétérostructures ont été optimisées pour minimiser le courant de fuite de grille ainsi que le niveau de bruit à basse fréquence. Au cours de cette thèse, différentes méthodes spécifiques ont été développées pour mesurer de très faibles valeurs de courant de fuite de grille, les capacités du transistor et le bruit 1/f du transistor avec une très haute impédance d’entrée. Deux relations expérimentales ont été observées, l’une sur le bruit 1/f et l’autre sur le bruit blanc dans ces HEMTs à 4.2 K. Des avancées notables ont été réalisées, à titre d’indication, les HEMTs avec une capacité de grille de 92 pF et une consommation de 100 µW peuvent atteindre un niveau de bruit en tension de 6.3 nV/√Hz à 1 Hz, un niveau de bruit blanc de 0.2 nV/√Hz et un niveau de bruit en courant de 50 aA/√Hz à 10 Hz. Enfin, une série de 400 HEMTs, qui répondent pleinement aux spécifications demandées pour la réalisation de préamplificateurs au CEA/IRFU, a été réalisée. Les résultats de cette thèse constitueront une base solide pour une meilleure compréhension du bruit 1/f et du bruit blanc dans les HEMTs cryogéniques afin de les améliorer pour les diverses applications envisagées. / Transistors with low noise level at low frequency, low-power dissipation and operating at low temperature (≤ 4.2 K) are currently non-existent, however, they are widely required for realizing cryogenic preamplifiers which can be installed close to sensors or devices at a temperature of few tens of mK, in astrophysics, mesoscopic physics and space electronics. Research conducted over many years at LPN aims to a new generation of high-performance cryogenic HEMTs (High Electron Mobility Transistors) to meet these needs. This thesis, through the collaboration between the CNRS/LPN and the CEA/IRFU, aims for the realization of cryogenic preamplifiers for microcalorimeters at 50 mK.The work of this thesis consists of systematic characterizations of electrical and noise parameters of the HEMTs (fabricated at LPN) at low temperatures. Based on the experimental results, one of the low-frequency-noise sources in the HEMTs has been identified, i.e., the sequential tunneling part in the gate leakage current. Thanks to this result, heterostructures have been optimized to minimize the gate leakage current and the low frequency noise. During this thesis, specific methods have been developed to measure very low-gate-leakage-current values, transistor’s capacitances and the 1/f noise with a very high input impedance. Two experimental relationships have been observed, one for the 1/f noise and other for the white noise in these HEMTs at 4.2 K. Significant advances have been made, for information, the HEMTs with a gate capacitance of 92 pF and a consumption of 100 µW can reach a noise voltage of 6.3 nV/√ Hz at 1 Hz, a white noise voltage of 0.2 nV/√ Hz, and a noise current of 50 aA/√Hz at 10 Hz. Finally, a series of 400 HEMTs has been realized which fully meet the specifications required for realizing preamplifiers at CEA/IRFU. The results of this thesis will provide a solid base for a better understanding of 1/f noise and white noise in cryogenic HEMTs with the objective to improve them for various considered applications.

Page generated in 0.0388 seconds