Spelling suggestions: "subject:"zirconia."" "subject:"circonia.""
161 |
Fracture toughness of yttrium stabilized zirconia sintered in conventional and microwave ovensMarinis, Aristotelis 01 May 2011 (has links)
No description available.
|
162 |
High-pressure vacuum application of TiO2 nanotubes on a polycrystalline zirconia: influence on bond strength / Aplicação a vácuo de alta pressão de nanotubos de TiO2 em uma zirconia policristalina: influência na força de adesãoKanashiro, Franco Naoki Mezarina 26 February 2019 (has links)
Objective: The purpose of this study was to evaluate the microshear bond strength of resin cement to Y-TZP ceramic after different application methods of TiO2 nanotubes (nTiO2) on pre-sintered Y-TZP surfaces. Material and methods: nTiO2 were produced by alkaline synthesis, mixed with either isopropyl alcohol or acetone and applied on pre-sintered zirconia. Surface characterization with scanning electron microscopy (SEM) and energy-dispersive xray spectroscopy (EDS) analysis was executed before and after nanotubes application and after shear bond strength evaluation. Six groups were evaluated according to the application method of nTiO2 on the pre-sintered 1.4-mm-thick Y-TZP slices (n=15): 1) manual application of nTiO2 mixed with isopropyl alcohol (MAL); 2) manual application of nTiO2 nanotubes mixed with acetone (MAC); 3) application under high-pressure vacuum of nTiO2 mixed with isopropyl alcohol (HPVAl) ; 4) application under highpressure vacuum of nTiO2 mixed with acetone (HPVAc); 5) control - Al2O3 sandblasting (OX); 6) control - Rocatec silicatization (ROC). After application Y-TZP were sintered. Ceramic slices of groups 5 and 6 had their surfaces treated after sinterization. Resin composite cylinders (1.4-mm-diameter and 1-mm-height) were cemented on the ceramic slices, stored in water at 37°C for 24h and were thermalcycled for 10.000 cycles before submitting to microshear bond strength evaluation. Data were analyzed by One-way ANOVA and Newman-Keuls tests (a=.05). Results: SEM and EDS confirmed the presence of TiO2 on nTiO2-treated Y-TZP surfaces. There were significant differences between surface treatments (p<0.0001). HPVAl, OX and ROC showed higher shear bond strengths and where statistically similar (p > 0.05). MAC reached intermediary values and HPVAc and MAL presented a significant decrease in the shear bond strength, with a high percentage of premature debonding. HPVAl, OX and ROC had mixed failures (71.4%, 100%, and 92.7% respectively). MAC, HPVAc and MAL had 100% of adhesive failures. Conclusion: The high-pressure vacuum application of nTiO2 mixed with isopropyl alcohol showed the best results with shear bond strength values compared to conventional sandblasting methods. / Objetivo: O objetivo deste estudo foi avaliar a resistência ao cisalhamento de uma resina composta a uma cerâmica Y-TZP após diferentes métodos de aplicação dos nanotubos de TiO2 (nTiO2) na superfície da cerâmica.. Material e métodos: nTiO2 foram produzidos por síntese alcalina, misturados com álcool isopropílico ou acetona e aplicados em zircônia pré-sinterizada. A caracterização da superfície por microscopia confocal a laser, microscopia eletrônica de varredura (MEV) e espectroscopia de dispersão de energia por raios X (EDS) foi realizada antes e após a aplicação dos nanotubos e após a avaliação da resistência ao cisalhamento. Seis grupos foram avaliados de acordo com o método de aplicação do nTiO2 nas fatias de Y-TZP pré-sinterizadas com 1,4 mm de espessura (n = 15): 1) aplicação manual de nTiO2 misturado com álcool isopropílico (MAL); 2) aplicação manual de nanotubos de nTiO2 misturados com acetona (MAC); 3) aplicação sob vácuo de alta pressão de nTiO2 misturado com álcool isopropílico (HPVAl); 4) aplicação sob vácuo de alta pressão de nTiO2 misturado com acetona (HPVAc); 5) controle - jato de areia Al2O3 (OX); 6) controle - silicatização de Rocatec (ROC). Após a aplicação, o Y-TZP foi sinterizado. As fatias de cerâmica dos grupos 5 e 6 tiveram suas superfícies tratadas após a sinterização. Cilindros de resina composta (1,4 mm de diâmetro e 1 mm de altura) foram cimentados nas fatias de cerâmica, armazenados em água a 37 ° C por 24h e foram termociclados por 10.000 ciclos antes de serem submetidos à avaliação de resistência ao cisalhamento. Os dados foram analisados pelos testes teste ANOVA e Newman-Keuls (a = 0,05). Resultados: MEV e EDS confirmaram a presença de TiO2 nas superfícies de Y-TZP tratadas com nTiO2. Houve diferenças significativas entre os tratamentos de superfície (p <0,0001). HPVAl, OX e ROC apresentaram maiores resistências ao cisalhamento e estatisticamente semelhantes (p> 0,05). O MAC atingiu valores intermediários e o HPVAc e o MAL apresentaram uma diminuição significativa na resistência ao cisalhamento, com alta porcentagem de descolamento prematuro. HPVAl, OX e ROC apresentaram falhas mistas (71,4%, 100% e 92,7%, respectivamente). MAC, HPVAc e MAL tiveram 100% de falhas adesivas. Conclusões: A aplicação de vácuo de alta pressão de nTiO2 misturado com álcool isopropílico apresentou os melhores resultados com valores de resistência ao cisalhamento em comparação com os métodos convencionais de jateamento.
|
163 |
Influence of stress and structural parameters on the hydrothermal ageing of zirconia-based ceramics / Influence des contraintes et des paramètres structurels sur la sensibilité au vieillissement des céramiques à base de zirconeWei, Chong 20 October 2017 (has links)
Cette thèse explore l'influence des contraintes et des paramètres structurels sur la sensibilité au vieillissement de la céramique à base de zircone. Il traite d'abord de l'influence des contraintes externes (appliquées) et des contraintes internes (résiduelles). Des contraintes extérieures sont appliquées par des tests de flexion in situ, tandis que des contraintes internes sont obtenues en contrôlant la microstructure des composites d'alumine durcis à la zircone. Le comportement de vieillissement de différents matériaux (3Y-TZP, 4Y-TZP et ZTA) est étudié par diffraction des rayons X (XRD) et spectroscopie Micro-Raman. Le résultat principal est l'influence principale des contraintes résiduelles sur les contraintes appliquées, principalement dans les matériaux de zircone. Il détruit alors l'effet de différents paramètres microstructuraux sur la cinétique du vieillissement. 3Y-TZP échantillons de même composition nominale mais différentes microstructures (caractérisées par leur taille de grain, la teneur en Y2O3 en phase tétragonale et la proportion de phase cubique) sont obtenues en utilisant différents procédés de frittage (frittage en deux étapes ou frittage normal pour différents temps et à différents moments Températures). En utilisant deux modèles semi-empiriques, on peut d'abord quantifier la relation entre la microstructure et les paramètres de traitement, puis la relation entre la cinétique du vieillissement et la microstructure. Enfin, il qualifie différents traitements de surface pour améliorer la résistance au vieillissement de 3Y-TZP. Les échantillons 3Y-TZP sont recuits sur des poudres de différentes compositions (TZ3YE, TZ4YS, 12ceTZP) et leur comportement de vieillissement est comparé. Les résultats montrent qu'une amélioration significative de la résistance au vieillissement peut être atteinte à 134 °C, sans compromettre la ténacité, mais ce gain n'est pas toujours valable à température ambiante ou corporelle. Étant donné que cette thèse traite de nombreux matériaux et des temps de vieillissement très long (jusqu'à plusieurs milliers d'heures), il était essentiel d'accélérer les tests de vieillissement et de réduire le nombre d'échantillons. Ainsi, nous avons mis en place une méthode rapide permettant d'accéder à l'énergie d'activation du vieillissement, avec une réduction de dix fois de la durée des études vieillissantes (présenté en annexe). / This thesis explores the influence of stresses and structural parameters on the sensitivity to ageing of zirconia-based ceramics. It first addresses the influence of both external (applied) stresses and internal (residual) stresses. External stresses are applied by in-situ bending tests, while internal stresses are obtained by controlling the microstructure of zirconia-toughened alumina composites. The ageing behavior of different materials (3Y-TZP, 4Y-TZP and ZTA) is investigated by X-ray diffraction (XRD) and Micro-Raman spectroscopy. The main result is the primary influence of residual stresses over applied stresses, mainly in zirconia materials. It then discriminates the effect of different microstructural parameters on the ageing kinetics. 3Y-TZP samples of same nominal composition but different microstructures (characterized by their grain sizes, content of Y2O3 in tetragonal phase and proportion of cubic phase) are obtained by using different sintering processes (two step sintering or normal sintering for different times and at different temperatures). Using two semi-empirical models, we are first able to quantify the relation between microstructure and processing parameters, and then the relation between ageing kinetics and microstructure. Finally it qualifies different surface treatments to improve the ageing resistance of 3-TZP. 3Y-TZP samples are annealed on powders of different compositions (TZ3YE, TZ4YS, 12ceTZP) and their ageing behavior are compared. The results show that a significant improvement of the ageing resistance can be reached at 134°C, without compromising the toughness, however this gain is not always valid at room or body temperature. Since this thesis deals with many materials and very long ageing times (up to several thousand hours), it was crucial to accelerate ageing tests and reduce the number of samples. Thus we set up a fast method enabling access to the activation energy of ageing, with a tenfold reduction in the duration of the ageing studies (presented in the appendix).
|
164 |
Fundamental investigation of refractory reactions occurring at high temperatures in continuous steel casting processLiu, Fuhai, Material Science & Engineering, UNSW January 2007 (has links)
An in-depth study has been carried out to investigate refractory degradation during continuous steel casting processes. Slag/refractory interactions have been investigated through a study of the wetting behaviour and gas generation phenomena at the slag/refractory interface at 1550oC using sessile drop experiments. The influence of carbon content and slag composition was investigated. Two different steel casting slags (slag1: MnO 50%, SiO2 25%, Al2O3 25%; and slag2: MnO 40%, SiO2 60%) have been studied along with yttria stabilized zirconia refractory substrates respectively containing 10%, 15% and 20% carbon. The gas generation has been measured using the Infrared gas analyser, and its influence has also been investigated by taking optical images at varying times. The total amount of gases emitted has shown the dependence on the compositions of refractory substrates and the existence of casting slags. Under the investigation of zirconia-carbon refractory, a new phenomenon that the gas generated can push the liquid slags away and minimise the contact of slags and refractory substrates has been proven.
|
165 |
Electrochemical Promotion of Gold Nanoparticles Supported on Yttria-Stabilized ZirconiaKim, Jong Min 23 November 2011 (has links)
The feasibility of highly dispersed gold nanocatalyst supported on yttria-stabilized zirconia (YSZ) for the model reactions of C2H4 and CO oxidation is demonstrated for the first time. Gold nanoparticles are synthesized on YSZ powder by chemical reduction of the precursor salt in the mixture of ethanol, water and polyvinylpyrrolidone (PVP). Resulting metal loading of the catalysts are 1 wt.% with average particle sizes ranging from 6 to 9 nm. Results of CO and C2H4 oxidation display catalytic activity at 65 0C and 25 0C for CO and C2H4 oxidation, respectively. The catalytic properties of the catalysts are different due to their average particle size. Electrochemical Promotion of Catalysis (EPOC) of C2H4 oxidation is demonstrated. Application of constant potential difference between two electrodes in the bipolar electrochemical cell led to increase in C2H4 conversion. A proposed mechanism explains the bipolar EPOC phenomenon through formation of O2- flux across the electrochemical cell, resulting in the change of Work Function of gold nanoparticles placed in between the electrodes and is electronically isolated.
|
166 |
Electrochemical Promotion of Gold Nanoparticles Supported on Yttria-Stabilized ZirconiaKim, Jong Min 23 November 2011 (has links)
The feasibility of highly dispersed gold nanocatalyst supported on yttria-stabilized zirconia (YSZ) for the model reactions of C2H4 and CO oxidation is demonstrated for the first time. Gold nanoparticles are synthesized on YSZ powder by chemical reduction of the precursor salt in the mixture of ethanol, water and polyvinylpyrrolidone (PVP). Resulting metal loading of the catalysts are 1 wt.% with average particle sizes ranging from 6 to 9 nm. Results of CO and C2H4 oxidation display catalytic activity at 65 0C and 25 0C for CO and C2H4 oxidation, respectively. The catalytic properties of the catalysts are different due to their average particle size. Electrochemical Promotion of Catalysis (EPOC) of C2H4 oxidation is demonstrated. Application of constant potential difference between two electrodes in the bipolar electrochemical cell led to increase in C2H4 conversion. A proposed mechanism explains the bipolar EPOC phenomenon through formation of O2- flux across the electrochemical cell, resulting in the change of Work Function of gold nanoparticles placed in between the electrodes and is electronically isolated.
|
167 |
Establishment of Relationships between Coating Microstructure and Thermal Conductivity in Thermal Barrier Coatings by Finite Element ModellingGupta, Mohit January 2010 (has links)
Plasma sprayed Thermal Barrier Coating systems (TBCs) are commonly used for thermal protection of components in modern gas turbine application such as power generation, marine and aero engines. The material that is most commonly used in these applications is Yttria Partially Stabilized Zirconia (YPSZ) because of this ceramic’s favourable properties, such as low thermal conductivity, phase stability to high temperature, and good erosion resistance. The coating microstructures in YPSZ coatings are highly heterogeneous, consisting of defects such as pores and cracks of different sizes which determine the coating’s final thermal and mechanical properties, and the service lives of the coatings. Determination of quantitative microstructure–property correlations is of great interest as experimental procedures are time consuming and expensive. Significant attention has been given to this field, especially in last fifteen years. The usual approach for modelling was to describe various microstructural features in some way, so as to determine their influence on the overall thermal conductivity of the coating. As the analytical models over-simplified the description of the defects, various numerical models were developed which incorporated real microstructure images.This thesis work describes two modelling approaches to further investigate the relationships between microstructure and thermal conductivity of TBCs. The first modelling approach uses a combination of a statistical model and a finite element model which could be used to evaluate and verify the relationship between microstructural defects and thermal conductivity. The second modelling approach uses the same finite element model along with a coating morphology generator, and can be used to design low thermal conductivity TBCs. A tentative verification of both the approaches has been done in this work.
|
168 |
Synthesis and Processing of Nanocrystalline Zirconium Carbide Formed by Carbothermal ReductionJain, Anubhav 20 August 2004 (has links)
Zirconium carbide (ZrC) powders were produced by carbothermal reduction reactions using fine-scale carbon/metal oxide mixtures as the starting materials. The reactant mixtures were prepared by pyrolytic decomposition of solution-derived precursors. The latter precursors were synthesized via hydrolysis/condensation of metal-organic compounds.
The first step in the solution process involved refluxing zirconium alkoxide with 2,4 pentanedione ("acacH") in order to partially or fully convert the zirconium alkoxy groups to a chelated zirconium diketonate structure ("zirconium acac"). This was followed by the addition of water (under acidic conditions) in order to promote hydrolysis/condensation reactions. Precursors with variable carbon/metal ratios were produced by varying the concentrations of the solution reactants (i.e., the zirconium alkoxide, "acacH," water, and acid concentrations.) It was necessary to add a secondary soluble carbon source (i.e., phenolic resin or glycerol) during solution processing in order to obtain a C/Zr molar ratio close to 3 (as required for stoichiometry) in the pyrolyzed powders.
The phase development during carbothermal reduction was investigated for oxide-rich carbon-deficient and slightly carbon-rich compositions. The reaction was substantially completed after heat treatments in the range of ~1400-1500oC. The crystallite sizes were in the range of ~100-130 nm. However, some oxygen dissolved in the lattice and some free carbon was present. Heat treatment at temperatures >1600oC was required to complete the reaction.
The dry-pressed powder compacts, with varying C/Zr molar ratios, were pressureless sintered to relative densities in the range of ~98-100% at 1950oC.
|
169 |
Methane Activation Via Bromination Over Sulfated Zirconia/sba-15 CatalystsDegirmenci, Volkan 01 November 2007 (has links) (PDF)
Methane activation with bromine followed by the condensation of the methyl bromide into higher hydrocarbons or oxygenates is a novel route. However, the selective production of monobrominated methane (CH3Br) at high conversions is a crucial prerequisite. A reaction model was developed according to the kinetic data available in the literature and thoroughly studied to investigate the optimum reactor conditions for selective methane bromination in gas phase. It was concluded that at high methane (> / 90%) conversions dibromomethane synthesis was favored at high selectivity (~90%) under the following conditions: T=330 ° / C, Br:CH4 = 3. Sulfated zirconia included SBA-15 catalysts were prepared and characterized for the catalytic methane activation via bromination. The SBA-15 sol-gel preparation technique was followed and the zirconium was added during the preparation in the form of ZrOCl2· / 8H2O with 5-30 mol % ZrO2 with respect to the SiO2 content simultaneously with the silicon source (TEOS). The catalysts were sulfated in 0.25 M H2SO4 solution. The zirconium contents of the catalysts were determined by elemental analysis and 15 wt. % Zr was determined as the highest amount. XRD analysis showed the crystalline zirconia peaks only for high zirconia loadings (> / 25 mol % ZrO2) indicating the good distribution of Zr in silica framework at lower loadings. BET surface areas of the sulfated catalysts are in the range of 313-246 m2/g. The porous structures of the catalysts were determined by TEM
pictures, which revealed that the increase in Zr content decreased the long range order of pore structure of SBA-15 in agreement with XRD results. The acidities of the catalysts were determined by 1H MAS NMR experiments. Brø / nsted acidity was identified by a sharp 1H MAS NMR line at 10.6 ppm. The highest acidity was observed at 5.2 wt. % Zr loading according to 1H MAS NMR experiments. 29Si MAS NMR analysis showed the formation of Si-O-X linkages (X=H, Zr). Further characterization of Brø / nsted acidity was performed by FT-IR spectroscopy of adsorbed CO at 82 K. The analysis
revealed that the Brø / nsted acidity of sulfated catalysts were similar to the acid strength of the conventional sulfated zirconia. In TPD experiments, the basic molecule isopropylamine (IPAm) was adsorbed and decomposition
temperature of IPAm was monitored. The temperature decreased from 340 ° / C to 310 ° / C in sulfated catalysts, indicating the acidic character of these samples.
Catalytic methane bromination reaction tests were performed in a quartz tubular reactor. The results showed that 69% methane conversion was attainable over SZr(25)SBA-15 catalyst at 340 ° / C. The liquid 1H NMR measurements of the products revealed that > / 99% methyl bromide selectivity
was achieved.
|
170 |
Development of dual phase magnesia-zirconia ceramics for light water reactor inert matrix fuelMedvedev, Pavel 17 February 2005 (has links)
Dual phase magnesia-zirconia ceramics were developed, characterized, and evaluated as a potential matrix material for use in light water reactor inert matrix fuel intended for the disposition of plutonium and minor actinides. Ceramics were fabricated from the oxide mixture using conventional pressing and sintering techniques. Characterization of the final product was performed using optical microscopy, scanning electron microscopy, x-ray diffraction analysis, and energy-dispersive x-ray analysis. The final product was found to consist of two phases: cubic zirconia-based solid solution and cubic magnesia.
Evaluation of key feasibility issues was limited to investigation of long-term stability in hydrothermal conditions and assessment of the thermal conductivity. With respect to hydrothermal stability, it was determined that limited degradation of these ceramics at 300^oC occurred due to the hydration of the magnesia phase. Normalized mass loss rate, used as a quantitative indicator of degradation, was found to decrease exponentially with the zirconia content in the ceramics. The normalized mass loss rates measured in static 300^oC de-ionized water for the magnesia-zirconia ceramics containing 40, 50, 60, and 70 weight percent of zirconia are 0.00688, 0.00256, 0.000595, 0.000131
g/cm2/hr respectively. Presence of boron in the water had a dramatic positive effect on the hydration resistance. At 300^oC the normalized mass loss rates for the composition containing 50 weight percent of zirconia was 0.00005667 g/cm2/hr in the 13000 ppm aqueous solution of the boric acid. With respect to thermal conductivity, the final product exhibits values of 5.5-9.5 W/(m deg) at 500^oC, and 4-6 W/(m deg) at 1200^oC depending on the composition. This claim is based on the assessment of thermal conductivity derived from thermal diffusivity measured by laser flash method in the temperature range from 200 to 1200^oC, measured density, and heat capacity calculated using rule of mixtures. Analytical estimates of the anticipated maximum temperature during normal reactor operation in a hypothetical inert matrix fuel rod based on the magnesia-zirconia ceramics yielded the values well below the melting temperature and well below current maximum temperatures authorized in light water reactors.
|
Page generated in 0.3472 seconds