• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 46
  • 46
  • 46
  • 16
  • 14
  • 12
  • 12
  • 12
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Soft X-ray stereo microscopy for investigation of dynamics and elemental distribution of colloidal systems from the environment / Stereoröntgenmikroskopie zur Untersuchung der Dynamik und der Elementverteilung in kolloidalen Systemen aus der Umwelt

Gleber, Sophie-Charlotte 20 March 2009 (has links)
No description available.
32

A Micro-scope on intracellular trafficking / Eine mikroskopische Übersicht intrazellulärer Transportprozesse

Olendrowitz, Christian 05 May 2011 (has links)
No description available.
33

Nonlinear approaches for phase retrieval in the Fresnel region for hard X-ray imaging

Ion, Valentina 26 September 2013 (has links) (PDF)
The development of highly coherent X-ray sources offers new possibilities to image biological structures at different scales exploiting the refraction of X-rays. The coherence properties of the third-generation synchrotron radiation sources enables efficient implementations of phase contrast techniques. One of the first measurements of the intensity variations due to phase contrast has been reported in 1995 at the European Synchrotron Radiation Facility (ESRF). Phase imaging coupled to tomography acquisition allows threedimensional imaging with an increased sensitivity compared to absorption CT. This technique is particularly attractive to image samples with low absorption constituents. Phase contrast has many applications, ranging from material science, paleontology, bone research to medicine and biology. Several methods to achieve X-ray phase contrast have been proposed during the last years. In propagation based phase contrast, the measurements are made at different sample-to-detector distances. While the intensity data can be acquired and recorded, the phase information of the signal has to be "retrieved" from the modulus data only. Phase retrieval is thus an illposed nonlinear problem and regularization techniques including a priori knowledge are necessary to obtain stable solutions. Several phase recovery methods have been developed in recent years. These approaches generally formulate the phase retrieval problem as a linear one. Nonlinear treatments have not been much investigated. The main purpose of this work was to propose and evaluate new algorithms, in particularly taking into account the nonlinearity of the direct problem. In the first part of this work, we present a Landweber type nonlinear iterative scheme to solve the propagation based phase retrieval problem. This approach uses the analytic expression of the Fréchet derivative of the phase-intensity relationship and of its adjoint, which are presented in detail. We also study the effect of projection operators on the convergence properties of the method. In the second part of this thesis, we investigate the resolution of the linear inverse problem with an iterative thresholding algorithm in wavelet coordinates. In the following, the two former algorithms are combined and compared with another nonlinear approach based on sparsity regularization and a fixed point algorithm. The performance of theses algorithms are evaluated on simulated data for different noise levels. Finally the algorithms were adapted to process real data sets obtained in phase CT at the ESRF at Grenoble.
34

Multilagenzonenplatten für die Mikroskopie mit harter Röntgenstrahlung / Multilayer Zone Plates for hard x-ray microscopy

Eberl, Christian 23 June 2016 (has links)
No description available.
35

Nanofocusing Refractive X-Ray Lenses

Boye, Pit 05 February 2010 (has links)
This thesis is concerned with the optimization and development of the production of nanofocusing refractive x-ray lenses. These optics made of either silicon or diamond are well-suited for high resolution x-ray microscopy. The goal of this work is the design of a reproducible manufacturing process which allows the production of silicon lenses with high precision, high quality and high piece number. Furthermore a process for the production of diamond lenses is to be developed and established. In this work, the theoretical basics of x-rays and their interaction with matter are described. Especially, aspects of synchrotron radiation are emphasized. Important in x-ray microscopy are the different optics. The details, advantages and disadvantages, in particular those of refractive lenses are given. To achieve small x-ray beams well beyond the 100nm range a small focal length is required. This is achieved in refractive lenses by moving to a compact lens design where several single lenses are stacked behind each other. The, so-called nanofocusing refractive lenses (NFLs) have a parabolic cylindrical shape with lateral structure sizes in the micrometer range. NFLs are produced by using micro-machining techniques. These micro-fabrication processes and technologies are introduced. The results of the optimization and the final fabrication process for silicon lenses are presented. Subsequently, two experiments that are exemplary for the use of NFLs, are introduced. The first one employs a high-resolution scanning fluorescence mapping of a geological sample, and the second one is a coherent x-ray diffraction imaging (CXDI) experiment. CXDI is able to reconstruct the illuminated object from recorded coherent diffraction patterns. In a scanning mode, referred to as ptychography, this method is even able to reconstruct the illumination and the object simultaneously. Especially the reconstructed illumination and the possibility of computed propagation of the wavefield along the focused beam yields findings about the optic used. The collected data give interesting information about the lenses and their aberrations. Comparison of simulated and measured data shows good agreement. Following this, the fabrication process of diamond lenses is described. Diamond with its extraordinary properties is well-suited as lens material for refractive lenses. Finally, a concluding overview of the present and future work of nanofocusing lenses is given. / Diese Dissertation beschäftigt sich mit der Entwicklung und Optimierung der Herstellungsprozesse von refraktiven nanofokussierenden Röntgenlinsen. Diese aus Silizium oder Diamant hergestellten Optiken, sind hervorragend für hochauflösende Röntgen\-mikroskopie geeignet. Ziel dieser Arbeit ist es, einen reproduzierbaren Herstellungsprozess zu erarbeiten, der es erlaubt, Siliziumlinsen von hoher Präzision, Qualität und Quantität zu fertigen. Zusätzlich soll ein Prozess für Diamantlinsen entwickelt und etabliert werden. In der folgenden Arbeit werden die theoretischen Grundlagen von Röntgenstrahlung und deren Wechselwirkung mit Materie beschrieben. Spezielle Aspekte der Synchrotronstrahlung werden hervorgehoben. Wichtig im Zusammenhang mit Röntgenmikroskopie sind die verschieden Optiken. Deren Details, Vor- und Nachteile, insbesondere die der brechenden Linsen, werden genannt. Zur Erzeugung fein gebündelter Röntgenmikrostrahlen im Bereich unter 100nm lateraler Größe benötigt man sehr kurze Brennweiten. Mit brechenden Linsen lässt sich dieses mittels eines kompakten Linsendesigns von vielen hintereinander gestapelten Einzellinsen realisieren. Die so genannten refraktiven nanofokussierenden Linsen (NFLs) besitzen eine parabolische Zylinderform mit lateralen Strukturgrößen im Mikrometerbereich. NFLs werden mittels spezieller Technologien der Mikroprozessierung hergestellt. Diese Mikrostrukturierungsverfahren werden mit ihren jeweiligen Prozessschritten und zugehörenden Technologien vorgestellt. Die Ergebnisse der Optimierung und der endgültige Mikrostrukturierungsprozess für Siliziumlinsen werden dargelegt. Im Anschluss daran werden zwei Experimente erläutert, die beispielhaft für die Anwendung von NFLs stehen. Ersteres ist ein ortsaufgelöstes Fluoreszenzrasterexperiment einer geologischen Probe und das zweite ein kohärentes Röntgen-Beugungsexperiment (CXDI). CXDI ist in der Lage, aus kohärent aufgenommen Beugungsbildern das beleuchtete Objekt zu rekonstruieren. Kombiniert mit einem rasternden Verfahren, welches Ptychographie genannt wird, ist diese Methode in der Lage, die Beleuchtungsfunktion und das Objekt gleichzeitig zu rekonstruieren. Besonderes die rekonstruierte Beleuchtungsfunktion und die Möglichkeit der computergestützten Propagation des Wellenfeldes entlang des fokussierten Strahls, geben aufschlussreiche Informationen über die verwendete Optik. Neue Erkenntnisse über die Linsen und deren Aberrationen können so gewonnen werden. Vergleiche von simulierten mit gemessenen Daten zeigen gute Übereinstimmung. Daran anschließend erfolgt die Beschreibung der Entwicklung eines Fabrikationsprozess für Diamantlinsen. Diamant mit seinen außergewöhnlichen Materialeigenschaften ist besonders gut als Linsenmaterial für refraktive Röntgenlinsen geeignet. Abschliessend wird ein zusammenfassender Überblick über die derzeitigen und die zu erwartenden Entwicklungen bei refraktiven Linsen gegeben.
36

AIRCRAFT-BASED STUDIES OF GREENHOUSE GASES AND AEROSOLS

Jay M Tomlin (14221835) 06 December 2022 (has links)
<p>The Earth–atmosphere energy balance is dictated by incoming solar radiation and outgoing thermal radiation with greenhouse gases (GHG) and aerosols playing a major role in this effect. The atmospheric abundance and properties of airborne particles and gases lead to the redistribution of radiative energy, resulting in a warming or cooling effect. However, the extent of this effect remains to be insufficiently constrained. Improved quantification and characterization of GHG and aerosols are important requirements to inform current climate models. High-precision instrumentation and thoughtful experimental strategies are necessary to yield various analytical measurement datasets, despite complex meteorological and environmental conditions. This dissertation focuses on the assessment of CO<sub>2 </sub>and atmospheric particles from aircraft-based measurements enabling representative and spatially sampling of local regions of interest.</p> <p>Chapter 1 provides introductory discussion on the atmospheric implication of GHG and aerosols on the climate and related uncertainties. Chapter 2 summarizes the employed experimental techniques for quantification of GHG and characterization of atmospheric particles. We relied on an aircraft platform equipped with an air turbulence probe for 3D wind vector calculation and a high-precision cavity ring-down spectrometer for the quantification of ambient CO<sub>2</sub>, CH<sub>4</sub>, and H2O<sub><em>v</em></sub>. Furthermore, the simultaneous composition and morphological information of aerosol samples were assessed using complementary chemical imaging techniques. Chemical composition of elements with Z > 23 was determined using computer-controlled scanning electron microscopy with energy dispersive X-ray spectroscopy (CCSEM/EDX). Scanning transmission X-ray microscopy coupled with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) was used to determined spatially resolved elemental specific molecular information present in atmospheric particles.</p> <p>Chapter 3 presents our study focused on the characterization of mixed mineral dust and biomass burning (BB) aerosols during an intensive burning event. We identified distinct particle types based on individual elemental contribution pre-, syn-, and post-burning event including highly carbonaceous (54–83%) particles, aged mineral dust (1–6%), and sulfur-containing particles (17–41%). X-ray spectromicroscopy techniques were used to characterize the internal chemical heterogeneity of individual BB particles and the morphology of soot inclusions, as well as changes in the particle organic volume fraction (OVF). An estimation method for particle component masses (i.e., organics, elemental carbon, and inorganics) inferred from STXM measurements was used to determine quantitative mixing state metrics based on entropy-derived diversity measures for particles acquired at different periods of the BB event. In general, there was a small difference in the particle-specific diversity among the samples (<em>D</em><sub><em>α</em></sub> = 1.3–1.8). However, the disparity from the bulk population diversity observed during the intense periods was found to have high values of <em>D</em><sub><em>γ</em></sub> = 2.5–2.9, while particles collected outside of the burning event displayed lower bulk diversity of <em>D</em><sub><em>γ</em></sub> = 1.5–2.0. Quantitative methods obtained from chemical imaging measurements presented here will serve to accurately characterize the evolution of mixed BB aerosols within urban environments.</p> <p>Chapter 4 follows the investigation of the physicochemical properties of atmospheric particles collected onboard a research aircraft flown over the Azores using offline spectromicroscopy techniques. Particles were collected within the marine boundary layer (MBL) and free troposphere (FT) comparing samples after long-range atmospheric transport episodes facilitated by dry intrusion (DI) events. The quantification of the OVF of individual particles derived from X-ray spectromicroscopy, which relates to the multi-component internal composition of individual particles, showed a factor of 2.06±0.16 and 1.11±0.04 increase in the MBL and FT, respectively, among DI samples. We show that supplying particle OVF into the <em>κ</em>-Köhler equation can be used as a good approximation of field-measured <em>in situ</em> CCN concentrations. We also report changes in the <em>κ</em> values in the MBL from <em>κ</em><sub>MBL, non-DI</sub> = 0.48 to <em>κ</em><sub>MBL, DI</sub> = 0.41, while changes in the FT result in <em>κ</em><sub>FT, non-D</sub><sub>I</sub> = 0.36 to <em>κ</em><sub>FT, DI</sub> = 0.33, which is consistent with enhancements in OVF followed by the DI episodes. Our observations suggest that the entrainment of particles from long-range continental sources alters the mixing state population and CCN properties of aerosol in the region.</p> <p>Chapter 5 discusses the identification and characterization of fine-mode primary biogenic atmospheric particles (PBAP) from the harvesting of crops. Particle samples were analyzed using complementary chemical imaging techniques to apportion the particle-type population based on their size, morphology, and composition. The contribution of PBAP in the size range of 0.15−1.25 μm is estimated to be 10−12% of ∼39,000 analyzed particles. In addition, particle viscosity and phase state were inferred with X-ray spectromicroscopic analysis has shown that the fine-mode organic particles collected are viscous/semisolid (10<sup>2</sup>−10<sup>12</sup> Pa s) while the majority of PBAP fragments are solid (>10<sup>12 </sup>Pa s). The observation of submicrometer, solid carbonaceous fragments of biogenic origin have implications for the regional CCN and ice nuclei budget. Therefore, the seasonal harvesting of crops may play an important, yet unrecognized, role in regional cloud formation and climate.</p> <p>Chapter 6  explores the measurements and quantification of latent heat, sensible heat, and CO<sub>2</sub> fluxes among different land covers in the surrounding area of urban regions using airborne flux techniques. Cities account for the majority of the global CO<sub>2</sub> emissions due to the consumption of energy, resources, infrastructure, and transportation demands. Accordingly, the accurate quantification of these emissions, with exceptional precision, is necessary so that progress towards emission reduction can be monitored. However, a major challenge in quantifying urban emission estimates arises from accurate background emission definitions and apportionment of emission sources in complex urban environments. Airborne eddy covariance measurements were performed to quantify the bidirectional exchange of latent heat, sensible heat, and CO<sub>2</sub> fluxes in the upwind region of Indianapolis within an active biosphere. Here, we observed differences in fluxes across different days and land covers (e.g., corn, soybean, and forests) allowing us to understand the impact of seasonal variability in urban emissions during the full growing season. These experiments illustrate the capability of a research aircraft to perform technically challenging near-direct measurements of atmosphere–surface exchange over local and regional scales.</p> <p>Chapter 7 presents a new method to spatially allocate airborne mass balance CO<sub>2</sub> emissions. We performed seven aircraft measurements downwind of New York City (NYC) quantifying CO<sub>2</sub> emissions during the non-growing seasons of 2018–2020. A series of prior inventories and footprint transport models were used to account for flux contribution outside the area of interest and attribute emission sources within policy-relevant boundaries of the five boroughs encompassing NYC and then employ the modeled enhancement fraction (Φ) to the bulk emission observations from the mass balance approach. Here, we calculated a campaign-averaged source apportioned mass balance CO<sub>2</sub> emission rate of 56±24 kmol/s. The performance and accuracy of this approach were evaluated against other published works including inventory scaling and inverse modeling, yielding a difference of 5.1% with respect to the average emission rate reported by the two complementary approaches. Utilizing the ensemble of emissions inventories and transport models, we also evaluated the overall sources of variability induced by the prior (1.7%), the transport (4.2%), and the daily variability (42.0%). This approach provides a solution to interpreting aircraft-based mass balance results in complex emission environments.</p> <p>Chapter 8 concludes with a brief discussion of technological advances and research outlooks for X-ray spectromicroscopy analysis on atmospheric particles and the quantification of GHG. Opportunities for future applications and novel development of CCSEM/EDX and STXM/NEXAFS to substantially extend the instrument capabilities and improve our understanding of the physicochemical properties of individual atmospheric particles. Chapter 8 also discusses recent developments in satellite-based CO<sub>2</sub> monitoring to complement direct airborne observations. In recent years, significant progress has been made in satellite-based measurements of CO<sub>2</sub> to reveal the spatio-temporal variation in atmospheric CO<sub>2</sub> concentration. The column-averaged dry air CO<sub>2</sub> mole have reached an accuracy of ~1 ppm with a spatial resolution of less than 4 km. Furthermore, column-averaged retrievals can be used to detect and estimate the surface CO<sub>2</sub> fluxes in an active biosphere, quantify anthropogenic emissions over megacities, and monitor the transport of fossil fuel plumes across different continents and seasons.</p>
37

Determination of the actual morphology of core-shell nanoparticles by advanced X-ray analytical techniques: A necessity for targeted and safe nanotechnology

Müller, Anja 07 April 2022 (has links)
Obwohl wir sie oft nicht bewusst wahrnehmen, sind Nanopartikel heutzutage in den meisten Bereichen unseres Alltags präsent, unter anderem in Lebensmitteln und ihren Verpackungen, Medizin, Medikamenten, Kosmetik, Pigmenten und in elektronischen Geräten wie Computermonitoren. Ein Großteil dieser Partikel weist, beabsichtigt oder unbeabsichtigt, eine Kern-Schale Morphologie auf. Einfachheitshalber wird diese Morphologie eines Kern-Schale-Nanopartikels (CSNP) oft als ideal angenommen, d.h. als ein sphärischer Kern, der komplett von einer Schale homogener Dicke bedeckt ist, mit einer scharfen Grenzfläche zwischen Kern- und Schalenmaterial. Außerdem wird vielfach auch davon ausgegangen, alle Partikel der Probe hätten gleiche Schalendicken. Tatsächlich weichen die meisten realen CSNPs in verschiedenster Weise von diesem Idealmodell ab, mit oft drastischen Auswirkungen darauf, wie gut sie ihre Aufgabe in einer bestimmten Anwendung erfüllen. Das Thema dieser kumulativen Doktorarbeit ist die exakte Charakterisierung der wirklichen Morphologie von CSNPs mit modernen Röntgen-basierten Methoden, konkret Röntgen-Photoelektronen-Spektroskopie (XPS) und Raster-Transmissions-Röntgen-Mikroskopie (STXM). Der Fokus liegt insbesondere auf CSNPs, die von einer idealen Kern-Schale-Morphologie abweichen. Aufgrund der enormen Vielfalt an CSNPs, die sich in Material, Zusammensetzung und Form unterscheiden, kann eine Messmethode nicht völlig unverändert von einer Probe auf eine andere übertragen werden. Nichtsdestotrotz, da die als Teil dieser Doktorarbeit präsentierten Artikel eine deutlich ausführlichere Beschreibung der Experimente enthalten als vergleichbare Publikationen, stellen sie eine wichtige Anleitung für andere Wissenschaftler dafür dar, wie aussagekräftige Informationen über CSNPs durch Oberflächenanalytik erhalten werden können. / Even though we often do not knowingly recognize them, nanoparticles are present these days in most areas of our daily life, including food and its packaging, medicine, pharmaceuticals, cosmetics, pigments as well as electronic products, such as computer screens. The majority of these particles exhibits a core-shell morphology either intendedly or unintendedly. For the purpose of practicability, this core-shell nanoparticle (CSNP) morphology is often assumed to be ideal, namely a spherical core fully encapsulated by a shell of homogeneous thickness with a sharp interface between core and shell material. It is furthermore widely presumed that all nanoparticles in the sample possess the same shell thickness. As a matter of fact, most real CSNPs deviate in several ways from this ideal model with quite often severe impact on how efficiently they perform in a specific application. The topic of this cumulative PhD thesis is the accurate characterization of the actual morphology of CSNPs by advanced X-ray analytical techniques, namely X-ray photoelectron spectroscopy (XPS) and scanning transmission X-ray microscopy (STXM). A special focus is on CSNPs which deviate from an ideal core-shell morphology. Due to the vast diversity of nanoparticles differing in material, composition and shape, a measurement procedure cannot unalteredly be transferred from one sample to another. Nevertheless, because the articles in this thesis present a greater depth of reporting on the experiments than comparable publications, they constitute an important guidance for other scientists on how to obtain meaningful information about CSNPs from surface analysis.
38

Untangling the Mechanisms of Lattice Distortions in Biogenic Crystals across Scales

Schoeppler, Vanessa, Cook, Phil K., Detlefs, Carsten, Demichelis, Raffaella, Zlotnikov, Igor 04 June 2024 (has links)
Biomineralized structures are complex functional hierarchical assemblies composed of biomineral building blocks joined together by an organic phase. The formation of individual mineral units is governed by the cellular tissue component that orchestrates the process of biomineral nucleation, growth, and morphogenesis. These processes are imprinted in the structural, compositional, and crystallographic properties of the emerging biominerals on all scales. Measurement of these properties can provide crucial information on the mechanisms that are employed by the organism to form these complex 3D architectures and to unravel principles of their functionality. Nevertheless, so far, this has only been possible at the macroscopic scale, by averaging the properties of the entire composite assembly, or at the mesoscale, by looking at extremely small parts of the entire picture. In this study, the newly developed synchrotron-based dark-field X-ray microscopy method is employed to study the link between 3D crystallographic properties of relatively large calcitic prisms in the shell of the mollusc Pinna nobilis and their local lattice properties with extremely high angular resolution down to 0.001°. Mechanistic links between variations in local lattice parameters and spacing, crystal orientation, chemical composition, and the deposition process of the entire mineral unit are unraveled.
39

Hard X-Ray Scanning Microscope Using Nanofocusing Parabolic Refractive Lenses / Rastersondenmikroskopie mit harter Röntgenstrahlung

Patommel, Jens 08 March 2011 (has links) (PDF)
Hard x rays come along with a variety of extraordinary properties which make them an excellent probe for investigation in science, technology and medicine. Their large attenuation length in matter opens up the possibility to use hard x-rays for non-destructive investigation of the inner structure of specimens. Medical radiography is one important example of exploiting this feature. Since their discovery by W. C. Röntgen in 1895, a large variety of x-ray analytical techniques have been developed and successfully applied, such as x-ray crystallography, reflectometry, fluorescence spectroscopy, x-ray absorption spectroscopy, small angle x-ray scattering, and many more. Each of those methods reveals information about certain physical properties, but usually, these properties are an average over the complete sample region illuminated by the x rays. In order to obtain the spatial distribution of those properties in inhomogeneous samples, scanning microscopy techniques have to be applied, screening the sample with a small x-ray beam. The spatial resolution is limited by the finite size of the beam. The availability of highly brilliant x-ray sources at third generation synchrotron radiation facilities together with the development of enhanced focusing x-ray optics made it possible to generate increasingly small high intense x-ray beams, pushing the spatial resolution down to the sub-100 nm range. During this thesis the prototype of a hard x-ray scanning microscope utilizing microstructured nanofocusing lenses was designed, built, and successfully tested. The nanofocusing x-ray lenses were developed by our research group of the Institute of Structural Physics at the Technische Universität Dresden. The prototype instrument was installed at the ESRF beamline ID 13. A wide range of experiments like fluorescence element mapping, fluorescence tomography, x-ray nano-diffraction, coherent x-ray diffraction imaging, and x-ray ptychography were performed as part of this thesis. The hard x-ray scanning microscope provides a stable x-ray beam with a full width at half maximum size of 50-100 nm near the focal plane. The nanoprobe was also used for characterization of nanofocusing lenses, crucial to further improve them. Based on the experiences with the prototype, an advanced version of a hard x-ray scanning microscope is under development and will be installed at the PETRA III beamline P06 dedicated as a user instrument for scanning microscopy. This document is organized as follows. A short introduction motivating the necessity for building a hard x-ray scanning microscope is followed by a brief review of the fundamentals of hard x-ray physics with an emphasis on free-space propagation and interaction with matter. After a discussion of the requirements on the x-ray source for the nanoprobe, the main features of synchrotron radiation from an undulator source are shown. The properties of the nanobeam generated by refractive x-ray lenses are treated as well as a two-stage focusing scheme for tailoring size, flux and the lateral coherence properties of the x-ray focus. The design and realization of the microscope setup is addressed, and a selection of experiments performed with the prototype version is presented, before this thesis is finished with a conclusion and an outlook on prospective plans for an improved microscope setup to be installed at PETRA III. / Aufgrund ihrer hervorragenden Eigenschaften kommt harte Röntgenstrahlung in vielfältiger Weise in der Wissenschaft, Industrie und Medizin zum Einsatz. Vor allem die Fähigkeit, makroskopische Gegenstände zu durchdringen, eröffnet die Möglichkeit, im Innern ausgedehnter Objekte verborgene Strukturen zum Vorschein zu bringen, ohne den Gegenstand zerstören zu müssen. Eine Vielzahl röntgenanalytischer Verfahren wie zum Beispiel Kristallographie, Reflektometrie, Fluoreszenzspektroskopie, Absorptionsspektroskopie oder Kleinwinkelstreuung sind entwickelt und erfolgreich angewendet worden. Jede dieser Methoden liefert gewisse strukturelle, chemische oder physikalische Eigenschaften der Probe zutage, allerdings gemittelt über den von der Röntgenstrahlung beleuchteten Bereich. Um eine ortsaufgelöste Verteilung der durch die Röntgenanalyse gewonnenen Information zu erhalten, bedarf es eines sogenannten Mikrostrahls, durch den die Probe lokal abgetastet werden kann. Die dadurch erreichbare räumliche Auflösung ist durch die Größe des Mikrostrahls begrenzt. Aufgrund der Verfügbarkeit hinreichend brillanter Röntgenquellen in Form von Undulatoren an Synchrotronstrahlungseinrichtungen und des Vorhandenseins verbesserter Röntgenoptiken ist es in den vergangen Jahren gelungen, immer kleinere intensive Röntgenfokusse zu erzeugen und somit das räumliche Auflösungsvermögen der Röntgenrastermikroskope auf unter 100 nm zu verbessern. Gegenstand dieser Arbeit ist der Prototyp eines Rastersondenmikroskops für harte Röntgenstrahlung unter Verwendung refraktiver nanofokussierender Röntgenlinsen, die von unserer Arbeitsgruppe am Institut für Strukturphysik entwickelt und hergestellt werden. Das Rastersondenmikroskop wurde im Rahmen dieser Promotion in Dresden konzipiert und gebaut sowie am Strahlrohr ID 13 des ESRF installiert und erfolgreich getestet. Das Gerät stellt einen hochintensiven Röntgenfokus der Größe 50-100 nm zur Verfügung, mit dem im Verlaufe dieser Doktorarbeit zahlreiche Experimente wie Fluoreszenztomographie, Röntgennanobeugung, Abbildung mittels kohärenter Röntgenbeugung sowie Röntgenptychographie erfolgreich durchgeführt wurden. Das Rastermikroskop dient unter anderem auch dem Charakterisieren der nanofokussierenden Linsen, wobei die dadurch gewonnenen Erkenntnisse in die Herstellung verbesserten Linsen einfließen. Diese Arbeit ist wie folgt strukturiert. Ein kurzes einleitendes Kapitel dient als Motivation für den Bau eines Rastersondenmikroskops für harte Röntgenstrahlung. Es folgt eine Einführung in die Grundlagen der Röntgenphysik mit Hauptaugenmerk auf die Ausbreitung von Röntgenstrahlung im Raum und die Wechselwirkungsmechanismen von Röntgenstrahlung mit Materie. Anschließend werden die Anforderungen an die Röntgenquelle besprochen und die Vorzüge eines Undulators herausgestellt. Wichtige Eigenschaften eines mittels refraktiver Röntgenlinsen erzeugten Röntgenfokus werden behandelt, und das Konzept einer Vorfokussierung zur gezielten Anpassung der transversalen Kohärenzeigenschaften an die Erfordernisse des Experiments wird besprochen. Das Design und die technische Realisierung des Rastermikroskops werden ebenso dargestellt wie eine Auswahl erfolgreicher Experimente, die am Gerät vollzogen wurden. Die Arbeit endet mit einem Ausblick, der mögliche Weiterentwicklungen in Aussicht stellt, unter anderem den Aufbau eines verbesserten Rastermikroskops am PETRA III-Strahlrohr P06.
40

Multilagenbasierte Transmissionsoptiken für die Röntgenmikroskopie / Multilayer based transmission optics for x-ray microscopy

Liese, Tobias 15 May 2012 (has links)
No description available.

Page generated in 0.081 seconds