• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 13
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 68
  • 48
  • 25
  • 24
  • 17
  • 17
  • 14
  • 14
  • 13
  • 11
  • 11
  • 11
  • 11
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

3D-Wafer Level Packaging approaches for MEMS by using Cu-based High Aspect Ratio Through Silicon Vias / Ansätze zum 3D-Wafer Level Packaging für MEMS unter Nutzung von Cu-basierten Si-Durchkontaktierungen mit hohem Aspektverhältnis

Hofmann, Lutz 06 December 2017 (has links) (PDF)
For mobile electronics such as Smartphones, Smartcards or wearable devices there is a trend towards an increasing functionality as well as miniaturisation. In this development Micro Electro- Mechanical Systems (MEMS) are an important key element for the realisation of functions such as motion detection. The specifications given by such devices together with the limited available space demand advanced packaging technologies. The 3D-Wafer Level Packaging (3D-WLP) enables one solution for a miniaturised MEMS package by using techniques such as Wafer Level Bonding (WLB) and Through Silicon Vias (TSV). This technology increases the effective area of the MEMS device by elimination dead space, which is typically required for other approaches based on wire bond assembly. Within this thesis, different TSV technology concepts with respect to a 3D-WLP for MEMS have been developed. Thereby, the focus was on a copper based technology as well as on two major TSV implementation methods. This comprises a Via Middle approach based on the separated TSV fabrication in the cap wafer as well as a Via Last approach with a TSV implementation in either the MEMS or cap wafer, respectively. For each option with its particular challenges, corresponding process modules have been developed. In the Via Middle approach, the wafer-related etch rate homogeneity determines the TSV reveal from the wafer backside Here, a reduction of the TSV depth down to 80 μm is favourable as long as the desired Cu-thermo-compression bonding (Cu-TCB) is performed before the thinning. For the TSV metallisation, a Cu electrochemical deposition method was developed, which allows the deposition of one redistribution layer as well as the bonding patterns for Cu-TCB at the same time. In the Via Last approach, the TSV isolation represents one challenge. Chemical Vapour Deposition processes have been investigated, for which a combination of PE-TEOS and SA-TEOS as well as a Parylene deposition yield the most promising results. Moreover, a method for the realisation of a suitable bonding surface for the Silicon Direct Bonding method has been developed, which does not require any wet pre treatment of the fabricated MEMS patterns. A functional MEMS acceleration sensor as well as Dummy devices serve as demonstrators for the overall integration technology as well as for the characterisation of electrical parameters. / Im Bereich mobiler Elektronik, wie z.B. bei Smartphones, Smartcards oder in Kleidung integrierten Geräten ist ein Trend zu erkennen hinsichtlich steigender Funktionalität und Miniaturisierung. Bei dieser Entwicklung spielen Mikroelektromechanische Systeme (MEMS) eine entscheidende Rolle zur Realisierung neuer Funktionen, wie z.B. der Bewegungsdetektion. Die Anforderungen derartiger Bauteile zusammen mit dem begrenzten zur Verfügung stehenden Platz erfordern neuartige Technologien für die Aufbau- und Verbindungstechnick (engl. Packaging) der Bauteile. Das 3D-Wafer Level Packaging (3D-WLP) ermöglicht eine Lösung für eine miniaturisierte MEMS-Bauform unter Nutzung von Techniken wie dem Waferlevelbonden (WLB) und den Siliziumdurchkontaktierungen (TSV von engl. Through Silicon Via). Diese Technologie erhöht die effektive aktive Fläche des MEMS Bauteils durch die Reduzierung von Toträumen, welche für andere Ansätze wie der Drahtbond-Montage üblich sind. In der vorliegenden Arbeit wurden verschiedene Technologiekonzepte für den Aufbau von 3D-WLP für MEMS erarbeitet. Dabei lag der Fokus auf einer Kupfer-basierten Technologie sowie auf zwei prinzipiellen Varianten für die TSV-Implementierung. Dies umfasst den Via Middle Ansatz, welcher auf der TSV Herstellung auf einem separaten Kappenwafer beruht, sowie den Via Last Ansatz mit einer TSV Herstellung entweder im MEMS-Wafer oder im Kappenwafer. Für beide Varianten mit individuellen Herausforderungen wurden entsprechende Prozessmodule entwickelt. Beim Via Middle Ansatz ist die Wafer-bezogene Ätzratenhomogenität des Siliziumtiefenätzen entscheidend für das spätere Freilegen der TSVs von der Rückseite. Hier hat sich eine Reduzierung der TSV-Tiefe auf bis zu 80 μm vorteilhaft erwiesen insofern, das Kupfer-Thermokompressionsbonden (Cu-TKB) vor dem Abdünnen erfolgt. Zur Metallisierung der TSVs wurde ein Cu Galvanikprozess erarbeitet, welcher es ermöglicht gleichzeitig eine Umverdrahtungsebene sowie die Bondstrukturen für das Cu-TKB zu erzeugen. Beim Via Last Ansatz ist die TSV Isolation eine Herausforderung. Es wurden CVD (Chemische Dampfphasenabscheidung) Prozesse untersucht, wobei eine Kombination aus PE-TEOS und SA-TEOS sowie eine Parylene Beschichtung erfolgversprechende Ergebnisse liefern. Des Weiteren wurde eine Methode zur Erzeugung bondfähiger Oberflächen für das Siliziumdirektbonden erarbeitet, welche eine Nass-Vorbehandlung des MEMS umgeht. Ein realer MEMS-Beschleunigungssensor sowie Testaufbauten dienen zur Demonstration der Gesamtintegrationstechnologie sowie zur Charakterisierung elektrischer Parameter.
62

Interconnect Planning for Physical Design of 3D Integrated Circuits

Knechtel, Johann 14 March 2014 (has links)
Vertical stacking—based on modern manufacturing and integration technologies—of multiple 2D chips enables three-dimensional integrated circuits (3D ICs). This exploitation of the third dimension is generally accepted for aiming at higher packing densities, heterogeneous integration, shorter interconnects, reduced power consumption, increased data bandwidth, and realizing highly-parallel systems in one device. However, the commercial acceptance of 3D ICs is currently behind its expectations, mainly due to challenges regarding manufacturing and integration technologies as well as design automation. This work addresses three selected, practically relevant design challenges: (i) increasing the constrained reusability of proven, reliable 2D intellectual property blocks, (ii) planning different types of (comparatively large) through-silicon vias with focus on their impact on design quality, as well as (iii) structural planning of massively-parallel, 3D-IC-specific interconnect structures during 3D floorplanning. A key concept of this work is to account for interconnect structures and their properties during early design phases in order to support effective and high-quality 3D-IC-design flows. To tackle the above listed challenges, modular design-flow extensions and methodologies have been developed. Experimental investigations reveal the effectiveness and efficiency of the proposed techniques, and provide findings on 3D integration with particular focus on interconnect structures. We suggest consideration of these findings when formulating guidelines for successful 3D-IC design automation.:1 Introduction 1.1 The 3D Integration Approach for Electronic Circuits 1.2 Technologies for 3D Integrated Circuits 1.3 Design Approaches for 3D Integrated Circuits 2 State of the Art in Design Automation for 3D Integrated Circuits 2.1 Thermal Management 2.2 Partitioning and Floorplanning 2.3 Placement and Routing 2.4 Power and Clock Delivery 2.5 Design Challenges 3 Research Objectives 4 Planning Through-Silicon Via Islands for Block-Level Design Reuse 4.1 Problems for Design Reuse in 3D Integrated Circuits 4.2 Connecting Blocks Using Through-Silicon Via Islands 4.2.1 Problem Formulation and Methodology Overview 4.2.2 Net Clustering 4.2.3 Insertion of Through-Silicon Via Islands 4.2.4 Deadspace Insertion and Redistribution 4.3 Experimental Investigation 4.3.1 Wirelength Estimation 4.3.2 Configuration 4.3.3 Results and Discussion 4.4 Summary and Conclusions 5 Planning Through-Silicon Vias for Design Optimization 5.1 Deadspace Requirements for Optimized Planning of Through-Silicon Vias 5.2 Multiobjective Design Optimization of 3D Integrated Circuits 5.2.1 Methodology Overview and Configuration 5.2.2 Techniques for Deadspace Optimization 5.2.3 Design-Quality Analysis 5.2.4 Planning Different Types of Through-Silicon Vias 5.3 Experimental Investigation 5.3.1 Configuration 5.3.2 Results and Discussion 5.4 Summary and Conclusions 6 3D Floorplanning for Structural Planning of Massive Interconnects 6.1 Block Alignment for Interconnects Planning in 3D Integrated Circuits 6.2 Corner Block List Extended for Block Alignment 6.2.1 Alignment Encoding 6.2.2 Layout Generation: Block Placement and Alignment 6.3 3D Floorplanning Methodology 6.3.1 Optimization Criteria and Phases and Related Cost Models 6.3.2 Fast Thermal Analysis 6.3.3 Layout Operations 6.3.4 Adaptive Optimization Schedule 6.4 Experimental Investigation 6.4.1 Configuration 6.4.2 Results and Discussion 6.5 Summary and Conclusions 7 Research Summary, Conclusions, and Outlook Dissertation Theses Notation Glossary Bibliography / Dreidimensional integrierte Schaltkreise (3D-ICs) beruhen auf neuartigen Herstellungs- und Integrationstechnologien, wobei vor allem “klassische” 2D-ICs vertikal zu einem neuartigen 3D-System gestapelt werden. Dieser Ansatz zur Erschließung der dritten Dimension im Schaltkreisentwurf ist nach Expertenmeinung dazu geeignet, höhere Integrationsdichten zu erreichen, heterogene Integration zu realisieren, kürzere Verdrahtungswege zu ermöglichen, Leistungsaufnahmen zu reduzieren, Datenübertragungsraten zu erhöhen, sowie hoch-parallele Systeme in einer Baugruppe umzusetzen. Aufgrund von technologischen und entwurfsmethodischen Schwierigkeiten bleibt jedoch bisher die kommerzielle Anwendung von 3D-ICs deutlich hinter den Erwartungen zurück. In dieser Arbeit werden drei ausgewählte, praktisch relevante Problemstellungen der Entwurfsautomatisierung von 3D-ICs bearbeitet: (i) die Verbesserung der (eingeschränkten) Wiederverwendbarkeit von zuverlässigen 2D-Intellectual-Property-Blöcken, (ii) die komplexe Planung von verschiedenartigen, verhältnismäßig großen Through-Silicion Vias unter Beachtung ihres Einflusses auf die Entwurfsqualität, und (iii) die strukturelle Einbindung von massiv-parallelen, 3D-IC-spezifischen Verbindungsstrukturen während der Floorplanning-Phase. Das Ziel dieser Arbeit besteht darin, Verbindungsstrukturen mit deren wesentlichen Eigenschaften bereits in den frühen Phasen des Entwurfsprozesses zu berücksichtigen. Dies begünstigt einen qualitativ hochwertigen Entwurf von 3D-ICs. Die in dieser Arbeit vorgestellten modularen Entwurfsprozess-Erweiterungen bzw. -Methodiken dienen zur effizienten Lösung der oben genannten Problemstellungen. Experimentelle Untersuchungen bestätigen die Wirksamkeit sowie die Effektivität der erarbeiten Methoden. Darüber hinaus liefern sie praktische Erkenntnisse bezüglich der Anwendung von 3D-ICs und der Planung deren Verbindungsstrukturen. Diese Erkenntnisse sind zur Ableitung von Richtlinien für den erfolgreichen Entwurf von 3D-ICs dienlich.:1 Introduction 1.1 The 3D Integration Approach for Electronic Circuits 1.2 Technologies for 3D Integrated Circuits 1.3 Design Approaches for 3D Integrated Circuits 2 State of the Art in Design Automation for 3D Integrated Circuits 2.1 Thermal Management 2.2 Partitioning and Floorplanning 2.3 Placement and Routing 2.4 Power and Clock Delivery 2.5 Design Challenges 3 Research Objectives 4 Planning Through-Silicon Via Islands for Block-Level Design Reuse 4.1 Problems for Design Reuse in 3D Integrated Circuits 4.2 Connecting Blocks Using Through-Silicon Via Islands 4.2.1 Problem Formulation and Methodology Overview 4.2.2 Net Clustering 4.2.3 Insertion of Through-Silicon Via Islands 4.2.4 Deadspace Insertion and Redistribution 4.3 Experimental Investigation 4.3.1 Wirelength Estimation 4.3.2 Configuration 4.3.3 Results and Discussion 4.4 Summary and Conclusions 5 Planning Through-Silicon Vias for Design Optimization 5.1 Deadspace Requirements for Optimized Planning of Through-Silicon Vias 5.2 Multiobjective Design Optimization of 3D Integrated Circuits 5.2.1 Methodology Overview and Configuration 5.2.2 Techniques for Deadspace Optimization 5.2.3 Design-Quality Analysis 5.2.4 Planning Different Types of Through-Silicon Vias 5.3 Experimental Investigation 5.3.1 Configuration 5.3.2 Results and Discussion 5.4 Summary and Conclusions 6 3D Floorplanning for Structural Planning of Massive Interconnects 6.1 Block Alignment for Interconnects Planning in 3D Integrated Circuits 6.2 Corner Block List Extended for Block Alignment 6.2.1 Alignment Encoding 6.2.2 Layout Generation: Block Placement and Alignment 6.3 3D Floorplanning Methodology 6.3.1 Optimization Criteria and Phases and Related Cost Models 6.3.2 Fast Thermal Analysis 6.3.3 Layout Operations 6.3.4 Adaptive Optimization Schedule 6.4 Experimental Investigation 6.4.1 Configuration 6.4.2 Results and Discussion 6.5 Summary and Conclusions 7 Research Summary, Conclusions, and Outlook Dissertation Theses Notation Glossary Bibliography
63

3D-Wafer Level Packaging approaches for MEMS by using Cu-based High Aspect Ratio Through Silicon Vias

Hofmann, Lutz 29 November 2017 (has links)
For mobile electronics such as Smartphones, Smartcards or wearable devices there is a trend towards an increasing functionality as well as miniaturisation. In this development Micro Electro- Mechanical Systems (MEMS) are an important key element for the realisation of functions such as motion detection. The specifications given by such devices together with the limited available space demand advanced packaging technologies. The 3D-Wafer Level Packaging (3D-WLP) enables one solution for a miniaturised MEMS package by using techniques such as Wafer Level Bonding (WLB) and Through Silicon Vias (TSV). This technology increases the effective area of the MEMS device by elimination dead space, which is typically required for other approaches based on wire bond assembly. Within this thesis, different TSV technology concepts with respect to a 3D-WLP for MEMS have been developed. Thereby, the focus was on a copper based technology as well as on two major TSV implementation methods. This comprises a Via Middle approach based on the separated TSV fabrication in the cap wafer as well as a Via Last approach with a TSV implementation in either the MEMS or cap wafer, respectively. For each option with its particular challenges, corresponding process modules have been developed. In the Via Middle approach, the wafer-related etch rate homogeneity determines the TSV reveal from the wafer backside Here, a reduction of the TSV depth down to 80 μm is favourable as long as the desired Cu-thermo-compression bonding (Cu-TCB) is performed before the thinning. For the TSV metallisation, a Cu electrochemical deposition method was developed, which allows the deposition of one redistribution layer as well as the bonding patterns for Cu-TCB at the same time. In the Via Last approach, the TSV isolation represents one challenge. Chemical Vapour Deposition processes have been investigated, for which a combination of PE-TEOS and SA-TEOS as well as a Parylene deposition yield the most promising results. Moreover, a method for the realisation of a suitable bonding surface for the Silicon Direct Bonding method has been developed, which does not require any wet pre treatment of the fabricated MEMS patterns. A functional MEMS acceleration sensor as well as Dummy devices serve as demonstrators for the overall integration technology as well as for the characterisation of electrical parameters.:Bibliographische Beschreibung 3 Vorwort 13 List of symbols and abbreviations 15 1 Introduction 23 2 Fundamentals on MEMS and TSV based 3D integration 25 2.1 Micro Electro-Mechanical systems 25 2.1.1 Basic Definition 25 2.1.2 Silicon technologies for MEMS 26 2.1.3 MEMS packaging 29 2.2 3D integration based on TSVs 33 2.2.1 Overview 33 2.2.2 Basic processes for TSVs 34 2.2.3 Stacking and Bonding 47 2.2.4 Wafer thinning 48 2.3 TSV based MEMS packaging 50 2.3.1 MEMS-TSVs 50 2.3.2 3D-WLP for MEMS 52 3 Technology development for a 3D-WLP based MEMS 57 3.1 Target integration approach for 3D-WLP based MEMS 57 3.1.1 MEMS modules using 3D-WLP based MEMS 57 3.1.2 Integration concepts 58 3.2 Objective and requirements for the proposed 3D-WLP of MEMS 60 3.2.1 Boundary conditions 60 3.2.2 Technology concepts 63 3.3 Selected approaches for TSV implementation in MEMS 64 3.3.1 Via Last Technology 64 3.3.2 Via Middle technology 69 4 Development of process modules 75 4.1 Characterisation 75 4.2 TSV related etch processes 77 4.2.1 Equipment 77 4.2.2 Deep silicon etching 78 4.2.3 Etching of the buried dielectric layer 84 4.2.4 Patterning of TSV isolation liner – spacer etching 90 4.2.5 Summary 92 4.3 TSV isolation 93 4.3.1 Principle considerations 93 4.3.2 Experiment 95 4.3.3 Results 97 4.3.4 Summary 102 4.4 Metallisation of TSV and RDL 103 4.4.1 Plating base and experimental setup 103 4.4.2 Investigations related to the ECD process 106 4.4.3 Pattern plating 117 4.4.4 Summary 123 4.5 Wafer Level Bonding 124 4.5.1 Silicon direct bonding 124 4.5.2 Thermo-compression bonding by using ECD copper 128 4.5.3 Summary 134 4.6 Wafer thinning and TSV back side reveal 134 4.6.1 Thinning processes 134 4.6.2 TSV reveal processes 136 4.6.3 Summary 145 4.7 Under bump metallisation and solder bumps 146 5 Demonstrator design, fabrication and characterisation 149 5.1 Single wafer demonstrator for electrical test 149 5.1.1 Demonstrator design and test structure layout 149 5.1.2 Demonstrator fabrication 150 5.1.3 Electrical measurement 151 5.1.4 Summary 153 5.2 Via Last based TSV fabrication in the MEMS device wafer 153 5.2.1 Layout of the MEMS device with TSVs 153 5.2.2 Fabrication of TSVs and wafer thinning 154 5.2.3 Characterisation of the fabricated device 155 5.2.4 Summary 156 5.3 Via Last based cap-TSV for very thin MEMS devices 157 5.3.1 Design 157 5.3.2 Fabrication 158 5.3.3 Characterisation 161 5.3.4 Summary 162 5.4 Via Middle approach based on thinning after bonding 163 5.4.1 Design 163 5.4.2 Results and characterisation 164 5.4.3 Summary 166 6 Conclusion and outlook 167 Appendix A: Typical requirements on a MEMS package and its functions 171 Appendix B: Classification of packaging and system integration techniques 173 B.1 Packaging of electronic devices in general 173 B.2 Single Chip Packages 174 B.3 System integration 175 B.4 3D integration based on TSVs 180 Bibliography 183 List of figures 193 List of tables 199 Versicherung 201 Theses 203 Curriculum vitae 205 Own publications 207 / Im Bereich mobiler Elektronik, wie z.B. bei Smartphones, Smartcards oder in Kleidung integrierten Geräten ist ein Trend zu erkennen hinsichtlich steigender Funktionalität und Miniaturisierung. Bei dieser Entwicklung spielen Mikroelektromechanische Systeme (MEMS) eine entscheidende Rolle zur Realisierung neuer Funktionen, wie z.B. der Bewegungsdetektion. Die Anforderungen derartiger Bauteile zusammen mit dem begrenzten zur Verfügung stehenden Platz erfordern neuartige Technologien für die Aufbau- und Verbindungstechnick (engl. Packaging) der Bauteile. Das 3D-Wafer Level Packaging (3D-WLP) ermöglicht eine Lösung für eine miniaturisierte MEMS-Bauform unter Nutzung von Techniken wie dem Waferlevelbonden (WLB) und den Siliziumdurchkontaktierungen (TSV von engl. Through Silicon Via). Diese Technologie erhöht die effektive aktive Fläche des MEMS Bauteils durch die Reduzierung von Toträumen, welche für andere Ansätze wie der Drahtbond-Montage üblich sind. In der vorliegenden Arbeit wurden verschiedene Technologiekonzepte für den Aufbau von 3D-WLP für MEMS erarbeitet. Dabei lag der Fokus auf einer Kupfer-basierten Technologie sowie auf zwei prinzipiellen Varianten für die TSV-Implementierung. Dies umfasst den Via Middle Ansatz, welcher auf der TSV Herstellung auf einem separaten Kappenwafer beruht, sowie den Via Last Ansatz mit einer TSV Herstellung entweder im MEMS-Wafer oder im Kappenwafer. Für beide Varianten mit individuellen Herausforderungen wurden entsprechende Prozessmodule entwickelt. Beim Via Middle Ansatz ist die Wafer-bezogene Ätzratenhomogenität des Siliziumtiefenätzen entscheidend für das spätere Freilegen der TSVs von der Rückseite. Hier hat sich eine Reduzierung der TSV-Tiefe auf bis zu 80 μm vorteilhaft erwiesen insofern, das Kupfer-Thermokompressionsbonden (Cu-TKB) vor dem Abdünnen erfolgt. Zur Metallisierung der TSVs wurde ein Cu Galvanikprozess erarbeitet, welcher es ermöglicht gleichzeitig eine Umverdrahtungsebene sowie die Bondstrukturen für das Cu-TKB zu erzeugen. Beim Via Last Ansatz ist die TSV Isolation eine Herausforderung. Es wurden CVD (Chemische Dampfphasenabscheidung) Prozesse untersucht, wobei eine Kombination aus PE-TEOS und SA-TEOS sowie eine Parylene Beschichtung erfolgversprechende Ergebnisse liefern. Des Weiteren wurde eine Methode zur Erzeugung bondfähiger Oberflächen für das Siliziumdirektbonden erarbeitet, welche eine Nass-Vorbehandlung des MEMS umgeht. Ein realer MEMS-Beschleunigungssensor sowie Testaufbauten dienen zur Demonstration der Gesamtintegrationstechnologie sowie zur Charakterisierung elektrischer Parameter.:Bibliographische Beschreibung 3 Vorwort 13 List of symbols and abbreviations 15 1 Introduction 23 2 Fundamentals on MEMS and TSV based 3D integration 25 2.1 Micro Electro-Mechanical systems 25 2.1.1 Basic Definition 25 2.1.2 Silicon technologies for MEMS 26 2.1.3 MEMS packaging 29 2.2 3D integration based on TSVs 33 2.2.1 Overview 33 2.2.2 Basic processes for TSVs 34 2.2.3 Stacking and Bonding 47 2.2.4 Wafer thinning 48 2.3 TSV based MEMS packaging 50 2.3.1 MEMS-TSVs 50 2.3.2 3D-WLP for MEMS 52 3 Technology development for a 3D-WLP based MEMS 57 3.1 Target integration approach for 3D-WLP based MEMS 57 3.1.1 MEMS modules using 3D-WLP based MEMS 57 3.1.2 Integration concepts 58 3.2 Objective and requirements for the proposed 3D-WLP of MEMS 60 3.2.1 Boundary conditions 60 3.2.2 Technology concepts 63 3.3 Selected approaches for TSV implementation in MEMS 64 3.3.1 Via Last Technology 64 3.3.2 Via Middle technology 69 4 Development of process modules 75 4.1 Characterisation 75 4.2 TSV related etch processes 77 4.2.1 Equipment 77 4.2.2 Deep silicon etching 78 4.2.3 Etching of the buried dielectric layer 84 4.2.4 Patterning of TSV isolation liner – spacer etching 90 4.2.5 Summary 92 4.3 TSV isolation 93 4.3.1 Principle considerations 93 4.3.2 Experiment 95 4.3.3 Results 97 4.3.4 Summary 102 4.4 Metallisation of TSV and RDL 103 4.4.1 Plating base and experimental setup 103 4.4.2 Investigations related to the ECD process 106 4.4.3 Pattern plating 117 4.4.4 Summary 123 4.5 Wafer Level Bonding 124 4.5.1 Silicon direct bonding 124 4.5.2 Thermo-compression bonding by using ECD copper 128 4.5.3 Summary 134 4.6 Wafer thinning and TSV back side reveal 134 4.6.1 Thinning processes 134 4.6.2 TSV reveal processes 136 4.6.3 Summary 145 4.7 Under bump metallisation and solder bumps 146 5 Demonstrator design, fabrication and characterisation 149 5.1 Single wafer demonstrator for electrical test 149 5.1.1 Demonstrator design and test structure layout 149 5.1.2 Demonstrator fabrication 150 5.1.3 Electrical measurement 151 5.1.4 Summary 153 5.2 Via Last based TSV fabrication in the MEMS device wafer 153 5.2.1 Layout of the MEMS device with TSVs 153 5.2.2 Fabrication of TSVs and wafer thinning 154 5.2.3 Characterisation of the fabricated device 155 5.2.4 Summary 156 5.3 Via Last based cap-TSV for very thin MEMS devices 157 5.3.1 Design 157 5.3.2 Fabrication 158 5.3.3 Characterisation 161 5.3.4 Summary 162 5.4 Via Middle approach based on thinning after bonding 163 5.4.1 Design 163 5.4.2 Results and characterisation 164 5.4.3 Summary 166 6 Conclusion and outlook 167 Appendix A: Typical requirements on a MEMS package and its functions 171 Appendix B: Classification of packaging and system integration techniques 173 B.1 Packaging of electronic devices in general 173 B.2 Single Chip Packages 174 B.3 System integration 175 B.4 3D integration based on TSVs 180 Bibliography 183 List of figures 193 List of tables 199 Versicherung 201 Theses 203 Curriculum vitae 205 Own publications 207
64

Zerstörungsfreie Eigenspannungsbestimmung für die Zuverlässigkeitsbewertung 3D-integrierter Kontaktstrukturen in Silizium

Zschenderlein, Uwe 12 September 2013 (has links)
Die Arbeit behandelt die zerstörungsfreie Eigenspannungsbestimmung in Silizium von 3D-integrierten Mikrosystemen am Beispiel Wolfram gefüllter TSVs. Dafür wurden die Verfahren der röntgenographischen Spannungsanalyse und der Raman-Spektroskopie genutzt. Interpretiert und verglichen wurden die Ergebnisse mit FE-Simulationen. Als Proben standen Querschliffe eines Doppelchip-Systems zur Verfügung, in denen der obere Chip Wolfram-TSVs enthielt. Beide Chips wurden mit dem Kupfer-Zinn-SLID-Verfahren gebondet. In Experimenten und Simulation konnte der Einfluss von Wolfram-TSVs auf die Netzebenendehnung im Silizium nachgewiesen werden. Die FE-Simulationen zeigen im Silizium Spannungen zwischen -20 und 150 MPa, wenn intrinsische Schichteigenspannungen des Wolframs vernachlässigt werden. Direkt am TSV entwickeln sich Spannungsgradienten von einigen 10 MPa pro Mikrometer. Für die röntgenographische Spannungsanalyse wurden Röntgenbeugungsmessungen am PETRA III-Ring des DESY durchgeführt. Dafür wurde der 2-Theta-Raum in Linienscans untersucht und Beugungsdiagramme aufgenommen. Die ermittelten Dehnungen liegen im Bereich von einigen 10E-5, was uniaxialen Spannungen zwischen 5 und 10MPa entspricht. Im Fall kleiner Gradienten werden die Verläufe der FE-Simulation zufriedenstellend bestätigt. Starke Spannungsgradienten, die sich in wenigen Mikrometern Abstand um das TSV entwickeln, konnten über eine Profilanalyse des Beugungspeaks bestimmt werden. Aus den Ergebnissen lässt sich schließen, dass lateral eng begrenzte Spannungsgradienten von 170 MPa pro µm in TSV-Nähe existieren. Verglichen wurden diese Ergebnisse mit Hilfe der Raman-Spektroskopie. Sowohl die Ergebnisse der Röntgenographischen Spannungsanalyse als auch die der Raman-Spektroskopie lassen darauf schließen, dass die Spannungsgradienten im Silizium in unmittelbarer Nähe zum TSV höher sind als von der FE-Simulation vorhergesagt. Des Weiteren wurde in der Arbeit eine universelle Röntgenbeugung- und Durchstrahlungssimulation XSIM entwickelt, die das Ray-Tracing-Modell nutzt und neben kinematischer und dynamischer Beugung auch optional Rayleigh- und Compton-Streuung berücksichtigt. / This thesis covers the non-destructive determination of residual stress inside Silicon of 3D-integrated micro systems using the example of Tungsten-filled TSVs by X-ray stress analysis and Raman spectroscopy. The results were interpreted and compared by FE-simulations. Double-die systems with Tungsten-TSVs at the top-die were prepared as cross-sections and used as specimens. Both dies were bonded by a Copper-Tin-SLID interconnect. The influence of Tungsten-TSVs on the lattice spacing in Silicon could be demonstrated by experiment as well as in FE-simulations. The FE reveals in Silicon stress between -20 and 150 MPa, if intrinsic stress of deposition inside Tungsten is neglected. The Silicon-Tungsten-interface develops stress gradients of some 10 MPa per micron. The X-ray diffraction measurements for the stress analysis were conducted at the PETRA III-Ring at DESY. The reciprocal 2-Theta-space was investigated by line scans and diffraction patterns were recorded. The registered strain is in the range of some 10E-5, what results in uniaxial stress between 5 and 10 MPa. The strain distributions at line scans of the FE were satisfyingly approved in case of small gradients. Large stress gradients were determined by a profile analysis of the diffraction peak. The investigation shows that stress gradients up to 170 MPa pro micron are present close to the TSV. The results were compared by Raman-spectroscopy. Both X-ray stress analysis and Raman-spectroscopy indicate larger stress gradients nearby the Tungsten-TSV than proposed by the FE-simulation. In addition a universal X-ray diffraction and radiography simulation named XSIM was developed within that thesis. A ray-tracing model was applied to that simulation. XSIM covers both kinematical and dynamical diffraction and optionally allows for Rayleigh and Compton scattering.
65

System Interconnection Design Trade-offs in Three-Dimensional (3-D) Integrated Circuits

Weerasekera, Roshan January 2008 (has links)
Continued technology scaling together with the integration of disparate technologies in a single chip means that device performance continues to outstrip interconnect and packaging capabilities, and hence there exist many difficult engineering challenges, most notably in power management, noise isolation, and intra and inter-chip communication. Significant research effort spanning many decades has been expended on traditional VLSI integration technologies, encompassing process, circuit and architectural issues to tackle these problems. Recently however, three- dimensional (3-D) integration has emerged as a leading contender in the challenge to meet performance, heterogeneous integration, cost, and size demands through this decade and beyond. Through silicon via (TSV) based 3-D wafer-level integration is an emerging vertical interconnect methodology that is used to route the signal and power supply links through all chips in the stack vertically. Delay and signal integrity (SI) calculation for signal propagation through TSVs is a critical analysis step in the physical design of such systems. In order to reduce design time and mirror well established practices, it is desirable to carry this out in two stages, with the physical structures being modelled by parasitic parameters in equivalent circuits, and subsequent analysis of the equivalent circuits for the desired metric. This thesis addresses both these issues. Parasitic parameter extraction is carried out using a field solver to explore trends in typical technologies to gain an insight into the variation of resistive, capacitive and inductive parasitics including coupling effects. A set of novel closed-form equations are proposed for TSV parasitics in terms of physical dimensions and material properties, allowing the electrical modelling of TSV bundles without the need for computationally expensive field-solvers. Suitable equivalent circuits including capacitive and inductive coupling are derived, and comparisons with field solver provided values are used to show the accuracy of the proposed parasitic parameter models for the purpose of performance and SI analysis. The deep submicron era saw the interconnection delay rather than the gate delay become the major bottleneck in modern digital design. The nature of this problem in 3-D circuits is studied in detail in this thesis. The ubiquitous technique of repeater insertion for reducing propagation delay and signal degradation is examined for TSVs, and suitable strategies and analysis techniques are proposed. Further, a minimal power smart repeater suitable for global on-chip interconnects, which has the potential to reduce power consumption by as much as 20% with respect to a traditional inverter is proposed. A modeling and analysis methodology is also proposed, that makes the smart repeater easier to amalgamate in CAD flows at different levels of hierarchy from initial signal planning to detailed place and route when compared to alternatives proposed in the literature. Finally, the topic of system-level performance estimation for massively integrated systems is discussed. As designers are presented with an extra spatial dimension in 3-D integration, the complexity of the layout and the architectural trade-offs also increase. Therefore, to obtain a true improvement in performance, a very careful analysis using detailed models at different hierarchical levels is crucial. This thesis presents a cohesive analysis of the technological, cost, and performance trade-offs for digital and mixed-mode systems, outlining the choices available at different points in the design and their ramifications / QC 20100916
66

Characterization Of Structural And Non-structural Proteins Of Positive Sense, Single-stranded RNA Plant Viruses

Mathur, Chhavi 06 1900 (has links) (PDF)
In the present thesis, two positive sense single-stranded RNA viruses have been used as models to understand the structure and function of viral-encoded proteins. One of them, Pepper Vein Banding Virus (PVBV; genus Potyvirus; family Potyviridae) is a flexuous, rod-shaped virus that encodes for a polyprotein of size ~340 kDa. The polyprotein undergoes proteolytic processing by viral-encoded proteases, of which Nuclear Inclusion-a Protease (NIa-Pro) is the major protease. It is a serine-like cysteine protease which cleaves between a Q/A or Q/S, present in the context of the heptapeptide recognition sequence. The temporal regulation of intermediates and mature proteins released by NIa-Pro cleavage is crucial for a successful infection. In the present study, histidine-tagged NIa-Pro, Viral Protein genome-linked (VPg), and the cleavage site mutant (E191A) VPg-Pro were over-expressed in E. coli and purified. The protease activity of NIa-Pro was monitored using an HPLC-based protease assay developed using a peptide substrate. NIa-Pro protease activity was found to get modulated upon interaction with VPg and upon undergoing phosphorylation. Both these events have been found to involve the face of NIa-Pro which contains the solvent-exposed Trp143. Mutational studies and molecular dynamics analyses provide evidence that this residue is buried upon interaction of NIa-Pro with VPg, and any perturbation of its orientation influences the active site Cys151 via an extensive interaction network. This interaction was found to enhance the velocity of NIa-Pro protease activity, especially if the two domains were present in trans (VPg+Pro). In addition, the main-chain –NH2 group of Trp143 was found to be hydrogen-bonded to the side chain –OH group of Ser129, the residue which was identified to undergo phosphorylation by host plant kinases. Interestingly, when the two domains were present in cis (E191A VPg-Pro), no phosphorylation was observed. Mutations of Ser129 (to phosphorylation-mimic Asp or phosphorylation-deficient Ala residues) which affected this H-bond were found to disturb Trp143 and Cys151 orientation, which drastically reduced the protease activity of NIa-Pro. Within the polyprotein, VPg is present at the N-terminus of NIa-Pro and the cleavage site between them is suboptimal (E/A). In the present study, VPg-Pro was shown to be covalently linked to the genomic RNA present in the virions. Interestingly, during purification, VPg could only be purified from the soluble when it was expressed at the N-terminus of NIa-Pro. A series of bioinformatics and biophysical analysis of VPg showed that PVBV VPg, like other potyviral VPgs, exists as a molten-globule. Moreover, while VPg was shown to harbour the Walker motifs, it was found to exhibit an ATPase activity only when it was present with the NIa-Pro (especially in cis). Lys47 and Asp88:Glu89 were found crucial for optimal activity. Over all the results demonstrated that there is a reciprocal modulation of structure and function of the VPg and NIa-Pro domains. These results can explain the possible significance of an impeded cleavage rate between the two domains of VPg-Pro during PVBV infection. The precursor, VPg-Pro, could offer the advantage of evading the inhibitory phosphorylation of NIa-Pro by the host, as well as drive certain viral processes by virtue of its ATPase activity. And subsequent cleavage of the domains and their trans interaction could offer a higher turnover rate which might assist sufficient CP production required for viral morphogenesis. Another virus, Tobacco Streak Virus (TSV) that belongs to the Ilarvirus genus of the Bromoviridae family is a spherical virus which forms pleiomorphic icosahedral virus particles. It has a tripartite genome and each RNA is encapsidated individually. In the present thesis, TSV was used as a model to understand the properties of its structural protein-the coat protein (CP), with the aim of deciphering TSV assembly process. Thus, the CP gene from TSV RNA 3 was cloned and over-expressed in E. coli. The coat protein thus expressed formed virus-like particles (VLPs), which could be disassembled into dimers using high CaCl2 concentrations. Reassembly of VLPs was possible from dimers even in the absence of any nucleic acid. Mutational analysis of the N-terminal disordered domain showed that 26 amino acid residues from the amino-terminus could be crucial for capsid heterogeneity while, zinc-binding domain was essential for assembly. Overall, the present study shows that the flexible W-C loop of PVBV NIa-Pro, the disordered N-terminal region of PVBV VPg and the disordered N-terminal region of TSV CP harbour residues crucial for regulation of protein function. Such regulatory elements would ultimately allow viruses to maintain a smaller protein number, and thus a smaller genome size.
67

New Precursors for CVD Copper Metallization

Norman, John A. T., Perez, Melanie, Schulz, Stefan E., Waechtler, Thomas 02 October 2008 (has links)
A novel CVD copper process is described using two new copper CVD precursors, KI3 and KI5, for the fabrication of IC or TSV (Through Silicon Via) copper interconnects. The highly conformal CVD copper can provide seed layers for subsequent copper electroplating or can be used to directly fabricate the interconnect in one step. These new precursors are thermally stable yet chemically reactive under CVD conditions, growing copper films of exceptionally high purity at high growth rates. Their thermal stability can allow for elevated evaporation temperatures to generate the high precursor vapor pressures needed for deep penetration into high aspect ratio TSV vias. Using formic acid vapor as a reducing gas with KI5, copper films of > 99.99 atomic % purity were grown at 250°C on titanium nitride at a growth rate of > 1500 Å/min. Using tantalum nitride coated TSV type wafers, ~ 1700 Å of highly conformal copper was grown at 225°C into 32 μm × 5 μm trenches with good adhesion. With ruthenium barriers we were able to grow copper at 125°C at a rate of 20 Å/min to give a continuous ~ 300 Å copper film. In this respect, rapid low temperature CVD copper growth offers an alternative to the long cycle times associated with copper ALD which can contribute to copper agglomeration occurring. © 2008 Elsevier B.V.
68

Integration and Fabrication Techniques for 3D Micro- and Nanodevices

Fischer, Andreas C. January 2012 (has links)
The development of micro and nano-electromechanical systems (MEMS and NEMS) with entirely new or improved functionalities is typically based on novel or improved designs, materials and fabrication methods. However, today’s micro- and nano-fabrication is restrained by manufacturing paradigms that have been established by the integrated circuit (IC) industry over the past few decades. The exclusive use of IC manufacturing technologies leads to limited material choices, limited design flexibility and consequently to sub-optimal MEMS and NEMS devices. The work presented in this thesis breaks new ground with a multitude of novel approaches for the integration of non-standard materials that enable the fabrication of 3D micro and nanoelectromechanical systems. The objective of this thesis is to highlight methods that make use of non-standard materials with superior characteristics or methods that use standard materials and fabrication techniques in a novel context. The overall goal is to propose suitable and cost-efficient fabrication and integration methods, which can easily be made available to the industry. The first part of the thesis deals with the integration of bulk wire materials. A novel approach for the integration of at least partly ferromagnetic bulk wire materials has been implemented for the fabrication of high aspect ratio through silicon vias. Standard wire bonding technology, a very mature back-end technology, has been adapted for yet another through silicon via fabrication method and applications including liquid and vacuum packaging as well as microactuators based on shape memory alloy wires. As this thesis reveals, wire bonding, as a versatile and highly efficient technology, can be utilized for applications far beyond traditional interconnections in electronics packaging. The second part presents two approaches for the 3D heterogeneous integration based on layer transfer. Highly efficient monocrystalline silicon/ germanium is integrated on wafer-level for the fabrication of uncooled thermal image sensors and monolayer-graphene is integrated on chip-level for the use in diaphragm-based pressure sensors. The last part introduces a novel additive fabrication method for layer-bylayer printing of 3D silicon micro- and nano-structures. This method combines existing technologies, including focused ion beam implantation and chemical vapor deposition of silicon, in order to establish a high-resolution fabrication process that is related to popular 3D printing techniques. / <p>QC 20121207</p>

Page generated in 0.0333 seconds