• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 172
  • 172
  • 172
  • 172
  • 58
  • 44
  • 43
  • 43
  • 36
  • 35
  • 26
  • 26
  • 26
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Spectroscopic Characterization of Metal Oxide Nanofibers

Bender, Edward Thomas 18 May 2006 (has links)
No description available.
102

Characterization of Cu-Co-Cr-K Catalysts

Doan, Phuong Thanh 04 August 2001 (has links)
The production of higher alcohols from synthesis gas over Cu-Co-Cr-K catalysts has been studied. The production rate of alcohol was measured in the flow reactor, operating at 250 to 350°C, 3500 to 8000 gas hourly space velocity, and 900 to 1800 psig. The productivity as a function of temperature, pressure, gas hourly space velocity, carbon dioxide content of the feed, and reaction time was also examined. Physisorption data have been analyzed using the Langmuir model, the Brunauer-Emmett-Teller (BET) method, the Barret-Joyner-Halenda (BJH) method, and the de Boer and Halsey t-method. The surface areas of catalysts CB1(1), CB1(3), and CB1(1) after reaction were 39.9 ± .9 m2/g, 28.9 ± 1.7 m2/g, and 26.5 ± 0.3 m2/g, respectively. Moreover, information such as pore size distribution, pore shape, monolayer volume, micropore volume and thickness of adsorption layer were also obtained. The atomic concentration and oxidation states of near surface species were established by X-ray Photoelectron Spectroscopy.
103

Preparation, Functionalization, and/or Characterization by X-ray Photoelectron Spectroscopy of Carbon Surfaces for Biosensors and Other Materials

Jain, Varun 01 August 2019 (has links)
My dissertation is primarily divided into two parts. The first deals with the preparation, functionalization, and characterization of carbon surfaces prepared by direct current magnetron sputtering (DCMS) and high power impulse magnetron sputtering (HiPIMS) as substrates for bioarrays. Part two discusses applications of XPS peak fitting in surface chemical analysis. Chapter 1, the introduction, includes (i) a discussion of the construction of bioarrays and the preparation of sputtered surfaces, e.g., by DCMS and HiPIMS, and also functionalization (bioconjugate) chemistry with special emphasis on the importance of covalent functionalization of surfaces, and (ii) a discussion of the surface characterization techniques and accompanying analysis methods I have primarily used, which include X-ray photoelectron spectroscopy (XPS), near-ambient pressure XPS (NAP-XPS), XPS peak fitting, and contact angle goniometry (wetting). Chapter 2 discusses the preparation, characterization, and functionalization of DCMS and HiPIMS carbon surfaces for bioarrays. Here, two functionalization chemistries are explored, where the activity of DCMS and HiPIMS carbon towards amidation and amination is compared. Chapter 3 focuses on the use of Gaussian-Lorentzian sum (GLS) and Gaussian-Lorentzian product (GLP) line shapes in the context of peak fitting XPS narrow scans. This discussion includes a comparison of the GLS and GLP line shapes with the Voigt function. Chapters 4 and 5 discuss the applications of XPS peak fitting in materials characterization. Chapter 4 talks about XPS data analysis in the context of the chemical vapor deposition of various aminosilanes and their effect on peptide stability and purity. Chapters 5 describes the surface chemical analysis of various materials by NAP-XPS, including accompanying data analysis and/or peak fitting. The materials probed here cannot be analyzed at ultra-high vacuum by conventional XPS, hence, they are analyzed by NAP-XPS. Chapter 5 is divided into 5 sections. Section 5.1.1 discusses the characterization and analysis of a solution of bovine serum albumin (BSA) by peak fitting the C 1s and O 1s peak envelopes. Section 5.1.2 discusses the analysis of polytetrafluoroethylene (PTFE) at different pressures. Here, the effect of increasing background pressure and X-ray illumination time on the equivalent widths of the F 1s narrows scans is shown. Environmental charge compensation is also discussed here. Section 5.1.3 includes the analysis of poly(γ-benzyl L-glutamate) (PBLG), where the C 1s and O 1s peak envelopes were peak fitted to determine/confirm the structure and composition of this polymer. Section 5.1.4 contains an analysis and comparison of three different human hair samples: (i) untreated, (ii) colored, and (iii) bleached. Here, a comparison of the Si 2p, S 2p, and C 1s peaks illustrates the effects of the different treatments. Section 5.1.5 shows the characterization and analysis of liquid and solid phosphate buffered saline (PBS). Chapter 6 presents conclusion of my work and discusses future work.
104

Adhesion of Injection Molded PVC to Silane Primed Steel

Shah, Pranjal Kiran 26 September 2005 (has links)
No description available.
105

Angle-Resolved X-Ray Photoemission Spectroscopy of Self-Assembled Polymer Films on AlGaN/GaN Field Effect Transistors

Wu, Hao-Hsuan 21 July 2011 (has links)
No description available.
106

Interaction of Na, O₂, CO₂ and water on MnO(100): Modeling a complex mixed oxide system for thermochemical water splitting

Feng, Xu 14 October 2015 (has links)
A catalytic route to hydrogen production via thermochemical water splitting is highly desirable because it directly converts thermal energy into stored chemical energy in the form of hydrogen and oxygen. Recently, the Davis group at Caltech reported an innovative low-temperature (max 850°C) catalytic cycle for thermochemical water splitting based on sodium and manganese oxides (Xu, Bhawe and Davis, PNAS, 2012). The key steps are thought to be hydrogen evolution from a Na₂CO₃/MnO mixture, and oxygen evolution by thermal reduction of solids formed by Na⁺ extraction from NaMnO₂. Our work is aimed at understanding the fundamental chemical processes involved in the catalytic cycle, especially the hydrogen evolution from water. In this project, efforts are made to understand the interactions between the key components (Na, O₂, CO₂, and water) in the hydrogen evolution steps on a well-defined MnO(100) single crystal surface, utilizing x-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and temperature programmed desorption (TPD). While some of the behavior of the catalytic system is observed with the model system developed in this work, hydrogen is only produced from water in the presence of metallic sodium, in contrast to the proposal of Xu et al. that water splitting occurs from the reaction of water with a mixture of Na₂CO₃ and MnO. These differences are discussed in light of the different operating conditions for the catalytic system and the surface science model developed in this work. / Ph. D.
107

Laser Activated Bonding of Wood

Church, William Travis 20 January 2011 (has links)
It was found that laser modified wood surfaces can be bonded together to create a wood composite without the need of any additive. This bonding method removes the need of applying adhesive, potentially lowers cost, and eliminates off gassing of petroleum resins, creating a wood product with many eco-friendly attributes. This body of work outlines a) initial chemical analysis of the laser modified surface b) its bond strength and c) the optimization of factors that control the strength of the bond. Surface chemical analysis on laser modified wood was conducted using photo acoustic Fourier transform infrared spectroscopy (PA-FTIR) and X-Ray photoelectron spectroscopy (XPS). Light microscopy and scanning electron microscopy were utilized for surface topology analysis.Differential scanning calorimetry (DSC) quantified the thermal properties of the modified wood surface. Screening of multiple factors that would contribute to surface modification and adhesion was performed utilizing mechanical testing. Optimization of significant factors that affect bond strength was determined statistically utilizing a design of experiment approach. Chemical analysis of the laser modified surface revealed changes in the carbonyl and aromatic regions indicating modification of the hemicellulose and lignin components, intensifying with increasing laser modification.The C1/C2 ratios found via XPS revealed that one or more of the following is occurring: more extractives have moved to the surface, condensation reactions among lignin units, and the loss of methoxy and breakage of aryl ether linkages occurred.Microscopy images showed color changes to a darker caramel color with a smoothing of surface topology, suggesting the occurrence of the softening and/or melting of wood polymers. DSC verified chemical and/or physical changes in the wood with the modified material now having a glass transition temperature between 130-150°C.DOE found that laser parameters (power and focus) as well as hot press parameters (temperature and pressure) were significant in optimizing the bond. The impact of the study is the first documentation of the ability to laser modifies wood surfaces and subsequently bond them together. The ability of the wood polymers at the surface to undergo flow at elevated temperature is implicated in the adhesion mechanism of the laser modified wood. / Master of Science
108

Innovative Design of Heterogeneous Catalysts with Improved CO2 Hydrogenation Performance

Cored Bandrés, Jorge 30 March 2023 (has links)
Tesis por compendio / [ES] El cambio climático es una de las amenazas de nuestro tiempo. Los gases de efecto invernadero, como el CO2, son los principales causantes de este fenómeno, siendo necesario disminuir urgentemente sus emisiones. En 2019, la Comisión Europa presentó el "Pacto Verde Europeo", que será clave para alcanzar un objetivo tremendamente ambicioso para nuestra región: la neutralidad climática de aquí a 2050. Las estrategias de descarbonización incluidas en su hoja de ruta van a implicar necesariamente la transición energética de los combustibles fósiles a las energías renovables, reduciendo de forma masiva la liberación de CO2. En este sentido, el desarrollo de tecnologías efectivas de Captura, Almacenamiento y Uso del Carbono (CAUC) permitirá la valorización del CO2, evolucionando hacia una economía de carbono circular. La presente Tesis Doctoral se enmarca en el diseño, síntesis y caracterización de sistemas catalíticos heterogéneos innovadores basados en metales capaces de transformar el CO2 en otros productos de valor añadido. Entre un amplio catálogo de reacciones que "conectan" el CO2 con diversos compuestos basados en carbono, esta Tesis se centrará principalmente en la síntesis de dos moléculas C1 plataforma de interés industrial: el metanol y el metano. Los Capítulos 3 y 4 están dedicados a la síntesis de metanol, un proceso exotérmico limitado termodinámicamente debido a la estabilidad inherente de la molécula de CO2, así como a la presencia de la reacción competitiva RWGS. Por un lado, el Capítulo 3 se centra en el efecto promotor del galio sobre las propiedades estructurales, electrónicas y catalíticas de materiales basados en Cu/ZnO (sistemas CZG). Mediante un enfoque espectroscópico-catalítico multidisciplinar se ha comparado el efecto promotor del Ga3+ dopado en la red de un ZnO tipo wurtzita presente en un catalizador Cu/ZnO/Ga2O3 con el de una fase de galato de zinc (ZnGa2O4). Por otro lado, en el Capítulo 4 se muestra un catalizador bifuncional que contiene nanopartículas de Cu de 2 nm y especies Cu+, con el objetivo de enfrentarse a la inherente baja actividad de estas pequeñas partículas, hecho que impide mejorar la eficiencia atómica de los catalizadores, dificultando así la obtención de resultados catalíticos competitivos en la hidrogenación de CO2. La realización de un estudio espectroscópico detallado (combinado con cálculo teórico y ensayos catalíticos) sobre un catalizador óxido mixto de Cu-Mg-Al derivado de un precursor de hidrotalcita tras calcinación y posterior reducción (CuHT-230) pone de manifiesto el papel clave de los iones Cu+ dopados en estructura en la producción de metanol. El éxito de las tecnologías CAUC a medio-largo plazo dependerá no solo del desarrollo de catalizadores competitivos, sino también de su capacidad para operar en condiciones de reacción más suaves, permitiendo que estos procesos sean viables económicamente. Por ello, el concepto de eficiencia energética se abordará en el Capítulo 5, a través de un innovador diseño de catalizador tipo "shell/core" formado por un núcleo de rutenio metálico y una envoltura de carburo de rutenio, sintetizado via hidrotermal. Este sistema (Ru@EDTA-20) exhibe una actividad excepcionalmente alta para la hidrogenación de CO2 a metano a bajas temperaturas (160-200 °C) con una selectividad a CH4 del 100%, superando a catalizadores de bibliografía que normalmente operan a mayores temperaturas (400-500 °C). Por último, en el Capítulo 6 se estudia un catalizador modelo compuesto por un alumino-silicato bidimensional sintetizado sobre una superficie de Ru(0001), investigación realizada durante mi estancia internacional en el Laboratorio Nacional de Brookhaven (Nueva York, EE.UU.). La combinación de estos materiales en el mismo composite permite la creación de un nanoespacio confinado que puede emplearse como nanorreactor. En este proyecto, se seleccionó la reacción de formación de agua como modelo, que se exploró a nivel fundamental en el sincrotrón NSLS-II. / [CA] El canvi climàtic és una de les amenaces del nostre temps. Els gasos d'efecte d'hivernacle, com el diòxid de carboni, són els principals causants d'aquest fenomen, sent necessari reduir urgentment les seues emissions. En 2019, la Comissió Europea va presentar el "Pacte Verd Europeu", que serà clau per a aconseguir un objectiu tremendament ambiciós per a la nostra regió: la neutralitat climàtica d'ací a 2050. Les estratègies de descarbonització incloses en el seu full de ruta implicaran necessàriament la transició energètica dels combustibles fòssils a les energies renovables, reduint de manera massiva l'alliberament de CO2. En aquest sentit, el desenvolupament de tecnologies efectives de Captura, Emmagatzematge i Ús del Carboni (CEUC) permetrà la valorització del CO2, evolucionant cap a una economia de carboni circular. La present Tesi Doctoral s'emmarca en el disseny, síntesi i caracterització de sistemes catalítics heterogenis innovadors basats en metalls capaços de transformar el CO2 en altres productes de valor afegit. Entre un ampli catàleg de reaccions que "connecten" el CO2 amb diversos compostos basats en carboni, aquesta Tesi se centrarà principalment en la síntesi de dues molècules C1 plataforma d'interés industrial: el metanol i el metà. Els Capítols 3 i 4 estan dedicats a la síntesi de metanol, un procés exotèrmic limitat degut tant a l'estabilitat inherent de la molècula de CO2 com a la presència de la reacció competitiva RWGS. D'una banda, el Capítol 3 se centra en l'efecte promotor del gal·li sobre les propietats estructurals, electròniques i catalítiques de materials basats en Cu/ZnO (sistemes CZG). Mitjançant un enfocament espectroscòpic-catalític multidisciplinari s'ha comparat l'efecte promotor del Ga3+ dopat en la xarxa d'un ZnO (wurtzita) present en un catalitzador Cu/ZnO/Ga2O3 amb el d'una fase de ZnGa2O4. D'altra banda, en el Capítol 4 es mostra un catalitzador bifuncional que conté nanopartícules de Cu de 2 nm i espècies Cu+, amb l'objectiu d'enfrontar-se a la inherent baixa activitat d'aquestes petites partícules, fet que impedeix millorar l'eficiència atòmica dels catalitzadors, dificultant així l'obtenció de resultats catalítics competitius en la hidrogenació de CO2. La realització d'un estudi espectroscòpic detallat (combinat amb càlcul teòric i assajos catalítics) sobre un catalitzador òxid mixt de Cu-Mg-Al derivat d'un precursor de hidrotalcita després de calcinació i posterior reducció (CuHT-230) posa de manifest el paper clau dels ions Cu+ dopats en estructura en la producció de metanol. L'èxit de les tecnologies CEUC a mig-llarg termini dependrà no solament del desenvolupament de catalitzadors competitius, sinó també de la seua capacitat per a operar en condicions de reacció més suaus, permetent que aquests processos siguen viables econòmicament. Per això, el concepte d'eficiència energètica s'abordarà en el Capítol 5, a través un innovador disseny de catalitzador tipus "shell/core" format per un nucli de ruteni metàl·lic i un embolcall de carbur de ruteni, sintetitzat mitjançant tractament hidrotermal. Aquest sistema (Ru@EDTA-20) exhibeix una activitat excepcionalment alta per a la hidrogenació de CO2 a metà a baixes temperatures (160-200 °C) amb una selectivitat a CH4 del 100%, superant a catalitzadors de bibliografia que normalment operen a majors temperatures (400-500 °C). Finalment, en el Capítol 6 s'estudia un catalitzador model compost per un alumino-silicat bidimensional sintetitzat sobre una superfície de Ru(0001), investigació realitzada durant la meua estada internacional en el Laboratori Nacional de Brookhaven (Nova York, els Estats Units). La combinació d'aquests dos materials en el mateix "composite" permet la creació d'un nano-espai confinat que pot emprar-se com nano-reactor. En aquest projecte, es va seleccionar la reacció de formació d'aigua com a model, que es va explorar a nivell fonamental en el sincrotró NSLS-II. / [EN] Climate change is one of the existential threats of our times. Greenhouse gases (GHG), such as carbon dioxide, are primary drivers of this phenomenon, and their emissions need to be urgently reduced. In 2019, the European Commission presented the European Green Deal, which will help the EU to attain an ambitious goal for our region: to become carbon-neutral by 2050. The decarbonization strategies included in the roadmap towards net-zero emissions will imply the energy transition from fossil fuels to renewable energies, with a massive reduction of CO2 deliverance. In this sense, the development of effective Carbon Capture and Storage (CCS) and Carbon Capture and Utilization (CCU) technologies will allow the valorization of CO2, evolving into a circular carbon economy. The present Doctoral Thesis focuses on the design, synthesis and characterization of innovative heterogeneous metal-based systems, which are able to transform CO2 into value-added products. Among a wide catalogue of reactions that "connects" CO2 with various carbon-based compounds, this thesis will be devoted to the synthesis of two C1 platform chemicals of industrial interest: methanol and methane. Chapters 3 and 4 are dedicated to methanol synthesis, a highly hampered exothermic process due to the inherent stability of the CO2 molecule and the presence of the competitive reverse water-gas shift reaction (RWSG). On the one hand, Chapter 3 is focused on the promoting effect of gallium on the structural, electronic, and catalytic properties of Cu/ZnO based materials (CZG systems). In particular, the promoting effect of Ga3+-doped in the wurtzite ZnO lattice of a Cu/ZnO/Ga2O3 catalyst is compared to that of a zinc gallate (ZnGa2O4) phase following a multimodal spectroscopic-catalytic approach. In Chapter 4, a bifunctional catalyst containing 2 nm Cu nanoparticles and Cu+ species is presented, to overcome the "assumed" low activity of small copper particles that prevents obtaining high atom efficiency and competitive catalytic results in the CO2 hydrogenation to methanol. A detailed spectroscopic study (combined with theoretical calculations and catalytic tests) performed on a Cu-Mg-Al mixed oxide catalyst derived from a hydrotalcite precursor by calcination and further reduction (CuHT-230) highlights the key role of doped Cu+ ions in methanol production. The success of CCU technologies in the medium-long term will depend not only on the development of competitive catalysts but also on their ability to operate under milder reaction conditions, which will make these processes economically viable. Consequently, the energy efficiency issue will be addressed in Chapter 5 with the innovative design of a core-shell structure formed by a core of metallic ruthenium and a shell of ruthenium carbide, synthesized via hydrothermal treatment. This catalyst (Ru@EDTA-20) exhibits exceptional high activity for CO2 hydrogenation to methane (Sabatier reaction) at low temperatures (160-200 °C) with 100% selectivity to CH4, outperforming the state of the art catalysts operating at 400-500 °C. Finally, Chapter 6 covers the investigation carried out on a model ruthenium-based catalyst composed of a 2D-bilayered aluminosilicate grown over a Ru(0001) surface during my international short-term stay at Brookhaven National Laboratory (New York, USA). The combination of these materials in a composite allows the creation of a confined nano-space that can be exploited as a nano-reactor. In this project, water formation reaction (WFR) was selected as model reaction, which was fundamentally explored at NSLS-II synchrotron. / Cored Bandrés, J. (2022). Innovative Design of Heterogeneous Catalysts with Improved CO2 Hydrogenation Performance [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/182403 / Compendio
109

Physical chemical aspects of lanthanide-based nanoparticles: crystal structure, cation exchange, architecture, and ion distribution as well as their utilization as multifunctional nanoparticles.

Dong, Cunhai 12 December 2011 (has links)
Lanthanide-based nanoparticles are of interest for optical displays, catalysis, telecommunication, bio-imaging, magnetic resonance imaging, multimodal imaging, etc. These applications are possible partly because the preparation of lanthanide-based nanoparticles has made tremendous progress. Now, nanoparticles are routinely being made with a good control over size, crystal phase and even shape. Despite the achievements, little attention is given to the fundamental physical chemistry aspects, such as crystal structure, architecture, cation exchange, etc. The results of the study on the crystal structures of LnF3 nanoparticles show that the middle GdF3 and EuF3 nanoparticles have two crystal phases, which has then been tuned by doping with La3+ ions. However, the required doping level is very different from the bulk. While the results for the bulk are well explained by thermodynamic calculations, kinetics is actually responsible for the results of the undoped and doped GdF3 and EuF3 nanoparticles. The attempt to make LnF3 core-shell nanoparticles led to the finding of cation exchange, a phenomenon that upon exposure of LnF3 nanoparticles to an aqueous solution containing Ln3+ ions, the Ln3+ ions in the nanoparticles are replaced by the Ln3+ ions in the solution. The consequence of the cation exchange is that LnF3 core-shell nanoparticles are unlikely to form in aqueous media using a core-shell synthesis procedure. It has also been verified that nanoparticles synthesized using an alloy procedure do not always have an alloy structure. This means that the core-shell and alloy structure of nanoparticles in the literature may not be true. The investigation of the architecture of nanoparticles synthesized in aqueous media is extended to those synthesized in organic media. The dopant ion distribution in NaGdF4 nanoparticles has been examined. It has been found that they don’t have the generally assumed statistical dopant distribution. Instead, they have a gradient structure with one type of Ln3+ ions more concentrated towards the center and the other type more concentrated towards the surface of the nanoparticles. With the understanding of these physical insights, lanthanide-based core-shell nanoparticles are prepared using the cation exchange. These core-shell nanoparticles containing a photoluminscent core and a paramagnetic shell are promising candidates for multimodal imaging. / Graduate
110

Die autokatalytische H 2 O 2 -Reduktion an Ag-Elektroden

Eickes, Christian 31 May 2001 (has links)
Es konnte vor kurzem gezeigt werden, daß die Reduktion von Wasserstoffperoxid (H2O2) an Silber in Perchlorsäure (HClO4) über zwei parallele Wege verläuft. Die normale Reduktion wird bei einer Überspannung von -1,5 V beobachtet, während die zweite Reduktionsreaktion bei einer deutlich geringeren Überspannung bei -1,0 V stattfindet. Im zweiten Reaktionsweg wird OHad als instabile Zwischenspezies gebildet und wirkt katalytisch auf die H2O2-Reduktion. Daher wird angenommen, daß die zweite Reaktion eine autokatalytische Reduktion ist. Diese autokatalytische Reaktion wird nach einer ge-wissen Zeit deaktiviert, die von der Rotationsgeschwindigkeit der Elektrode abhängig ist. Sie kann wiedererlangt werden, wenn die Elektrode negativ polarisiert wird. In dieser Arbeit wurden Ex-situ-XPS-Messungen an herausgezogenen Ag(111)-Elektroden durch-geführt. Die Analyse führt zu dem Ergebnis, daß die Deaktivierung durch geringe Chlorid-Verunreinigungen verursacht wird. Elektrochemische Impedanzspektren werden zusammen mit numerischen Simulationen der Faradayschen Impedanz des autokata-lytischen Bereiches gezeigt. Diese basieren auf Annahmen von kinetischen Geschwin-digkeitsgesetzen, die früher postuliert wurden. Die experimentellen Daten stimmen sehr gut mit den Ergebnissen der theoretischen Rechnungen überein. Dies unterstützt den angenommen autokatalytischen Mechanismus. / Recently, it was shown that the hydrogen peroxide (H2O2) reduction on silver in perchloric acid (HClO4) proceeds in two parallel paths. The normal reduction is observed at an overpotential of -1.5 V, whereas a second reduction reaction occurs at a significantly lower overpotential at -1.0 V. The second reaction involves the unstable intermediate OHad, which also acts as a catalyst. Hence, the second reaction has been proposed to be an autocatalytic one. This autocatalytic reaction is deactivated after a certain time that depends on the rotation speed of the electrode. It can be recovered if the electrode is negatively polarized. In this thesis work, ex-situ XPS measurements on emersed Ag(111) electrodes were conducted. The analysis leads to the conclusion that the deactivation is caused by a small amount of chloride contamination. Electrochemical impedance spectra are presented together with numerical simulations for the faradaic impedance in the autocatalytic region based on previously suggested kinetic rate laws. The experimental data fit well with the results of the theoretical calculations, which strongly supports the autocatalytic mechanism.

Page generated in 0.1047 seconds