• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 66
  • 56
  • 22
  • 17
  • 14
  • 8
  • 7
  • 7
  • 7
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 216
  • 23
  • 22
  • 22
  • 21
  • 20
  • 16
  • 16
  • 16
  • 14
  • 14
  • 14
  • 13
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

An Experimental Study of Submerged Entry Nozzles (SEN) Focusing on Decarburization and Clogging

Memarpour, Arashk January 2011 (has links)
The submerged entry nozzle (SEN) is used to transport the molten steel from a tundish to a mould. The main purpose of its usage is to prevent oxygen and nitrogen pick-up by molten steel from the gas. Furthermore, to achieve the desired flow conditions in the mould. Therefore, the SEN can be considered as a vital factor for a stable casting process and the steel quality. In addition, the steelmaking processes occur at high temperatures around 1873 K, so the interaction between the refractory materials of the SEN and molten steel is unavoidable. Therefore, the knowledge of the SEN behaviors during preheating and casting processes is necessary for the design of the steelmaking processes  The internal surfaces of modern SENs are coated with a glass/silicon powder layer to prevent the SEN graphite oxidation during preheating. The effects of the interaction between the coating layer and the SEN base refractory materials on clogging were studied. A large number of accretion samples formed inside alumina-graphite clogged SENs were examined using FEG-SEM-EDS and Feature analysis. The internal coated SENs were used for continuous casting of stainless steel grades alloyed with Rare Earth Metals (REM). The post-mortem study results clearly revealed the formation of a multi-layer accretion. A harmful effect of the SENs decarburization on the accretion thickness was also indicated. In addition, the results indicated a penetration of the formed alkaline-rich glaze into the alumina-graphite base refractory. More specifically, the alkaline-rich glaze reacts with graphite to form a carbon monoxide gas. Thereafter, dissociation of CO at the interface between SEN and molten metal takes place. This leads to reoxidation of dissolved alloying elements such as REM (Rare Earth Metal). This reoxidation forms the “In Situ” REM oxides at the interface between the SEN and the REM alloyed molten steel. Also, the interaction of the penetrated glaze with alumina in the SEN base refractory materials leads to the formation of a high-viscous alumina-rich glaze during the SEN preheating process. This, in turn, creates a very uneven surface at the SEN internal surface. Furthermore, these uneven areas react with dissolved REM in molten steel to form REM aluminates, REM silicates and REM alumina-silicates. The formation of the large “in-situ” REM oxides and the reaction of the REM alloying elements with the previously mentioned SEN´s uneven areas may provide a large REM-rich surface in contact with the primary inclusions in molten steel. This may facilitate the attraction and agglomeration of the primary REM oxide inclusions on the SEN internal surface and thereafter the clogging. The study revealed the disadvantages of the glass/silicon powder coating applications and the SEN decarburization. The decarburization behaviors of Al2O3-C, ZrO2-C and MgO-C refractory materials from a commercial Submerged Entry Nozzle (SEN), were also investigated for different gas atmospheres consisting of CO2, O2 and Ar. The gas ratio values were kept the same as it is in a propane combustion flue gas at different Air-Fuel-Ratio (AFR) values for both Air-Fuel and Oxygen-Fuel combustion systems. Laboratory experiments were carried out under nonisothermal conditions followed by isothermal heating. The decarburization ratio (α) values of all three refractory types were determined by measuring the real time weight losses of the samples. The results showed the higher decarburization ratio (α) values increasing for MgO-C refractory when changing the Air-Fuel combustion to Oxygen-Fuel combustion at the same AFR value. It substantiates the SEN preheating advantage at higher temperatures for shorter holding times compared to heating at lower temperatures during longer holding times for Al2O3-C samples. Diffusion models were proposed for estimation of the decarburization rate of an Al2O3-C refractory in the SEN. Two different methods were studied to prevent the SEN decarburization during preheating: The effect of an ZrSi2 antioxidant and the coexistence of an antioxidant additive and a (4B2O3 ·BaO) glass powder on carbon oxidation for non-isothermal and isothermal heating conditions in a controlled atmosphere. The coexistence of 8 wt% ZrSi2 and 15 wt% (4B2O3 ·BaO) glass powder of the total alumina-graphite refractory base materials, presented the most effective resistance to carbon oxidation. The 121% volume expansion due to the Zircon formation during heating and filling up the open pores by a (4B2O3 ·BaO) glaze during the green body sintering led to an excellent carbon oxidation resistance. The effects of the plasma spray-PVD coating of the Yttria Stabilized Zirconia (YSZ) powder on the carbon oxidation of the Al2O3-C coated samples were investigated. Trials were performed at non-isothermal heating conditions in a controlled atmosphere. Also, the applied temperature profile for the laboratory trials were defined based on the industrial preheating trials. The controlled atmospheres consisted of CO2, O2 and Ar. The thicknesses of the decarburized layers were measured and examined using light optic microscopy, FEG-SEM and EDS. A 250-290 μm YSZ coating is suggested to be an appropriate coating, as it provides both an even surface as well as prevention of the decarburization even during heating in air. In addition, the interactions between the YSZ coated alumina-graphite refractory base materials in contact with a cerium alloyed molten stainless steel were surveyed. The YSZ coating provided a total prevention of the alumina reduction by cerium. Therefore, the prevention of the first clogging product formed on the surface of the SEN refractory base materials. Therefore, the YSZ plasma-PVD coating can be recommended for coating of the hot surface of the commercial SENs.
202

Novel 1-D and 2-D Carbon Nanostructures Based Absorbers for Photothermal Applications

Selvakumar, N January 2016 (has links) (PDF)
Solar thermal energy is emerging as an important source of renewable energy for meeting the ever-increasing energy requirements of the world. Solar selective coatings are known to enhance the efficiency of the photo thermal energy conversion. An ideal solar selective coating has zero reflectance in the solar spectrum region (i.e., 0.3-2.5 µm) and 100% reflectance in the infrared (IR) region (i.e. 2.5-50 µm). In this thesis, novel carbon nanotubes (CNT) and graphene based absorbers have been developed for photo thermal applications. Carbon nanotubes have good optical properties (i.e., α and ε close to 1), high aspect ratios (> 150), high surface area (470 m2/g) and high thermal conductivity (> 3000 W/mK), which enable rapid heat transfer from the CNTs to the substrates. Similarly, graphene also exhibits high transmittance (97%), low reflectance, high thermal conductivity (5000 W/mK) and high oxidation resistance behaviour. The major drawback of using CNTs for photothermal applications is that it exhibits poor spectral selectivity (i.e., α/ε = 1). In other words, it acts as a blackbody absorber. On the other hand, graphene exhibits poor intrinsic absorption behaviour (α - 2.3%) in a broad wavelength range (UV-Near IR). The main objective of the present study is to develop CNT and graphene based absorbers for photothermal conversion applications. The growth of CNT and graphene was carried out using chemical vapour deposition and sputtering techniques. An absorber-reflector tandem concept was used to develop the CNT based tandem absorber (Ti/Al2O3/Co/CNT). The transition from blackbody absorber to solar selective absorber was achieved by varying the CNT thicknesses and by using a suitable underlying absorber (Ti/Al2O3). A simple multilayer heat mirror concept was used to develop the graphene based multilayer absorber (SiO2/graphene/Cu/graphene). The transition from high transmitance to high absorptance was achieved by varying the Cu thickness. The refractive indices and the extinction coefficients of Ti/Al2O3, AlTiO and graphene samples were determined by the phase-modulated spectroscopic ellipsometric technique. Finally, the optical properties (i.e., absorptance and the emittance) of the CNT and graphene based absorbers were investigated. Chapter 1 gives a brief introduction about solar thermal energy, spectrally selective coating and photothermal conversion. The different types of absorbers used to achieve the spectral selectivity have also been discussed shortly. A brief description about the carbon-based materials/allotropes and their properties are outlined. The properties of carbon nanotubes and graphene which are the 1-D and 2-D allotropes of carbon, respectively are tabulated. A detailed literature survey was carried out in order to identify the potential candidates for the photothermal conversion applications. The objectives and the scope of the thesis are also discussed in this chapter. Chapter 2 discusses the deposition and characterization techniques used for the growth and the study of 1-D and 2-D carbon nanostructures. Atmospheric pressure chemical vapour deposition (CVD) and hot filament CVD techniques were used to grow CNT and graphene, respectively. The magnetron sputtering technique was used for the growth of ‘Ti’, ‘Al2O3’ and Co layers which were needed to grow the CNT based tandem absorber on stainless steel (SS) substrates. The important characterization techniques used to examine various properties of the 1-D and 2-D carbon nanostructures include: X-ray diffraction, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), phase modulated ellipsometry, UV-VIS-NIR spectrophotometer, Fourier-infrared spectroscopy (FTIR), micro-Raman spectroscopy and solar spectrum reflectometer and emissometer. Chapter 3 describes the design and development of Ti/Al2O3 coating for the growth of CNT-based tandem absorber on SS substrates. The power densities of the aluminum and titanium targets and the oxygen flow rates were optimized to deposit the Ti/Al2O3 coatings. The optimized Ti/Al2O3 coating with a Co catalyst on top was used as an underlying substrate to grow the CNT-based tandem absorber at 800°C in Ar+H2 atmosphere (i.e., CNT/Co/Al2O3/Ti/SS). The formation of aluminum titanium oxide (AlTiO) was observed during the CNT growth process and this layer enhances the optical properties of the CNT based tandem absorber. The optical constants of Ti, Al2O3 and AlTiO coatings were measured using phase modulated spectroscopic ellipsometry in the wavelength range of 300-900 nm. The experimentally measured ellipsometric parameters have been fitted with the simulated spectra using the Tauc-Lorentz model for generating the dispersion of the optical constants of the Al2O3 and the AlTiO layers. The Ti and Al2O3 layer thicknesses play a major role in the design of the CNT based tandem absorber with good optical properties. Chapter 4 describes the synthesis and characterization of the CNT based tandem absorber (Ti/AlTiO/CoO/CNTs) deposited on SS substrates. CNTs at different thicknesses were grown on Ti/AlTiO/CoO coated SS substrates using atmospheric CVD at various growth durations. The transition from blackbody absorber to solar selective absorber was achieved by varying the thicknesses of the CNTs and by suitably designing the bottom tandem absorber. At thicknesses > 10 µm, the CNT forest acts as near-perfect blackbody absorber, whereas, at thicknesses ≤ 0.36 µm, the IR reflectance of the coating increases (i.e., ε = 0.20) with slight decrease in the absorptance (i.e., α = 0.95). A spectral selectivity (α/ε) of 4.75 has been achieved for the 0.36 µm-thick CNTs grown on SS/Ti/AlTiO/CoO tandem absorber. Chapter 5 discusses the growth of graphene on polycrystalline copper (Cu) foils (1 cm × 1 cm) using hot filament CVD. The roles of the process parameters such as gas flow rates (methane and hydrogen), growth temperatures (filament and substrate) and durations on the growth of graphene were studied. The process parameters were also optimized to grow monolayer, bilayer and multilayer graphene in a controlled manner and the growth mechanism was deduced from the experimental results. The presence of graphene on Cu foils was confirmed using XPS, micro-Raman spectroscopy, FESEM and TEM techniques. The FESEM data clearly confirmed that graphene starts nucleating as hexagonal islands which later evolves into dendritic lobe shaped islands with an increase in the supersaturation. The TEM data substantiated further the growth of monolayer, bilayer and multilayer graphene. The intensity of 2D and G peak ratio (i.e., I2D/IG = 2) confirmed the presence of the monolayer graphene and the absence of the ‘D’ peak in the Raman spectrum indicated the high purity of graphene grown on Cu foils. The results show that the polycrystalline morphology of the copper foil has negligible effect on the growth of monolayer graphene. In Chapter 6, the design and development of graphene/Cu/graphene multilayer absorber and the study of its optical properties are discussed. The multilayer graphene grown on Cu foils has been transferred on quartz and SiO2 substrates in order to fabricate the graphene/Cu/graphene multilayer absorber. The sputtering technique was used to deposit copper on top of graphene/quartz substrates. The uniformity of the transferred multilayer graphene films was confirmed using Raman mapping. A simple multilayer heat mirror concept was used to develop the graphene/Cu/graphene absorber on quartz substrates and the transition from high transmittance to high absorptance was achieved. In order to further enhance the absorption, the graphene/Cu/graphene multilayer coating was fabricated on SiO2 substrates. The thickness of the Cu layer plays a major role in creating destructive interference, which results in high absorptance and low emittance. A high specular absorptance of 0.91 and emittance of 0.22 was achieved for the SiO2 graphene/Cu/graphene multilayer absorber. The specular reflectance of the multilayer absorber coatings was measured using the universal reflectance accessory of the UV-VIS-NIR spectrophotometer. Chapter 7 summarizes the major findings of the present investigation and also suggests future aspects for experimentation and analysis. The results obtained from the present work clearly indicate that both CNT and graphene based absorbers can be used as potential candidates for photothermal applications. In particular, the CNT based tandem absorber can be used for high temperature solar thermal applications and the graphene based multilayer absorber finds applications in the area of photodetectors and optical broadband modulators.
203

A Study on Vanadium Extraction from Fe-V-P Melts Derived from Primary and Secondary Sources

Lindvall, Mikael January 2017 (has links)
Vanadium extraction methods were developed for iron-vanadium-phosphorus (Fe-V-P) melts derived from processing of V-bearing titanomagnetites and steel slags. Studies on phase relationships of V slags were carried out to provide important understanding of the extraction processes. Phase relationship in vanadiferous slag was investigated experimentally at 1573K, 1673K and 1773K, for the compositional range of 0-6mass% Al2O3, 1-5mass% CaO, 10-17mass% SiO2, with MnO and V2O3 fixed at 5.5mass% and 30mass%, balanced with FeO. The slags were found to be solid-liquid mixtures, of liquid, spinel and in some cases free silica. Alumina was identified as the preferred additive to prohibit precipitation of free silica. A method for V extraction to vanadiferous slag was developed based on Fe-V(2mass%)-P(0.1mass%) melts at 1677K using a semi-industrial scale BOF. Oxidation was carried out with an oxygen enriched air jet and iron ore pellets. The complete dissolution of pellets was achieved by deliberately creating good stirring conditions utilising high momentary decarburisation rates. The P distribution to the slag was low when good stirring conditions was obtained. Phase relationship in Al2O3-CaO(25-35mass%)-SiO2-VOx slag was investigated experimentally at an oxygen partial pressure of 9.37•10-11atm and 1873K. The maximum solubility of V-oxide in the slag was 9-10mass% V2O3. Two solid phases were found, a solid solution of Al2O3 in V2O3 (karelianite) and hibonite with fractionation of V into the crystal structure. V extraction experiments to Al2O3-CaO-SiO2 based slags were carried out in 150kg scale by blowing CO2 gas into the metal bath consisting mainly of 1-10mass% V and 1mass% P. At these conditions, oxidation of V was favoured over Fe. Up to 10-13mass% V2O3 could be dissolved in the slag before a viscous slag saturated in V-oxide was observed. The phosphate capacity in the slag was low and as a result this slag could at once be subjected to a final reduction step for production of ferrovanadium with 40-50mass% V. / Metoder för att utvinna vanadin till högvärdiga vanadinslagger från metallsmältor innehållande främst järn (Fe), vanadin (V) och fosfor (P) utvecklades. Metallsmältorna framställs genom att processa primära V råvaror, såsom titanomagnetit, och sekundära råvaror av i huvudsak vanadinrik stålslagg. Fasstudier av högvärdiga vanadinslagger genomfördes som grund för utvecklingsarbetet. Experimentella fasstudier av vanadinspinellslagg med 30vikt% V2O3 och 5.5vikt% MnO genomfördes vid en temperatur av 1573K, 1673K och 1773K. Övriga komponenter i slaggen varierades inom ett intervall av 0-6vikt% Al2O3, 1-5vikt% CaO och 10-17vikt% SiO2, viktad med järnoxid. Samtliga slagger var sammansatt av både flytande- och fastfas. Den fasta fasen utgjordes främst av en vanadin- och järnrik spinellfas och i vissa fall även av fri SiO2. Genom försök i en stålkonverter i semi-industriell skala utvecklades och validerades en metod för vanadinutvinning från råjärnsmältor innehållande 2vikt% V och 0.1vikt% P, vid en temperatur av 1677K. Oxidationen utfördes med syreanrikad luft via en vattenkyld topplans och genom tillsats av hematit pellets. Omsättningen av pellets säkerhetsställdes genom god omrörning som erhölls under korta perioder med höga gasvolymer som en effekt av hög avkolningstakt. Råjärnet efter behandlingen innehöll cirka 3vikt% C och 0.1vikt% V. Producerad vanadinspinellslagg bestod av upp till 30vikt% V2O3. Fosforfördelningen till slaggen var låg under processbetingelser med god omrörning. Experimentella fasstudier av Al2O3-CaO(25-35vikt%)-SiO2-VOx slagg genomfördes vid en temperatur av 1873K och ett syrepartialtryck av 9.37·10-10atm. Den maximala lösligheten av vanadinoxid i slaggen var 9-10vikt% V2O3. Två fasta faser identifierades, V2O3 (Karelianit) med fast löslighet av Al2O3 och Hibonit med vanadinoxid inlöst i kristallstrukturen. Experimentella försök för att utvinna vanadin från en stålsmälta bestående av 1-10vikt% V och 1vikt% P till en slagg med en initial sammansättning av 7-40vikt% Al2O3, 25-35vikt% CaO och 27-64vikt% SiO2 utfördes i en skala av 150kg. Oxidation av vanadin åstadkoms genom att blåsa in CO2 gas i stålsmältan via en spolsten. Under dessa processförhållanden var oxidationen av vanadin gynnsam framför järn och fosfor. Lösligheten av vanadinoxid i slaggen var upp till 10-13vikt% V2O3. Slagg mättad med vanadinoxid var viskös som en konsekvens av utfällning av V2O3 med inlöst Al2O3. Slaggens gynnsamma vanadin och järn- samt vanadin och fosfor förhållande möjliggör att genom slutreduktion producera ferrovanadin med en vanadinhalt av 40-50vikt% och låg fosforhalt. / <p>QC 20170912</p>
204

Advancements Toward High Operating Temperature Small Pixel Infrared Focal Plane Arrays: Superlattice Heterostructure Engineering, Passivation, and Open-Circuit Voltage Architecture

Specht, Teressa Rose 13 November 2020 (has links)
No description available.
205

Structure, Stability, Vibrational, Thermodynamic, And Catalytic Properties Of Metal Nanostructures: Size, Shape, Support, And Adsorbate Effects

Behafarid, Farzad 01 January 2012 (has links)
Recent advances in nanoscience and technology have provided the scientific community with new exciting opportunities to rationally design and fabricate materials at the nanometer scale with drastically different properties as compared to their bulk counterparts. A variety of challenges related to nanoparticle (NP) synthesis and materials characterization have been tackled , allowing us to make more homogenous, well defined, size- and shape-selected NPs, and to probe deeper and more comprehensively into their distinct properties. In this dissertation, a variety of phenomena relevant to nanosized materials are investigated, including the thermal stability of NPs and coarsening phenomena in different environments, the experimental determination of NP shapes, gaining insight into NP-support interactions, epitaxial relationships, and unusual thermodynamic and electronic properties of NPs, including the effect of adsorbates on the electron density of states of small clusters, and the chemical, and structural evolution of NPs under reaction conditions. In chapter 2, a general description of different characterization tools that are used in this dissertation is provided. In chapter 3, the details of two different methods used for NP synthesis, namely inverse micelle encapsulation and physical vapor deposition (PVD) are described. Chapter 4 describes the thermal stability and coarsening behavior of Pt NPs supported on TiO2(110) and γ-Al2O3 as a function of the synthesis method, support pretreatment, and annealing environment. For the Pt/TiO2(110) system, micellesynthesized NPs showed remarkable stability against coarsening for annealing temperatures up to 1060°C in vacuum, in contrast to PVD-grown NPs. When comparing v different annealing environments (H2, O2, H2O), Pt NPs on γ-Al2O3 annealed in O2 were found to be the least affected by coarsening, followed by those heated in H2O vapor. The largest NP growth was observed for the sample annealed in H2. The role of the PtOx species formed under oxidizing conditions will be discussed. In chapter 5, the shape of Pt and Au NPs and their epitaxial relationship with the TiO2(110) support was extracted from scanning tunneling microscopy (STM) measurements. Three main categories of NP shapes were identified, and through shape modeling, the contribution of facets with different orientations was obtained as a function of the number of atoms in each NP. It was also shown that the micellesynthesized Pt and Au NPs have an epitaxial relationship with the support, which is evident from the fact that they always have one symmetry axis parallel to TiO2(110) atomic rows in [001] directions. Chapter 6 describes how the presence of NPs on TiO2(110) surface affects its reconstruction upon high temperature annealing in vacuum. In contrast to NP-free TiO2(110) substrates, long and narrow TiO2 stripes are observed for Pt NP-decorated surfaces. This phenomenon is explained based on the stabilization of TiO2, induced by Pt NPs, which hinders the desorption of oxygen atoms in TiO2 to vacuum. In chapter 7, a systematic investigation of the thermodynamic properties of γ- Al2O3-supported Pt NPs and their evolution with decreasing NP size is presented. A combination of in situ extended x-ray absorption fine structure spectroscopy (EXAFS), ex situ transmission electron microscopy (TEM) measurements, and NP shape modeling is used to obtain the NPs shape, thermal expansion coefficient, and Debye vi temperature. The unusual thermodynamic behavior of these NPs such as their negative thermal expansion and enhanced Debye temperature are discussed in detail. Chapter 8 presents an investigation of the electronic properties of size-controlled γ-Al2O3-supported Pt NPs and their evolution with decreasing NP size and adsorbate (H2) coverage. The hydrogen coverage of Pt NPs at different temperatures was estimated based on XANES data and was found to be influenced by the NP size, and shape. In addition, correlations between the shift in the center of the unoccupied d-band density of states (theory) and energy shifts of the XANES spectra (experiment) upon hydrogen chemisorption as well as upon modification of the NP structure were established. Chapter 9 is dedicated to an operando study, describing the evolution of the structure and oxidation state of ZrO2-supported Pd nanocatalysts during the in-situ selective reduction of NO in H2 via EXAFS and XANES measurements.
206

Material Development for Electron Beam-based Powder Bed Fusion

Sjöström, William January 2024 (has links)
Electron beam powder bed fusion (PBF-EB) is an additivemanufacturing (AM) method based on layer-by-layer melting of apowder bed. The technology is industrialized in certain applicationsbut still considered as immature and is not as widely used as laserbeam-based systems (PBF-LB). PBF-EB can offer several benefits overPBF-LB such as process cleanliness, thermal efficiency, fast beam speed,higher power and energy transfer, low residual stresses in built partsand a good signal environment for process monitoring. This can beadded on top of the general benefits of AM such as geometricalfreedom, manufacturing efficiency, easy design revisions, short leadtimes and so on. This suggests that PBF-EB holds potential as atechnology for the sustainable production of materials andcomponents. This thesis investigates how PBF-EB can be furtherdeveloped to create new and unique materials features. This isachieved by introducing innovative methods for material processingand by further developing the PBF-EB process itself. The thesisintroduces a charge-free heating method for PBF-EB and the resultssuggest an enhanced processability of difficult-to-process materialsand powders. A method for building multi-materials in PBF-EB isintroduced and demonstrated by the manufacturing of direct andlamellar transitions between different alloys. Methods for processmonitoring and powder bed resistivity evaluation are proposed andxiidemonstrated. It is concluded that the results presented in this thesisenabled new PBF-EB processing modes, increased the knowledge ofthe process, and introduced a new material group by demonstratingthat ceramics can be processed at high temperatures (~1600C). / <p>Vid tidpunkten för framläggningen av avhandlingen var följande delarbeten opublicerade: delarbete 2 och delarbete 4 (inskickat).</p><p>At the time of the defence the following papers were unpublished: paper 2 and paper 4 (submitted).</p>
207

Characterization of the Performance of Sapphire Optical Fiber in Intense Radiation Fields, when Subjected to Very High Temperatures

Petrie, Christian Matthew 10 October 2014 (has links)
No description available.
208

Nonlinear Electromagnetic Radiation from Metal-Insulator-Metal Tunnel Junctions

Hussain, Mallik Mohd Raihan 24 May 2017 (has links)
No description available.
209

Haftmechanismen kaltgasgespritzter Aluminiumschichten auf keramischen Oberflächen

Drehmann, Rico 17 October 2017 (has links) (PDF)
Aluminiumschichten werden durch Kaltgasspritzen auf fünf verschiedene poly- und monokristalline keramische Werkstoffe (Al2O3 , AlN, SiC, Si3N4 , MgF2 ) appliziert. Dabei erfolgt eine Variation der Substrattemperatur und der Partikelgröße. Ausgewählte Proben werden einer nachfolgenden Wärmebehandlung unterzogen. Die im Fokus der Arbeit stehende Erforschung der an der Grenzfläche zwischen Aluminium und Keramik wirkenden Haftmechanismen erfolgt sowohl mithilfe einer mechanischen Charakterisierung (Stirnzugversuche) als auch durch verschiedene mikroskopische, spektroskopische und hochauflösende Methoden. Die Bewertung der Untersuchungsergebnisse zeigt, dass im Allgemeinen ein Anstieg der Haftzugfestigkeit mit steigender Substrat- und Wärmebehandlungstemperatur sowie mit zunehmender thermischer Effusivität des Substratwerkstoffs zu verzeichnen ist. Eine vergleichbare Auswirkung hat innerhalb bestimmter Grenzen die Zunahme der Partikelgröße. Mit der Heteroepitaxie wird neben der mechanischen Verklammerung ein weiterer wichtiger Haftmechanismus kaltgasgespritzter metallischer Schichten auf keramischen Substraten identifiziert. Die Ausbildung von quasiadiabatischen Scherbändern und statische Rekristallisationsprozesse wirken dabei als wichtige begleitende Mechanismen. Als Nachweis für heteroepitaktisches Wachstum ist die Existenz von (annähernd) parallelen, senkrecht oder geneigt zur Grenzfläche stehenden Ebenenpaaren, die eine geringe Gitterfehlanpassung aufweisen, zu werten. Der Vergleich mit PVD-Schichten zeigt, dass in Bezug auf die Orientierung von Gitterebenen verschiedene Mechanismen der Heteroepitaxie existieren, die von der atomaren Mobilität des Beschichtungswerkstoffs bestimmt werden.
210

Haftmechanismen kaltgasgespritzter Aluminiumschichten auf keramischen Oberflächen

Drehmann, Rico 17 October 2017 (has links)
Aluminiumschichten werden durch Kaltgasspritzen auf fünf verschiedene poly- und monokristalline keramische Werkstoffe (Al2O3 , AlN, SiC, Si3N4 , MgF2 ) appliziert. Dabei erfolgt eine Variation der Substrattemperatur und der Partikelgröße. Ausgewählte Proben werden einer nachfolgenden Wärmebehandlung unterzogen. Die im Fokus der Arbeit stehende Erforschung der an der Grenzfläche zwischen Aluminium und Keramik wirkenden Haftmechanismen erfolgt sowohl mithilfe einer mechanischen Charakterisierung (Stirnzugversuche) als auch durch verschiedene mikroskopische, spektroskopische und hochauflösende Methoden. Die Bewertung der Untersuchungsergebnisse zeigt, dass im Allgemeinen ein Anstieg der Haftzugfestigkeit mit steigender Substrat- und Wärmebehandlungstemperatur sowie mit zunehmender thermischer Effusivität des Substratwerkstoffs zu verzeichnen ist. Eine vergleichbare Auswirkung hat innerhalb bestimmter Grenzen die Zunahme der Partikelgröße. Mit der Heteroepitaxie wird neben der mechanischen Verklammerung ein weiterer wichtiger Haftmechanismus kaltgasgespritzter metallischer Schichten auf keramischen Substraten identifiziert. Die Ausbildung von quasiadiabatischen Scherbändern und statische Rekristallisationsprozesse wirken dabei als wichtige begleitende Mechanismen. Als Nachweis für heteroepitaktisches Wachstum ist die Existenz von (annähernd) parallelen, senkrecht oder geneigt zur Grenzfläche stehenden Ebenenpaaren, die eine geringe Gitterfehlanpassung aufweisen, zu werten. Der Vergleich mit PVD-Schichten zeigt, dass in Bezug auf die Orientierung von Gitterebenen verschiedene Mechanismen der Heteroepitaxie existieren, die von der atomaren Mobilität des Beschichtungswerkstoffs bestimmt werden.

Page generated in 0.0246 seconds