441 |
IOT BASED LOW-COST PRECISION INDOOR FARMINGMadhu Lekha Guntaka (11211111) 30 July 2021 (has links)
<p>There is a growing demand for
indoor farm management systems that can track plant growth, allow automatic
control and aid in real-time decision making. Internet of Thing (IoT)-based
solutions are being applied to meet these needs and numerous researchers have
created prototypes for meeting specific needs using sensors, algorithms, and
automations. However, limited studies are available that report on comprehensive
large-scale experiments to test various aspects related to availability, scalability
and reliability of sensors and actuators used in low-cost indoor farms. The
purpose of this study was to develop a low-cost, IoT devices driven indoor farm
as a testbed for growing microgreens and other experimental crops. The testbed
was designed using off-the-shelf sensors and actuators for conducting research experiments,
addressing identified challenges, and utilizing remotely acquired data for developing
an intelligent farm management system. The sensors were used for collecting and
monitoring electrical conductivity (EC), pH and dissolved oxygen (DO) levels of
the nutrient solution, light intensity, environmental variables, and imagery
data. The control of light emitting diodes (LEDs), irrigation pumps, and camera
modules was carried out using commercially available components. All the
sensors and actuators were remotely monitored, controlled, and coordinated
using a cloud-based dashboard, Raspberry Pis, and Arduino microcontrollers. To
implement a reliable, real-time control of actuators, edge computing was used
as it helped in minimizing latency and identifying anomalies.</p>
<p>Decision
making about overall system performance and harvesting schedule was accomplished
by providing alerts on anomalies in the sensors and actuators and through installation
of cameras to predict yield of microgreens, respectively. A split-plot
statistical design was used to evaluate the effect of lighting, nutrition
solution concentration, seed density, and day of harvest on the growth of
microgreens. This study complements and expands past efforts by other
researchers on building a low cost IoT-based indoor farm. While the experience
with the testbed demonstrates its real-world potential of conducting experimental
research, some major lessons were learnt along the way that could be used for
future enhancements.</p>
|
442 |
UHF-SAR and LIDAR Complementary Sensor Fusion for Unexploded Buried Munitions DetectionDepoy, Randy S., Jr. January 2012 (has links)
No description available.
|
443 |
[en] AN APPROACH BASED ON INTERACTIVE MACHINE LEARNING AND NATURAL INTERACTION TO SUPPORT PHYSICAL REHABILITATION / [pt] UMA ABORDAGEM BASEADA NO APRENDIZADO DE MÁQUINA INTERATIVO E INTERAÇÃO NATURAL PARA APOIO À REABILITAÇÃO FÍSICAJESSICA MARGARITA PALOMARES PECHO 10 August 2021 (has links)
[pt] A fisioterapia visa melhorar a funcionalidade física das pessoas, procurando
atenuar as incapacidades causadas por alguma lesão, distúrbio ou
doença. Nesse contexto, diversas tecnologias computacionais têm sido desenvolvidas
com o intuito de apoiar o processo de reabilitação, como as tecnologias
adaptáveis para o usuário final. Essas tecnologias possibilitam ao fisioterapeuta
adequar aplicações e criarem atividades com características personalizadas de
acordo com as preferências e necessidades de cada paciente. Nesta tese é proposta
uma abordagem de baixo custo baseada no aprendizado de máquina
interativo (iML - Interactive Machine Learning) que visa auxiliar os fisioterapeutas
a criarem atividades personalizadas para seus pacientes de forma fácil
e sem a necessidade de codificação de software, a partir de apenas alguns exemplos
em vídeo RGB (capturadas por uma câmera de vídeo digital) Para tal,
aproveitamos a estimativa de pose baseada em aprendizado profundo para rastrear,
em tempo real, as articulações-chave do corpo humano a partir de dados
da imagem. Esses dados são processados como séries temporais por meio do algoritmo
Dynamic Time Warping em conjunto com com o algoritmo K-Nearest
Neighbors para criar um modelo de aprendizado de máquina. Adicionalmente,
usamos um algoritmo de detecção de anomalias com o intuito de avaliar automaticamente
os movimentos. A arquitetura de nossa abordagem possui dois
módulos: um para o fisioterapeuta apresentar exemplos personalizados a partir
dos quais o sistema cria um modelo para reconhecer esses movimentos; outro
para o paciente executar os movimentos personalizados enquanto o sistema
avalia o paciente. Avaliamos a usabilidade de nosso sistema com fisioterapeutas
de cinco clínicas de reabilitação. Além disso, especialistas avaliaram clinicamente
nosso modelo de aprendizado de máquina. Os resultados indicam que
a nossa abordagem contribui para avaliar automaticamente os movimentos dos
pacientes sem monitoramento direto do fisioterapeuta, além de reduzir o tempo
necessário do especialista para treinar um sistema adaptável. / [en] Physiotherapy aims to improve the physical functionality of people, seeking
to mitigate the disabilities caused by any injury, disorder or disease. In
this context, several computational technologies have been developed in order
to support the rehabilitation process, such as the end-user adaptable technologies.
These technologies allow the physiotherapist to adapt applications and
create activities with personalized characteristics according to the preferences
and needs of each patient. This thesis proposes a low-cost approach based on
interactive machine learning (iML) that aims to help physiotherapists to create
personalized activities for their patients easily and without the need for
software coding, from just a few examples in RGB video (captured by a digital
video camera). To this end, we take advantage of pose estimation based on deep
learning to track, in real time, the key joints of the human body from image
data. This data is processed as time series using the Dynamic Time Warping
algorithm in conjunction with the K-Nearest Neighbors algorithm to create a
machine learning model. Additionally, we use an anomaly detection algorithm
in order to automatically assess movements. The architecture of our approach
has two modules: one for the physiotherapist to present personalized examples
from which the system creates a model to recognize these movements; another
to the patient performs personalized movements while the system evaluates
the patient. We assessed the usability of our system with physiotherapists
from five rehabilitation clinics. In addition, experts have clinically evaluated
our machine learning model. The results indicate that our approach contributes
to automatically assessing patients movements without direct monitoring by
the physiotherapist, in addition to reducing the specialist s time required to
train an adaptable system.
|
444 |
Anomaly Detection for Portfolio Risk Management : An evaluation of econometric and machine learning based approaches to detecting anomalous behaviour in portfolio risk measures / Avvikelsedetektering för Riskhantering av Portföljer : En utvärdering utav ekonometriska och maskininlärningsbaserade tillvägagångssätt för att detektera avvikande beteende hos portföljriskmåttWesterlind, Simon January 2018 (has links)
Financial institutions manage numerous portfolios whose risk must be managed continuously, and the large amounts of data that has to be processed renders this a considerable effort. As such, a system that autonomously detects anomalies in the risk measures of financial portfolios, would be of great value. To this end, the two econometric models ARMA-GARCH and EWMA, and the two machine learning based algorithms LSTM and HTM, were evaluated for the task of performing unsupervised anomaly detection on the streaming time series of portfolio risk measures. Three datasets of returns and Value-at-Risk series were synthesized and one dataset of real-world Value-at-Risk series had labels handcrafted for the experiments in this thesis. The results revealed that the LSTM has great potential in this domain, due to an ability to adapt to different types of time series and for being effective at finding a wide range of anomalies. However, the EWMA had the benefit of being faster and more interpretable, but lacked the ability to capture anomalous trends. The ARMA-GARCH was found to have difficulties in finding a good fit to the time series of risk measures, resulting in poor performance, and the HTM was outperformed by the other algorithms in every regard, due to an inability to learn the autoregressive behaviour of the time series. / Finansiella institutioner hanterar otaliga portföljer vars risk måste hanteras kontinuerligt, och den stora mängden data som måste processeras gör detta till ett omfattande uppgift. Därför skulle ett system som autonomt kan upptäcka avvikelser i de finansiella portföljernas riskmått, vara av stort värde. I detta syftet undersöks två ekonometriska modeller, ARMA-GARCH och EWMA, samt två maskininlärningsmodeller, LSTM och HTM, för ändamålet att kunna utföra så kallad oövervakad avvikelsedetektering på den strömande tidsseriedata av portföljriskmått. Tre dataset syntetiserades med avkastningar och Value-at-Risk serier, och ett dataset med verkliga Value-at-Risk serier fick handgjorda etiketter till experimenten i denna avhandling. Resultaten visade att LSTM har stor potential i denna domänen, tack vare sin förmåga att anpassa sig till olika typer av tidsserier och för att effektivt lyckas finna varierade sorters anomalier. Däremot så hade EWMA fördelen av att vara den snabbaste och enklaste att tolka, men den saknade förmågan att finna avvikande trender. ARMA-GARCH hade svårigheter med att modellera tidsserier utav riskmått, vilket resulterade i att den preseterade dåligt. HTM blev utpresterad utav de andra algoritmerna i samtliga hänseenden, på grund utav dess oförmåga att lära sig tidsserierna autoregressiva beteende.
|
445 |
Information-Theoretic Framework for Network Anomaly Detection: Enabling online application of statistical learning models to high-speed traffic / ITF-NAD : Ett informationsteoretiskt ramverk för realtidsdetektering av nätverksanomalierDamour, Gabriel January 2019 (has links)
With the current proliferation of cyber attacks, safeguarding internet facing assets from network intrusions, is becoming a vital task in our increasingly digitalised economies. Although recent successes of machine learning (ML) models bode the dawn of a new generation of intrusion detection systems (IDS); current solutions struggle to implement these in an efficient manner, leaving many IDSs to rely on rule-based techniques. In this paper we begin by reviewing the different approaches to feature construction and attack source identification employed in such applications. We refer to these steps as the framework within which models are implemented, and use it as a prism through which we can identify the challenges different solutions face, when applied in modern network traffic conditions. Specifically, we discuss how the most popular framework -- the so called flow-based approach -- suffers from significant overhead being introduced by its resource heavy pre-processing step. To address these issues, we propose the Information Theoretic Framework for Network Anomaly Detection (ITF-NAD); whose purpose is to facilitate online application of statistical learning models onto high-speed network links, as well as provide a method of identifying the sources of traffic anomalies. Its development was inspired by previous work on information theoretic-based anomaly and outlier detection, and employs modern techniques of entropy estimation over data streams. Furthermore, a case study of the framework's detection performance over 5 different types of Denial of Service (DoS) attacks is undertaken, in order to illustrate its potential use for intrusion detection and mitigation. The case study resulted in state-of-the-art performance for time-anomaly detection of single source as well as distributed attacks, and show promising results regarding its ability to identify underlying sources. / I takt med att antalet cyberattacker växer snabbt blir det alltmer viktigt för våra digitaliserade ekonomier att skydda uppkopplade verksamheter från nätverksintrång. Maskininlärning (ML) porträtteras som ett kraftfullt alternativ till konventionella regelbaserade lösningar och dess anmärkningsvärda framgångar bådar för en ny generation detekteringssytem mot intrång (IDS). Trots denna utveckling, bygger många IDS:er fortfarande på signaturbaserade metoder, vilket förklaras av de stora svagheter som präglar många ML-baserade lösningar. I detta arbete utgår vi från en granskning av nuvarande forskning kring tillämpningen av ML för intrångsdetektering, med fokus på de nödvändiga steg som omger modellernas implementation inom IDS. Genom att sätta upp ett ramverk för hur variabler konstrueras och identifiering av attackkällor (ASI) utförs i olika lösningar, kan vi identifiera de flaskhalsar och begränsningar som förhindrar deras praktiska implementation. Särskild vikt läggs vid analysen av de populära flödesbaserade modellerna, vars resurskrävande bearbetning av rådata leder till signifikant tidsfördröjning, vilket omöjliggör deras användning i realtidssystem. För att bemöta dessa svagheter föreslår vi ett nytt ramverk -- det informationsteoretiska ramverket för detektering av nätverksanomalier (ITF-NAD) -- vars syfte är att möjliggöra direktanslutning av ML-modeller över nätverkslänkar med höghastighetstrafik, samt tillhandahåller en metod för identifiering av de bakomliggande källorna till attacken. Ramverket bygger på modern entropiestimeringsteknik, designad för att tillämpas över dataströmmar, samt en ASI-metod inspirerad av entropibaserad detektering av avvikande punkter i kategoriska rum. Utöver detta presenteras en studie av ramverkets prestanda över verklig internettrafik, vilken innehåller 5 olika typer av överbelastningsattacker (DoS) genererad från populära DDoS-verktyg, vilket i sin tur illustrerar ramverkets användning med en enkel semi-övervakad ML-modell. Resultaten visar på hög nivå av noggrannhet för detektion av samtliga attacktyper samt lovande prestanda gällande ramverkets förmåga att identifiera de bakomliggande aktörerna.
|
446 |
Venn Prediction for Survival Analysis : Experimenting with Survival Data and Venn PredictorsAparicio Vázquez, Ignacio January 2020 (has links)
The goal of this work is to expand the knowledge on the field of Venn Prediction employed with Survival Data. Standard Venn Predictors have been used with Random Forests and binary classification tasks. However, they have not been utilised to predict events with Survival Data nor in combination with Random Survival Forests. With the help of a Data Transformation, the survival task is transformed into several binary classification tasks. One key aspect of Venn Prediction are the categories. The standard number of categories is two, one for each class to predict. In this work, the usage of ten categories is explored and the performance differences between two and ten categories are investigated. Seven data sets are evaluated, and their results presented with two and ten categories. For the Brier Score and Reliability Score metrics, two categories offered the best results, while Quality performed better employing ten categories. Occasionally, the models are too optimistic. Venn Predictors rectify this performance and produce well-calibrated probabilities. / Målet med detta arbete är att utöka kunskapen om området för Venn Prediction som används med överlevnadsdata. Standard Venn Predictors har använts med slumpmässiga skogar och binära klassificeringsuppgifter. De har emellertid inte använts för att förutsäga händelser med överlevnadsdata eller i kombination med Random Survival Forests. Med hjälp av en datatransformation omvandlas överlevnadsprediktion till flera binära klassificeringsproblem. En viktig aspekt av Venn Prediction är kategorierna. Standardantalet kategorier är två, en för varje klass. I detta arbete undersöks användningen av tio kategorier och resultatskillnaderna mellan två och tio kategorier undersöks. Sju datamängder används i en utvärdering där resultaten presenteras för två och tio kategorier. För prestandamåtten Brier Score och Reliability Score gav två kategorier de bästa resultaten, medan för Quality presterade tio kategorier bättre. Ibland är modellerna för optimistiska. Venn Predictors korrigerar denna prestanda och producerar välkalibrerade sannolikheter.
|
447 |
Unauthorised Session Detection with RNN-LSTM Models and Topological Data Analysis / Obehörig Sessionsdetektering med RNN-LSTM-Modeller och Topologisk DataanalysMaksymchuk Netterström, Nazar January 2023 (has links)
This thesis explores the possibility of using session-based customers data from Svenska Handelsbanken AB to detect fraudulent sessions. Tools within Topological Data Analysis are employed to analyse customers behavior and examine topological properties such as homology and stable rank at the individual level. Furthermore, a RNN-LSTM model is, on a general behaviour level, trained to predict the customers next event and investigate its potential to detect anomalous behavior. The results indicate that simplicial complexes and their corresponding stable rank can be utilized to describe differences between genuine and fraudulent sessions on individual level. The use of a neural network suggests that there are deviant behaviors on general level concerning the difference between fraudulent and genuine sessions. The fact that this project was done without internal bank knowledge of fraudulent behaviour or historical knowledge of general suspicious activity and solely by data handling and anomaly detection shows great potential in session-based detection. Thus, this study concludes that the use of Topological Data Analysis and Neural Networks for detecting fraud and anomalous events provide valuable insight and opens the door for future research in the field. Further analysis must be done to see how effectively one could detect fraud mid-session. / I följande uppsats undersöks möjligheten att använda sessionbaserad kunddata från Svenska Handelsbanken AB för att detektera bedrägliga sessioner. Verktyg inom Topologisk Dataanalys används för att analysera kunders beteende och undersöka topologiska egenskaper såsom homologi och stabil rang på individnivå. Dessutom tränas en RNN-LSTM modell på en generell beteende nivå för att förutsäga kundens nästa händelse och undersöka dess potential att upptäcka avvikande beteende. Resultaten visar att simpliciella komplex och deras motsvarande stabil rang kan användas för att beskriva skillnader mellan genuina och bedrägliga sessioner på individnivå. Användningen av ett neuralt nätverk antyder att det finns avvikande beteenden på en generell nivå avseende skillnaden mellan bedrägliga och genuina sessioner. Det faktum att detta projekt genomfördes utan intern bankkännedom om bedrägerier eller historisk kunskap om allmäna misstänksamma aktiviteter och enbart genom datahantering och anomalidetektion visar stor potential för sessionbaserad detektion. Därmed drar denna studie slutsatsen att användningen av topologisk dataanalys och neurala nätverk för att upptäcka bedrägerier och avvikande händelser ger värdefulla insikter och öppnar dörren för framtida fortsätta studier inom området. Vidare analyser måste göras för att se hur effektivt man kan upptäcka bedrägerier mitt i sessioner.
|
448 |
Football Trajectory Modeling Using Masked Autoencoders : Using Masked Autoencoder for Anomaly Detection and Correction for Football Trajectories / Modellering av Fotbollsbana med Maskerade Autoencoders : Maskerade Autoencoders för Avvikelsedetektering och Korrigering av FotbollsbanorTor, Sandra January 2023 (has links)
Football trajectory modeling is a powerful tool for predicting and evaluating the movement of a football and its dynamics. Masked autoencoders are scalable self-supervised learners used for representation learning of partially observable data. Masked autoencoders have been shown to provide successful results in pre-training for computer vision and natural language processing tasks. Using masked autoencoders in the multivariate time-series data field has not been researched to the same extent. This thesis aims to investigate the potential of using masked autoencoders for multivariate time-series modeling for football trajectory data in collaboration with Tracab. Two versions of the masked autoencoder network with alterations are tested, which are implemented to be used with multivariate time-series data. The resulting models are used to detect anomalies in the football trajectory and propose corrections based on the reconstruction. The results are evaluated, discussed, and compared against the tracked and manually corrected value of the ball trajectory. The performance of the different frameworks is compared and the overall anomaly detection capabilities are discussed. The result suggested that even though the regular autoencoder version had a smaller average reconstruction error during training and testing, using masked autoencoders improved the anomaly detection performance. The result suggested that neither the regular autoencoder nor the masked autoencoder managed to propose plausible trajectories to correct anomalies in the data. This thesis promotes further research to be done in the field of using masked autoencoders for time series and trajectory modeling. / Modellering av en fotbolls bollbana är ett kraftfullt verktyg för att förutse och utvärdera rörelsen och dynamiken hos en fotboll. Maskerade autoencoders är skalbara självövervakande inlärare som används för representationsinlärning av delvis synlig data. Maskerade autoencoders har visat sig ge framgångsrika resultat vid förträning inom datorseende och naturlig språkbearbetning. Användningen av maskerade autoencoders för multivariat tidsserie-data har det inte forskats om i samma omfattning. Syftet med detta examensarbete är att undersöka potentialen för maskerade autoencoders inom tidsseriemodellering av bollbanor för fotboll i samarbete med Tracab. Två versioner av maskerade autoencoders anpassade för tidsserier testas. De tränade modellerna används för att upptäcka avvikelser i detekterade fotbollsbanor och föreslå korrigeringar baserat på rekonstruktionen. Resultaten utvärderas, diskuteras och jämförs med det detekterade och manuellt korrigerade värdet för fotbollens bollbana. De olika ramverken jämförs och deras förmåga för detektion och korrigering av avvikelser diskuteras. Resultatet visade att även om den vanliga autoencoder-versionen hade ett mindre genomsnittligt rekonstruktionsfel efter träning, så bidrog användningen av maskerade autoencoders till en förbättring inom detektering av avvikelser. Resultatet visade att varken den vanliga autoencodern eller den maskerade autoencodern lyckades föreslå trovärdiga bollbanor för att korrigera de funna avvikelserna i datan. Detta examensarbete främjar ytterligare forskning inom användningen av maskerade autoencoders för tidsserier och banmodellering.
|
449 |
Cyber Threat Detection using Machine Learning on Graphs : Continuous-Time Temporal Graph Learning on Provenance Graphs / Detektering av cyberhot med hjälp av maskininlärning på grafer : Inlärning av kontinuerliga tidsdiagram på härkomstgraferReha, Jakub January 2023 (has links)
Cyber attacks are ubiquitous and increasingly prevalent in industry, society, and governmental departments. They affect the economy, politics, and individuals. Ever-increasingly skilled, organized, and funded threat actors combined with ever-increasing volumes and modalities of data require increasingly sophisticated and innovative cyber defense solutions. Current state-of-the-art security systems conduct threat detection on dynamic graph representations of computer systems and enterprise communication networks known as provenance graphs. Most of these security systems are statistics-based, based on rules defined by domain experts, or discard temporal information, and as such come with a set of drawbacks (e.g., incapability to pinpoint the attack, incapability to adapt to evolving systems, reduced expressibility due to lack of temporal information). At the same time, there is little research in the machine learning community on graphs such as provenance graphs, which are a form of largescale, heterogeneous, and continuous-time dynamic graphs, as most research on graph learning has been devoted to static homogeneous graphs to date. Therefore, this thesis aims to bridge these two fields and investigate the potential of learning-based methods operating on continuous-time dynamic provenance graphs for cyber threat detection. Without loss of generality, this work adopts the general Temporal Graph Networks framework for learning representations and detecting anomalies in such graphs. This method explicitly addresses the drawbacks of current security systems by considering the temporal setting and bringing the adaptability of learning-based methods. In doing so, it also introduces and releases two large-scale, continuoustime temporal, heterogeneous benchmark graph datasets with expert-labeled anomalies to foster future research on representation learning and anomaly detection on complex real-world networks. To the best of the author’s knowledge, these are one of the first datasets of their kind. Extensive experimental analyses of modules, datasets, and baselines validate the potency of continuous-time graph neural network-based learning, endorsing its practical applicability to the detection of cyber threats and possibly other semantically meaningful anomalies in similar real-world systems. / Cyberattacker är allestädes närvarande och blir allt vanligare inom industrin, samhället och statliga myndigheter. De påverkar ekonomin, politiken och enskilda individer. Allt skickligare, organiserade och finansierade hotaktörer i kombination med ständigt ökande volymer och modaliteter av data kräver alltmer sofistikerade och innovativa cyberförsvarslösningar. Dagens avancerade säkerhetssystem upptäcker hot på dynamiska grafrepresentationer (proveniensgrafer) av datorsystem och företagskommunikationsnät. De flesta av dessa säkerhetssystem är statistikbaserade, baseras på regler som definieras av domänexperter eller bortser från temporär information, och som sådana kommer de med en rad nackdelar (t.ex. oförmåga att lokalisera attacken, oförmåga att anpassa sig till system som utvecklas, begränsad uttrycksmöjlighet på grund av brist på temporär information). Samtidigt finns det lite forskning inom maskininlärning om grafer som proveniensgrafer, som är en form av storskaliga, heterogena och dynamiska grafer med kontinuerlig tid, eftersom den mesta forskningen om grafinlärning hittills har ägnats åt statiska homogena grafer. Därför syftar denna avhandling till att överbrygga dessa två områden och undersöka potentialen hos inlärningsbaserade metoder som arbetar med dynamiska proveniensgrafer med kontinuerlig tid för detektering av cyberhot. Utan att för den skull göra avkall på generaliserbarheten använder detta arbete det allmänna Temporal Graph Networks-ramverket för inlärning av representationer och upptäckt av anomalier i sådana grafer. Denna metod tar uttryckligen itu med nackdelarna med nuvarande säkerhetssystem genom att beakta den temporala induktiva inställningen och ge anpassningsförmågan hos inlärningsbaserade metoder. I samband med detta introduceras och släpps också två storskaliga, kontinuerliga temporala, heterogena referensgrafdatauppsättningar med expertmärkta anomalier för att främja framtida forskning om representationsinlärning och anomalidetektering i komplexa nätverk i den verkliga världen. Såvitt författaren vet är detta en av de första datamängderna i sitt slag. Omfattande experimentella analyser av moduler, dataset och baslinjer validerar styrkan i induktiv inlärning baserad på kontinuerliga grafneurala nätverk, vilket stöder dess praktiska tillämpbarhet för att upptäcka cyberhot och eventuellt andra semantiskt meningsfulla avvikelser i liknande verkliga system.
|
450 |
Data Trustworthiness Assessment for Traffic Condition Participatory Sensing Scenario / Uppgifternas tillförlitlighet Bedömning av trafik Villkor Deltagande Scenario för avkänningGao, Hairuo January 2022 (has links)
Participatory Sensing (PS) is a common mode of data collection where valuable data is gathered from many contributors, each providing data from the user’s or the device’s surroundings via a mobile device, such as a smartphone. This has the advantage of cost-efficiency and wide-scale data collection. One of the application areas for PS is the collection of traffic data. The cost of collecting roving sensor data, such as vehicle probe data, is significantly lower than that of traditional stationary sensors such as radar and inductive loops. The collected data could pave the way for providing accurate and high-resolution traffic information that is important to transportation planning. The problem with PS is that it is open, and anyone can register and participate in a sensing task. A malicious user is likely to submit false data without performing the sensing task for personal advantage or, even worse, to attack on a large scale with clear intentions. For example, in real-time traffic monitoring, attackers may report false alerts of traffic jams to divert traffic on the road ahead or directly interfere with the system’s observation and judgment of road conditions, triggering large-scale traffic guidance errors. An efficient method of assessing the trustworthiness of data is therefore required. The trustworthiness problem can be approximated as the problem of anomaly detection in time-series data. Traditional predictive model-based anomaly detection models include univariate models for univariate time series such as Auto Regressive Integrated Moving Average (ARIMA), hypothesis testing, and wavelet analysis, and recurrent neural networks (RNNs) for multiple time series such as Gated Recurrent Unit (GRU) and Long short-term memory (LSTM). When talking about traffic scenarios, some prediction models that consider both spatial and temporal dependencies are likely to perform better than those that only consider temporal dependencies, such as Diffusion Convolutional Recurrent Neural Network (DCRNN) and Spatial-Temporal Attention Wavenet (STAWnet). In this project, we built a detailed traffic condition participatory sensing scenario as well as an adversary model. The attacker’s intent is refined into four attack scenarios, namely faking congestion, prolonging congestion, and masking congestion from the beginning or midway through. On the basis, we established a mechanism for assessing the trustworthiness of the data using three traffic prediction models. One model is the time-dependent deep neural network prediction model DCRNN, and the other two are a simplified version of the model DCRNN-NoCov, which ignores spatial dependencies, and ARIMA. The ultimate goal of this evaluation mechanism is to give a list of attackers and to perform data filtering. We use the success rate of distinguishing users as benign or attackers as a metric to evaluate the system’s performance. In all four attack scenarios mentioned above, the system achieves a success rate of more than 80%, obtaining satisfactory results. We also discuss the more desirable attack strategies from the attacker’s point of view. / Participatory Sensing (PS) är ett vanligt sätt att samla in data där värdefulla data samlas in från många bidragsgivare, som alla tillhandahåller data från användarens eller enhetens omgivning via en mobil enhet, t.ex. en smartphone. Detta har fördelen av kostnadseffektivitet och omfattande datainsamling. Ett av tillämpningsområdena för PS är insamling av trafikdata. Kostnaden för att samla in data från mobila sensorer, t.ex. data från fordonssonderingar, är betydligt lägre än kostnaden för traditionella stationära sensorer, t.ex. radar och induktiva slingor. De insamlade uppgifterna skulle kunna bana väg för att tillhandahålla exakt och högupplöst trafikinformation som är viktig för transportplaneringen. Problemet med deltagande avkänning är att den är öppen och att vem som helst kan registrera sig och delta i en avkänningsuppgift. En illasinnad användare kommer sannolikt att lämna in falska uppgifter utan att utföra avkänningsuppgiften för personlig vinning eller, ännu värre, för att angripa en stor skala med tydliga avsikter. Vid trafikövervakning i realtid kan t.ex. angripare rapportera falska varningar om trafikstockningar för att avleda trafiken på vägen framåt eller direkt störa systemets observation och bedömning av vägförhållanden, vilket kan utlösa storskaliga fel i trafikstyrningen. Det finns därför ett akut behov av en effektiv metod för att bedöma uppgifternas tillförlitlighet. Problemet med trovärdighet kan approximeras som problemet med upptäckt av anomalier i tidsserier. Traditionella modeller för anomalidetektion som bygger på prediktiva modeller omfattar univariata modeller för univariata tidsserier, t.ex. ARIMA (Autoregressive Integrated Moving Average), hypotesprövning och waveletanalys, och återkommande neurala nätverk (RNN) för flera tidsserier, t.ex. GRU (Gated Recurrent Unit) och LSTM (Long short-term memory). När man talar om trafikscenarier kommer vissa prognosmodeller som tar hänsyn till både rumsliga och tidsmässiga beroenden sannolikt att prestera bättre än de som endast tar hänsyn till tidsmässiga beroenden, till exempel Diffusion Convolutional Recurrent Neural Network (DCRNN) och Spatial-Temporal Attention Wavenet (STAWnet). I det här projektet byggde vi upp ett detaljerat scenario för deltagande av trafikförhållanden och en motståndarmodell. Angriparens avsikt är raffinerad i fyra angreppsscenarier, nämligen att fejka trafikstockning, förlänga trafikstockning och maskera trafikstockning från början eller halvvägs in i processen. På grundval av detta har vi inrättat en mekanism för att bedöma uppgifternas tillförlitlighet med hjälp av tre typiska trafikprognosmodeller. Den ena modellen är den tidsberoende djupa neurala nätverksförutsägelsemodellen DCRNN, och de andra två är en förenklad version av modellen DCRNN-NoCov, som ignorerar rumsliga beroenden, och ARIMA. Det slutliga målet med denna utvärderingsmekanism är att ge en lista över angripare och att utföra datafiltrering. Vi använder framgångsfrekvensen när det gäller att särskilja användare som godartade eller angripare som ett mått för att utvärdera systemets prestanda. I alla fyra olika attackscenarier som nämns ovan uppnår systemet en framgångsfrekvens på mer än 80%, vilket ger tillfredsställande resultat. Vi diskuterar också de mer önskvärda angreppsstrategierna ur angriparens synvinkel.
|
Page generated in 0.0918 seconds