• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 403
  • 127
  • 85
  • 57
  • 51
  • 38
  • 35
  • 26
  • 14
  • 10
  • 5
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 1000
  • 169
  • 151
  • 85
  • 76
  • 67
  • 63
  • 57
  • 56
  • 54
  • 51
  • 50
  • 49
  • 49
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
711

Theoretical Investigation Of Metamaterials: Srr Structures And Periodic Arrays Of Thin Conducting Wires

Ates, Kazim Ozan 01 May 2008 (has links) (PDF)
In recent years, there has been an increasing interest on left handed metamaterials because of their possible innovative applications. The pioneer study introducing such materials was brought out by V. G. Veselago in 1968 [1]. In his work, Veselago proposed a medium having simultaneously negative electric permittivity and magnetic permeability and investigated its electromagnetic characteristics. He found out that the electric field, magnetic field and the propagation vector form a left handed triplet, thus named such materials as &ldquo / Left Handed Materials&rdquo / . Despite the significance of Veselago&rsquo / s inferences, the metamaterial theory stayed dormant for nearly 30 years. Towards the end of 1990s, the physically realizable left handed materials were built as the combination of two periodical structures / Split Ring Resonators (SRRs) and metallic thin wire arrays [4-5]. In this thesis, electrical and magnetic characteristics of the left handed metamaterials are theoretically investigated by using the analytical models for their permittivity and permeability functions with respect to frequency. For this purpose, first, two basic metamaterial structures / the Split Ring Resonators and Thin Metallic Wire Arrays are studied individually and their electrical and magnetic characteristics are examined. Finally, the composite left handed structure containing both SRRs and thin wires is studied to investigate the resulting simultaneous resonance properties and to estimate their overall effective permeability and permittivity functions.
712

Versuchsanlage ROCOM zur Untersuchung der Kühlmittelvermischung in Druckwasserreaktoren - Ergebnisse quasistationärer Vermischungsexperimente

Grunwald, G., Kliem, S., Höhne, T., Rohde, U., Prasser, H.-M., Richter, K.-H., Weiß, F.-P. 31 March 2010 (has links) (PDF)
The test facility ROCOM (Rossendorf Coolant Mixing Model) has been built for the investigation of coolant mixing processes in the reactor pressure vessel of pressurised water reactors (PWR). ROCOM is a 1:5 model of the German PWR KONVOI and has been designed for a wide range of different mixing scenarios. ROCOM disposes of four loops with fully controllable coolant pumps. The test facility is operated with demineralised water. For the investigation of mixing, tracer solution (water labelled with salt) is injected into the facility. The transient distribution of the electrical conductivity is is measured at different positions of the flow path by means of wire-mesh sensor technique with high resolution in space and time. The measured conductivity is transformed into a dimensionless mixing scalar. The mixing at quasi-stationary conditions (constant loop mass flow rates) has been investigated in the presented experiments. That concerned nominal operation conditions, the operation with a reduced number of loops and the investigation of cold-water transients with running pumps and conditions of developed natural circulation. In special experimental series, the reproducibility of the results at identicla boundary conditions within the confidence intervalls has been shown. Further, the influence of various factors on the mixing has been investigated. This included the pressure losses at the core bottom plate, the global coolant flow level and the influence of the loop flow rate on the perturbed sector at the core inlet. An analysis of the measurement error of the used measurement technique completes the report.
713

Modelling and Analysis of Interconnects for Deep Submicron Systems-on-Chip

Pamunuwa, Dinesh January 2003 (has links)
<p>The last few decades have been a very exciting period in thedevelopment of micro-electronics and brought us to the brink ofimplementing entire systems on a single chip, on a hithertounimagined scale. However an unforeseen challenge has croppedup in the form of managing wires, which have become the mainbottleneck in performance, masking the blinding speed of activedevices. A major problem is that increasingly complicatedeffects need to be modelled, but the computational complexityof any proposed model needs to be low enough to allow manyiterations in a design cycle.</p><p>This thesis addresses the issue of closed form modelling ofthe response of coupled interconnect systems. Following astrict mathematical approach, second order models for thetransfer functions of coupled RC trees based on the first andsecond moments of the impulse response are developed. The2-pole-1-zero transfer function that is the best possible fromthe available information is obtained for the signal path fromeach driver to the output in multiple aggressor systems. Thisallows the complete response to be estimated accurately bysumming up the individual waveforms. The model represents theminimum complexity for a 2-pole-1-zero estimate, for this classof circuits.</p><p>Also proposed are new techniques for the optimisation ofwires in on-chip buses. Rather than minimising the delay overeach individual wire, the configuration that maximises thetotal bandwidth over a number of parallel wires isinvestigated. It is shown from simulations that there is aunique optimal solution which does not necessarily translate tothe maximum possible number of wires, and in fact deviatesconsiderably from it when the resources available for repeatersare limited. Analytic guidelines dependent only on processparameters are derived for optimal sizing of wires andrepeaters.</p><p>Finally regular tiled architectures with a commoncommunication backplane are being proposed as being the mostefficient way to implement systems-on-chip in the deepsubmicron regime. This thesis also considers the feasibility ofimplementing a regular packet-switched network-on-chip in atypical future deep submicron technology. All major physicalissues and challenges are discussed for two differentarchitectures and important limitations are identified.</p>
714

Numerical simulation of shape rolling

Riljak, Stanislav January 2006 (has links)
<p>In the first part of this thesis, the FE program MSC.Marc is applied for coupled thermomechanical simulations of wire-rod rolling. In order to predict material behaviour of an AISI 302 stainless steel at high strain rates generated during wire-rod rolling, a material model based on dislocation density is applied. Then, the evolution of temperature, strain rate and flow stress is predicted in the first four rolling passes of a wire block.</p><p>In the second part of the thesis, an alternative approach to simulation of shape rolling is evaluated. The approach is applied in order to save the computational time in cases where many shape-rolling passes are to be simulated. The approach is a combination of the slab method and a 2D FEM with a generalized plane-strain formulation. A number of various isothermal shape-rolling passes are simulated applying the simplified approach. The simulations are carried out using an in-house 2D FE code implemented in Matlab. The results are compared to fully 3D FE analyses. The comparison shows that the simplified approach can predict roll forces and roll torques with a fair accuracy, but the predicted area reductions are a bit underestimated. The reasons for the deviations between the simplified approach and the 3D FEM are discussed.</p>
715

Evolution of artificial defects during shape rolling

Filipovic, Mirjana January 2007 (has links)
<p>Very often defects are present in rolled products. For wire rods, defects are very deleterious since the wire rods are generally used directly in various applications. For this reason, the market nowadays requires wire rods to be completely defect-free. Any wire with defects must be rejected as scrap which is very costly for the production mill. Thus, it is very important to study the formation and evolution of defects during wire rod rolling in order to better understand and minimize the problem, at the same time improving quality of the wire rods and reducing production costs.</p><p>The present work is focused on the evolution of artificial defects during rolling. Longitudinal surface defects are studied during shape rolling of an AISI M2 high speed steel and a longitudinal central inner defect is studied in an AISI 304L austenitic stainless steel during ultra-high-speed wire rod rolling. Experimental studies are carried out by rolling short rods prepared with arteficial defects. The evolution of the defects is characterised and compared to numerical analyses. The comparison shows that surface defects generally reduce quicker in the experiments than predicted by the simulations whereas a good agreement is generally obtained for the central defect.</p>
716

The Untimely-Image : On Contours of the New in Political Film-Thinking

Nilsson, Jakob January 2012 (has links)
This study creates and develops a concept called the untimely-image including two sub-concepts called contours of the new and the untimely-site. The untimely-image concerns the clearing for and the expression of figures of “potential” in thought in the form of moving-images. The aim of these concepts is to form a critical framework for evaluating and conceptualizing political film as expressive, not of the new itself but of its “untimely” contours. The untimely-image, and its many implications, is developed over the course of six chapters. Chapter 1 extensively defines “contours” and “new” as operative in this study, and also introduces a theme that runs through all the chapters: how to think the contours of the new in relation to the cult of the new in consumer culture and in relation to the larger mechanisms of advanced capitalism. Chapter 2 defines the parameters of the untimely-image as specifically regarding moving images, and continues the development of this concept. In Chapters 3 to 6, The Wire (David Simon, 2002-2008) serves the double function of complicating and giving specification to the elaboration of the untimely-image as well as a case in which the untimely-image is used as a critical framework. The Wire and the untimely-image relate in processes of juxtaposition, wherein they meet, cross over, separate, and reproblematize each other. An untimely-image is fully defined in relation to concrete political issues. The untimely-image is therefore advanced by articulating the components and characteristics that, independently of the concrete issue, remain in every case, as well as by putting the concept to work regarding two specific problems in The Wire: its expression of blackness and its mapping of advanced capitalism.
717

A game theoretic framework for interconnect optimization in deep submicron and nanometer design

Hanchate, Narender 01 June 2006 (has links)
The continuous scaling of interconnect wires in deep submicron (DSM)circuits result in increased interconnect delay, power and crosstalk noise. In this dissertation, we address the problem of multi-metric optimization at post layout level in the design of deep submicron designs and develop a game theoretic framework for its solution. Traditional approaches in the literature can only perform single metric optimization and cannot handle multiple metrics. However, in interconnect optimization, the simultaneous optimization of multiple parameters such as delay, crosstalk noise and power is necessary and critical. Thus, the work described in this dissertation research addressing multi-metric optimization is an important contribution.Specifically, we address the problems of simultaneous optimization of interconnect delay and crosstalk noise during (i) wire sizing (ii) gate sizing (iii) integrated gate and wire sizing, and (iv) gate sizing considering process variations. Game the ory provides a natural framework for handling conflicting situations and allows optimization of multiple parameters. This property is exploited in modeling the simultaneous optimization of various design parameters such as interconnect delay, crosstalk noise and power, which are conflicting in nature. The problem of multi-metric optimization is formulated as a normal form game model and solved using Nash equilibrium theory. In wire sizing formulations, the net segments within a channel are modeled as the players and the range of possible wire sizes forms the set of strategies. The payoff function is modeled as (i) the geometric mean of interconnect delay andcrosstalk noise and (ii) the weighted-sum of interconnect delay, power and crosstalk noise, in order to study the impact of different costfunctions with two and three metrics respectively. In gate sizing formulations, the range of possible gate sizes is modeled as the set of strategies and the payoff function is modeled as the geome tric mean of interconnect delay and crosstalk noise. The gates are modeled as the players while performing gate sizing, whereas, the interconnect delay and crosstalk noise are modeled as players for integrated wire and gate sizing framework as well as for statistical gate sizing under the impact of process variations.The various algorithms proposed in this dissertation (i) perform multi-metric optimization (ii) achieve significantly better optimization and run times than other methods such as simulated annealing, genetic search, and Lagrangian relaxation (iii) have linear time and space complexities, and hence can be applied to very large SOC designs, and (iv) do not require rerouting or incur any area overhead. Thecomputational complexity analysis of the proposed algorithms as well as their software implementations are described, and experimental results are provided that establish the efficacy of the proposed algorithms.
718

Luttinger-liquid physics in wire and dot geometries / Luttingerflüssigkeitsphysik in Quantendraht- und Quantenpunktgeometrien

Wächter, Hans Peter 16 December 2009 (has links)
No description available.
719

Propriétés électriques, optiques et électro-optiques de microfils GaN pour la réalisation de LEDs / Electrical, optical, and electro-optical properties of GaN microwires for the fabrication of LEDs

Tchoulfian, Pierre 07 January 2015 (has links)
Ce travail de thèse porte sur la caractérisation à l'échelle du fil unique des propriétés de fils GaN de taille micronique (µfil), en vue du développement d'une technologie de diodes électroluminescentes (LEDs) à base d'une assemblée de µfils GaN crûs par épitaxie en phase vapeur aux organométalliques. Chaque µfil est lui-même une LED constituée d'un cœur de type n et d'une coquille de type p, entre lesquels est insérée une zone active composée de multi-puits quantiques InGaN/GaN. En premier lieu, les propriétés électriques des différentes régions du cœur de type n ont été analysées par des mesures de résistivité à l'échelle du fil unique. Le µfil GaN:Si fortement dopé possède une conductivité électrique jamais rapportée dans le cas de couches planaires comparables. Une approche originale combinant une mesure de résistivité et de propriétés thermoélectriques a alors été développée pour séparer les contributions de la densité d'électrons et de leur mobilité à température ambiante dans ces µfils. Des mesures optiques résolues spatialement de cathodoluminescence (CL) et µRaman confirment ces valeurs de densités d'électrons. Une seconde partie détaille une étude résolue spatialement des jonctions p-n cœur-coquille par des techniques à base d'un faisceau électronique. Sur un µfil clivé, la jonction tridimensionnelle (axiale et radiale) existante dans ces structures est mise en évidence par une cartographie du champ électrique (courant induit par faisceau électronique, EBIC) ou du potentiel électrostatique (contraste de tension des électrons secondaires). Ces techniques renseignent alors sur les niveaux de dopage donneur et accepteur et les longueurs de diffusion des porteurs minoritaires à proximité de la jonction. La cartographie EBIC décrit également l'état d'activation des dopants Mg dans la coquille p-GaN:Mg. Finalement, la combinaison de mesures EBIC et CL avec une étude des propriétés électro-optiques d'un µfil LED, fournit des voies d'optimisation pour la réalisation de LEDs à base de µfils plus efficaces. / This thesis deals with the characterization of GaN microwires (µwires) at the single wire level,toward the development of a light-emitting diode (LED) technology based on an ensemble of standing GaN µwires grown by metal organic vapour phase epitaxy. Each µwire is actually an LED consisting of an n-type core and a p-type shell, between which an InGaN/GaN multiquantum well active region is inserted. First, the electrical properties of the different parts of the n-type core were determined using resistivity measurements at the single wire level. The GaN:Si µwire exhibits conductivity values never reported by the planar layer counterparts. An original technique combining resistivity and thermoelectric measurements was developed to infer the electron density and mobility in these µwires. Spatially resolved optical measurements such as cathodoluminescence (CL) and µRaman confirmed the electron density values. The second part describes a spatially resolved study of the core-shell p-n junction using electron beam probing techniques. On a cleaved wire, the tridimensional (axial and radial) junction was highlighted by mapping the electric field (electron beam induced current, EBIC) or the electrostatic potential (secondary electron voltage contrast). These techniques yielded the donor and acceptor doping levels as well as the minority carriers diffusion lengths in the vicinity of the junction. EBIC mapping also provided the activation state of Mg dopants in the p-GaN:Mg shell. Finally, a study of the electro-optical properties of a single µwire LED, combined with EBIC and CL measurements, paves the way to the fabrication of more efficient µwire-based LED.
720

Wind-turbine wake flows - Effects of boundary layers and periodic disturbances

Odemark, Ylva January 2014 (has links)
The increased fatigue loads and decreased power output of a wind turbine placed in the wake of another turbine is a well-known problem when building new wind-power farms and a subject of intensive research. These problems are caused by the velocity gradients and high turbulence levels present in the wake of a turbine. In order to better estimate the total power output and life time of a wind-power farm, knowledge about the development and stability of wind-turbine wakes is crucial. In the present thesis, the flow field around small-scale model wind turbines has been investigated experimentally in two wind tunnels. The flow velocity was measured with both hot-wire anemometry and particle image velocimetry. To monitor the turbine performance, the rotational frequency, the power output and the total drag force on the turbine were also measured. The power and thrust coefficients for different tip-speed ratios were calculated and compared to the blade element momentum method, with a reasonable agreement. The same method was also used to design and manufacture new turbine blades, which gave an estimate of the distribution of the lift and drag forces along the blades. The influence of the inlet conditions on the turbine and the wake properties was studied by subjecting the turbine to both uniform in flow and different types of boundary layer in flows. In order to study the stability and development of the tip vortices shed from the turbine blades, a new experimental setup for phase-locked measurements was constructed. The setup made it possible to introduce perturbations of different frequencies and amplitudes, located in the rear part of the nacelle. With a newly developed method, it was possible to characterize the vortices and follow their development downstream, using only the streamwise velocity component. Measurements were also performed on porous discs placed in different configurations. The results highlighted the importance of turbine spacings. Both the measurements on the turbine and the discs were also used to compare with large eddy simulations using the actuator disc method. The simulations managed to predict the mean velocity fairly well in both cases, while larger discrepancies were seen in the turbulence intensity. / <p>QC 20140424</p>

Page generated in 0.0576 seconds